MS-based proteomics to investigate proteins and their modifications

Similar documents
for the Novice Mass Spectrometry (^>, John Greaves and John Roboz yc**' CRC Press J Taylor & Francis Group Boca Raton London New York

Improved 6- Plex TMT Quantification Throughput Using a Linear Ion Trap HCD MS 3 Scan Jane M. Liu, 1,2 * Michael J. Sweredoski, 2 Sonja Hess 2 *

Protein analysis using mass spectrometry

Chemistry Instrumental Analysis Lecture 37. Chem 4631

Computational Methods for Mass Spectrometry Proteomics

Quantitation of a target protein in crude samples using targeted peptide quantification by Mass Spectrometry

High-Throughput Protein Quantitation Using Multiple Reaction Monitoring

Methods for proteome analysis of obesity (Adipose tissue)

Isotopic-Labeling and Mass Spectrometry-Based Quantitative Proteomics

Mass spectrometry has been used a lot in biology since the late 1950 s. However it really came into play in the late 1980 s once methods were

TANDEM MASS SPECTROSCOPY

(Refer Slide Time 00:09) (Refer Slide Time 00:13)

Electron Transfer Dissociation of N-linked Glycopeptides from a Recombinant mab Using SYNAPT G2-S HDMS

Peptide Targeted Quantification By High Resolution Mass Spectrometry A Paradigm Shift? Zhiqi Hao Thermo Fisher Scientific San Jose, CA

Atomic masses. Atomic masses of elements. Atomic masses of isotopes. Nominal and exact atomic masses. Example: CO, N 2 ja C 2 H 4

Identification of Human Hemoglobin Protein Variants Using Electrospray Ionization-Electron Transfer Dissociation Mass Spectrometry

Strategies for the Analysis of Therapeutic Peptides in Biofluids by LC-MS/MS. Lee Goodwin

LECTURE-13. Peptide Mass Fingerprinting HANDOUT. Mass spectrometry is an indispensable tool for qualitative and quantitative analysis of

6 x 5 Ways to Ensure Your LC-MS/MS is Healthy

CHROMATOGRAPHY AND MASS SPECTROMETER

Fundamentals of Mass Spectrometry. Fundamentals of Mass Spectrometry. Learning Objective. Proteomics

Designed for Accuracy. Innovation with Integrity. High resolution quantitative proteomics LC-MS

BIOINF 4120 Bioinformatics 2 - Structures and Systems - Oliver Kohlbacher Summer Systems Biology Exp. Methods

Clinical Toxicology. Biomass Component Extraction: The uneaten cooked plant specimen was prepared for

Qualitative Proteomics (how to obtain high-confidence high-throughput protein identification!)

Proteomics. November 13, 2007

Tandem mass spectra were extracted from the Xcalibur data system format. (.RAW) and charge state assignment was performed using in house software

Workflow concept. Data goes through the workflow. A Node contains an operation An edge represents data flow The results are brought together in tables

Effective Strategies for Improving Peptide Identification with Tandem Mass Spectrometry

MASS SPECTROMETRY. Topics

NPTEL VIDEO COURSE PROTEOMICS PROF. SANJEEVA SRIVASTAVA

Protein Quantitation II: Multiple Reaction Monitoring. Kelly Ruggles New York University

Tutorial 1: Setting up your Skyline document

Choosing the metabolomics platform

High-Field Orbitrap Creating new possibilities

Biological Mass Spectrometry

Protein Quantitation II: Multiple Reaction Monitoring. Kelly Ruggles New York University

Accurate, High-Throughput Protein Identification Using the Q TRAP LC/MS/MS System and Pro ID Software

LC-MS Based Metabolomics

Self-assembling covalent organic frameworks functionalized. magnetic graphene hydrophilic biocomposite as an ultrasensitive

Mass Spectrometry. Hyphenated Techniques GC-MS LC-MS and MS-MS

Lecture 8: Mass Spectrometry

Chapter 2 What are the Common Mass Spectrometry-Based Analyses Used in Biology?

Profiling of Diferulates (Plant Cell Wall Cross- Linkers) Using Ultrahigh-performance Liquid. Chromatography-Tandem Mass Spectrometry

TOMAHAQ Method Construction

SILAC and TMT. IDeA National Resource for Proteomics Workshop for Graduate Students and Post-docs Renny Lan 5/18/2017

Thermo Scientific LTQ Orbitrap Velos Hybrid FT Mass Spectrometer

Mass Spectrometry and Proteomics - Lecture 5 - Matthias Trost Newcastle University

Electrospray Ion Trap Mass Spectrometry. Introduction

Tandem MS = MS / MS. ESI-MS give information on the mass of a molecule but none on the structure

Mass spectrometry based proteomics

Welcome! Course 7: Concepts for LC-MS

Toxicity, Teratogenic and Estrogenic Effects of Bisphenol A and its Alternative. Replacements Bisphenol S, Bisphenol F and Bisphenol AF in Zebrafish.

Fast Protein and Peptide Separations Using Monolithic Nanocolumns and Capillary Columns

Supporting Information

Rapid Distinction of Leucine and Isoleucine in Monoclonal Antibodies Using Nanoflow. LCMS n. Discovery Attribute Sciences

Simplified Approaches to Impurity Identification using Accurate Mass UPLC/MS

Introduction. Chapter 1. Learning Objectives

PeptideProphet: Validation of Peptide Assignments to MS/MS Spectra. Andrew Keller

Isotope Dilution Mass Spectrometry

Analysis of Polar Metabolites using Mass Spectrometry

Lecture 8: Mass Spectrometry

Translational Biomarker Core

HR/AM Targeted Peptide Quantification on a Q Exactive MS: A Unique Combination of High Selectivity, High Sensitivity, and High Throughput

Bruker Daltonics. EASY-nLC. Tailored HPLC for nano-lc-ms Proteomics. Nano-HPLC. think forward

Reagents. Affinity Tag (Biotin) Acid Cleavage Site. Figure 1. Cleavable ICAT Reagent Structure.

Hypericin Analysis by LC/MS

Technical Note. Introduction

Introduction to LC-MS

PROTEIN SEQUENCING AND IDENTIFICATION USING TANDEM MASS SPECTROMETRY

Bioanalytical Chem: 4590: LC-MSMS of analgesics LC-MS Experiment Liquid Chromatography Mass Spectrometry (LC/MS)

Structure of the α-helix

(Bio)chemical Proteomics. Alex Kentsis October, 2013

Yun W. Alelyunas, Mark D. Wrona, Russell J. Mortishire-Smith, Nick Tomczyk, and Paul D. Rainville Waters Corporation, Milford, MA, USA INTRODUCTION

BIOINF 4399B Computational Proteomics and Metabolomics

Mass Spectrometry Based De Novo Peptide Sequencing Error Correction

Traditional Herbal Medicine Structural Elucidation using SYNAPT HDMS

Novel quadrupole time-of-flight mass spectrometry for shotgun proteomics

Peter A. DiMaggio, Jr., Nicolas L. Young, Richard C. Baliban, Benjamin A. Garcia, and Christodoulos A. Floudas. Research

De novo Protein Sequencing by Combining Top-Down and Bottom-Up Tandem Mass Spectra. Xiaowen Liu

Rapid Screening and Confirmation of Melamine Residues in Milk and Its Products by Liquid Chromatography Tandem Mass Spectrometry

Instrumental Analysis. Mass Spectrometry. Lecturer:! Somsak Sirichai

Multiple Fragmentation Methods for Small Molecule Characterization on a Dual Pressure Linear Ion Trap Orbitrap Hybrid Mass Spectrometer

BST 226 Statistical Methods for Bioinformatics David M. Rocke. January 22, 2014 BST 226 Statistical Methods for Bioinformatics 1

Proteome-wide label-free quantification with MaxQuant. Jürgen Cox Max Planck Institute of Biochemistry July 2011

1. Prepare the MALDI sample plate by spotting an angiotensin standard and the test sample(s).

Modeling Mass Spectrometry-Based Protein Analysis

LECTURE-11. Hybrid MS Configurations HANDOUT. As discussed in our previous lecture, mass spectrometry is by far the most versatile

The Power of LC MALDI: Identification of Proteins by LC MALDI MS/MS Using the Applied Biosystems 4700 Proteomics Analyzer with TOF/TOF Optics

Quantitative analysis of mitragynine in human urine by high performance liquid chromatography-tandem mass spectrometry

Rapid method development to study plasma stability of diverse pharmaceutical compounds using Rapid Resolution LC and triple quadrupole MS

Quantitative Proteomics

WADA Technical Document TD2003IDCR

An Effective Workflow for Impurity Analysis Incorporating High Quality HRAM LCMS & MSMS with Intelligent Automated Data Mining

Accurate Mass Analysis of Hydraulic Fracturing Waters: Identification of Polyethylene Glycol Surfactants by LC/Q-TOF-MS

Q Exactive TM : A True Qual-Quan HR/AM Mass Spectrometer for Routine Proteomics Applications. Yi Zhang, Ph.D. ThermoFisher Scientific

Agilent All Ions MS/MS

Liquid Chromatography - Mass Spectrometry

Applying MRM Spectrum Mode and Library Searching for Enhanced Reporting Confidence in Routine Pesticide Residue Analysis

Introduction to the Q Trap LC/MS/MS System

Transcription:

MS-based proteomics to investigate proteins and their modifications Francis Impens VIB Proteomics Core October th 217

Overview Mass spectrometry-based proteomics: general workflow Identification of protein post-translational modifications (PTMs) Take-home messages are in red 2

21239_C1_sn8 #94-983 RT: 29.3-29.17 AV: 1 NL: 1.11E6 F: FTMS + p NSI Full ms [3.-2.] 1 9 8 7 6 4 4 3 2 1 1 2.3274 2.8292 3.334 4.3398 4.8423 6.289 1.87 3.8319 4.7413.2914 1. 2.416 2.429.8367 6.78 1. 1. 2. 2. 3. 3. 4. 4... 6. 6. 7. 21239_C1_sn8 #979 RT: 29.1 AV: 1 NL:.E4 T: ITMS + c NSI d Full ms2 2.33@cid. [14.-111.] 1 9 8 7 6 4 4 3 2 1 1 21239_C1_sn8 #979 RT: 29.1 AV: 1 NL:.E4 T: ITMS + c NSI d Full ms2 2.33@cid. [14.-111.] 1 9 8 7 6 4 4 286.218 399.33 6.4398 21239_C1_sn8 #979 RT: 29.1 AV: 1 NL:.E4 T: ITMS 479.331 + c NSI d Full ms2 2.33@cid. 92.34 [14.-111.] 12.383 1 9 8 7 43.9283 399.33.377 479.331 92.34 12.383 43.9283 6.4398 772.292 818.9.377 479.331 92.34 12.383 64.4697 843.228 6 772.292 7. 187.113 261.16 3 43.9283 371.2819 4 877.878 9.6296 286.218 399.33 146.96 2 4 64.4697 843.228 2 3 4 6 7 8 9 1 11 1 772.292 7. 1 261.16 3 187.113 371.2819 286.218 877.878 9.6296 146.96 2 64.4697 843.228 2 3 1 4 6 7 8 9 1 11 7. 1 187.113 261.16 371.2819 877.878 9.6296 146.96 818.9 6.4398.377 818.9 2 3 4 6 7 8 9 1 11 21239_C1_sn8 #979 RT: 29.1 AV: 1 NL:.E4 T: ITMS + c NSI d Full ms2 2.33@cid. [14.-111.] 1 9 8 7 6 4 4 3 2 1 1 21239_C1_sn8 #979 RT: 29.1 AV: 1 NL:.E4 T: ITMS + c NSI d Full ms2 2.33@cid. [14.-111.] 1 9 8 7 6 6.4398 21239_C1_sn8 479.331 #979 RT: 29.1 AV: 1 NL:.E4 T: ITMS + c NSI d Full ms2 2.33@cid. 92.34 [14.-111.] 12.383 1 9 399.33 8 7.377 6.4398 818.9 43.9283 479.331 92.34 21239_C1_sn8 #979 RT: 29.1 AV: 1 NL:.E4 12.383 T: ITMS + c NSI d Full ms2 2.33@cid. [14.-111.].377 1 43.9283 772.292 4 286.218 399.33 9 479.331 92.34 4 64.4697 843.228 6 12.383 818.9 772.292 8.377 7. 187.113 261.16 3 43.9283 371.2819 286.218 4 7 877.878 9.6296 2 64.4697 146.96 843.228 4 399.33 479.331 92.34 2 1 3 4 6 7 8 9 1 7. 11 6 12.383 1 187.113 261.16 772.292.377 3 371.2819 877.878 9.6296 43.9283 146.96 286.218 2 2 4 3 4 6 7 64.4697 8 9 843.228 399.33 1 11 1 4 7. 1 187.113 261.16 772.292 3 371.2819 877.878 9.6296 146.96 286.218 2 2 3 4 6 7 64.4697 8 9 843.228 1 11 1 7. 1 187.113 261.16 371.2819 877.878 9.6296 146.96 6.4398 818.9 6.4398 818.9 2 3 4 6 7 8 9 1 11 Mass spectrometry-based proteomics trypsin protein extract peptides LC-MS/MS 1. Liquid Chromatography 2. ElectroSpray Ionization (ESI) 3. Tandem Mass Spectrometry 4. Data analysis peptide masses MS spectra peptide fragment masses spectra algorithm to identify peptide & protein protein database peptide separation C18 nanoflow HPLC peptide ionization (positive charge) cycles of MS and Bio-informatics

Protein extraction protein extract Protein extraction: = disrupt the cell wall and cell membrane and bring proteins in solution complete extraction is difficult/impossible strongly dependent on the sample: animal vs. plant vs. prokaryotic cells mechanical cell disruption, e.g. by sonication or by freeze-thawing non-mechanical cell disruption, e.g. by detergents or by chaotropes (e.g. 8 M urea) prevent protein degradation: protease inhibitor cocktails, samples are kept on ice

Trypsin digestion trypsin protein extract K/R peptides Trypsin: very specific and highly active protease: cleaves after unmodified Lys or Arg residues generates peptides of about 1 to 2 residues tryptic peptides end on positively charged Lys or Arg, good for ionization

21239_C1_sn8 #94-983 RT: 29.3-29.17 AV: 1 NL: 1.11E6 F: FTMS + p NSI Full ms [3.-2.] 1 9 8 7 6 4 4 3 2 1 1 2.3274 2.8292 3.334 4.3398 4.8423 6.289 1.87 3.8319 4.7413.2914 1. 2.416 2.429.8367 6.78 1. 1. 2. 2. 3. 3. 4. 4... 6. 6. 7. 21239_C1_sn8 #979 RT: 29.1 AV: 1 NL:.E4 T: ITMS + c NSI d Full ms2 2.33@cid. [14.-111.] 1 9 8 7 6 4 4 3 2 1 1 21239_C1_sn8 #979 RT: 29.1 AV: 1 NL:.E4 T: ITMS + c NSI d Full ms2 2.33@cid. [14.-111.] 1 9 8 7 6 399.33 6.4398 21239_C1_sn8 #979 RT: 29.1 AV: 1 NL:.E4 T: ITMS 479.331 + c NSI d Full ms2 2.33@cid. 92.34 [14.-111.] 12.383 1 9 8 43.9283.377 479.331 92.34 12.383 43.9283 6.4398 772.292 7 4 479.331 92.34 286.218 64.4697 843.228 4 6 399.33 12.383.377 772.292 7. 187.113 261.16 3 43.9283 371.2819 4 877.878 9.6296 286.218 399.33 146.96 2 4 64.4697 843.228 2 3 4 6 7 8 9 1 11 1 772.292 7. 1 187.113 261.16 3 371.2819 286.218 877.878 9.6296 146.96 2 64.4697 843.228 2 3 1 4 6 7 8 9 1 11 7. 1 187.113 261.16 371.2819 877.878 9.6296 146.96 818.9.377 818.9 6.4398 818.9 2 3 4 6 7 8 9 1 11 LC-MS/MS = Liquid Chromatography - Tandem Mass Spectrometry trypsin protein extract peptides LC-MS/MS 1. Liquid Chromatography 2. ElectroSpray Ionization (ESI) 3. Tandem Mass Spectrometry peptide masses MS spectra peptide fragment masses peptide separation C18 nanoflow HPLC peptide ionization (positive charge) cycles of MS and

Liquid Chromatography 1. Liquid Chromatography 1 8 6 4 2 36.34 NL: 112.98 116.33 4.14 1.8E9 63.63 66.3 96.1 TIC MS 4.2 89.7 13.39 21491_.14 61.74 69.81 73.43 142.94 168.62 q_tc_col1 61.3 14.9 4.3 89.9 14.1 _gantasfi_v 46.29 6.71 81.87 16.36 173.72 _input 21.97 31.43 2.43 82.29 24.26 78.99 12.91 123.2 146.63 174.69 126. 131. 19.34 99.4 166.86 162.82 1. 161.31 14.44 134.76 12.17 1.12 137. 147.67 16.36 peptide separation C18 nanoflow HPLC 1 2 3 4 6 7 8 9 1 11 12 13 14 1 16 17 18 Time (min) peptide chromatogram RP-HPLC: Reversed-Phase High Pressure Liquid Chromatography: peptide separation based on hydrophobicity on C18 beads elution by acetonitrile gradient up to +/- % in.1% formic acid, good for ionization nanoflow rates (e.g 3 nanoliter/minute) in capillaries with micrometer diameter (e.g. micron) under very high pressure (up to 1 bar)

ElectroSpray Ionisation (ESI) 2. ElectroSpray Ionization (ESI) - aqueous/organic acidified liquid with peptides - small-diameter needle with a high positive voltage - negatively charged voltage on the mass spectrometer inlet Taylor cone peptide ionization (positive charge)

ElectroSpray Ionisation (ESI) 2. ElectroSpray Ionization (ESI) - aqueous/organic acidified liquid with peptides - small-diameter needle with a high positive voltage - negatively charged voltage on the mass spectrometer inlet + - sheet gas drying gas (nitrogen) - increased temperature ( C) - vacuum in mass spectrometer Taylor cone peptide ionization (positive charge) ElectroSpray Ionization (ESI) transition from ions in solution to ions in the gas phase + soft ionization method + multiply charged ions - low salt tolerance

21239_C1_sn8 #94-983 RT: 29.3-29.17 AV: 1 NL: 1.11E6 F: FTMS + p NSI Full ms [3.-2.] 1 9 8 7 6 4 4 3 2 1 1 2.3274 2.8292 3.334 4.3398 4.8423 6.289 1.87 3.8319 4.7413.2914 1. 2.416 2.429.8367 6.78 1. 1. 2. 2. 3. 3. 4. 4... 6. 6. 7. 21239_C1_sn8 #979 RT: 29.1 AV: 1 NL:.E4 T: ITMS + c NSI d Full ms2 2.33@cid. [14.-111.] 1 9 8 7 6 4 4 3 2 1 1 21239_C1_sn8 #979 RT: 29.1 AV: 1 NL:.E4 T: ITMS + c NSI d Full ms2 2.33@cid. [14.-111.] 1 9 8 7 6 399.33 6.4398 21239_C1_sn8 #979 RT: 29.1 AV: 1 NL:.E4 T: ITMS 479.331 + c NSI d Full ms2 2.33@cid. 92.34 [14.-111.] 12.383 1 9 8 43.9283.377 479.331 92.34 12.383 43.9283 6.4398 772.292 7 4 479.331 92.34 286.218 64.4697 4 6 399.33 12.383 843.228.377 772.292 7. 187.113 261.16 3 43.9283 371.2819 4 877.878 9.6296 286.218 399.33 146.96 2 4 64.4697 843.228 2 3 4 6 7 8 9 1 11 1 772.292 7. 1 187.113 261.16 3 371.2819 286.218 877.878 9.6296 146.96 2 64.4697 843.228 2 3 1 4 6 7 8 9 1 11 7. 1 187.113 261.16 371.2819 877.878 9.6296 146.96 818.9.377 818.9 6.4398 818.9 2 3 4 6 7 8 9 1 11 Tandem Mass Spectrometry (MS/MS) 3. Tandem Mass Spectrometry 1 Da 1 peptide masses MS spectra cycles of MS and peptide fragment masses MS spectrum = mass of the intact peptides 449 4 41 42 43 44 3 4 6 7 8 9 1 11 12 13 14 1 biomolecules do not have a single mass: peptide envelope

21239_C1_sn8 #94-983 RT: 29.3-29.17 AV: 1 NL: 1.11E6 F: FTMS + p NSI Full ms [3.-2.] 1 9 8 7 6 4 4 3 2 1 1 2.3274 2.8292 3.334 4.3398 4.8423 6.289 1.87 3.8319 4.7413.2914 1. 2.416 2.429.8367 6.78 1. 1. 2. 2. 3. 3. 4. 4... 6. 6. 7. 21239_C1_sn8 #979 RT: 29.1 AV: 1 NL:.E4 T: ITMS + c NSI d Full ms2 2.33@cid. [14.-111.] 1 9 8 7 6 4 4 3 2 1 1 21239_C1_sn8 #979 RT: 29.1 AV: 1 NL:.E4 T: ITMS + c NSI d Full ms2 2.33@cid. [14.-111.] 1 9 8 7 6 399.33 6.4398 21239_C1_sn8 #979 RT: 29.1 AV: 1 NL:.E4 T: ITMS 479.331 + c NSI d Full ms2 2.33@cid. 92.34 [14.-111.] 12.383 1 9 8 43.9283.377 479.331 92.34 12.383 43.9283 6.4398 772.292 7 4 479.331 92.34 286.218 64.4697 4 6 399.33 12.383 843.228.377 772.292 7. 187.113 261.16 3 43.9283 371.2819 4 877.878 9.6296 286.218 399.33 146.96 2 4 64.4697 843.228 2 3 4 6 7 8 9 1 11 1 772.292 7. 1 187.113 261.16 3 371.2819 286.218 877.878 9.6296 146.96 2 64.4697 843.228 2 3 1 4 6 7 8 9 1 11 7. 1 187.113 261.16 371.2819 877.878 9.6296 146.96 818.9.377 818.9 6.4398 818.9 2 3 4 6 7 8 9 1 11 Tandem Mass Spectrometry (MS/MS) 3. Tandem Mass Spectrometry 1 Da 272.23;y2 peptide masses MS spectra cycles of MS and peptide fragment masses 1 MS spectrum = mass of the intact peptides 449 4 41 42 43 44 3 4 6 7 8 9 1 11 12 13 14 1 19.76;b1 1.139;y1 83.383;y 387.2;y3 486.297;y4 712.443;y6 1 2 3 4 6 7 8 9 1 11 12 13 14 MS/MS spectrum = mass of the peptide fragments M E P V D P R b-ions b 6 b b 4 y 1 y 2 y 3 y 4 y-ions biomolecules do not have a single mass: peptide envelope isolated peptides are fragmented by collision induced dissociation (CID) mass difference between fragment ions holds sequence information b 3 y b 2 y 6 b 1 1 MS spectrum is followed by a number (e.g. 1), this cycle is repeated constantly random sampling with bias towards most abundant peptides (and thus proteins)

21239_C1_sn8 #94-983 RT: 29.3-29.17 AV: 1 NL: 1.11E6 F: FTMS + p NSI Full ms [3.-2.] 1 9 8 7 6 4 4 3 2 1 1 2.3274 2.8292 3.334 4.3398 4.8423 6.289 1.87 3.8319 4.7413.2914 1. 2.416 2.429.8367 6.78 1. 1. 2. 2. 3. 3. 4. 4... 6. 6. 7. 21239_C1_sn8 #979 RT: 29.1 AV: 1 NL:.E4 T: ITMS + c NSI d Full ms2 2.33@cid. [14.-111.] 1 9 8 7 6 4 4 3 2 1 1 21239_C1_sn8 #979 RT: 29.1 AV: 1 NL:.E4 T: ITMS + c NSI d Full ms2 2.33@cid. [14.-111.] 1 9 8 7 6 399.33 6.4398 21239_C1_sn8 #979 RT: 29.1 AV: 1 NL:.E4 T: ITMS 479.331 + c NSI d Full ms2 2.33@cid. 92.34 [14.-111.] 12.383 1 9 8 43.9283.377 479.331 92.34 12.383 43.9283 6.4398 772.292 7 4 479.331 92.34 286.218 64.4697 4 6 399.33 12.383 843.228.377 772.292 7. 187.113 261.16 3 43.9283 371.2819 4 877.878 9.6296 286.218 399.33 146.96 2 4 64.4697 843.228 2 3 4 6 7 8 9 1 11 1 772.292 7. 1 187.113 261.16 3 371.2819 286.218 877.878 9.6296 146.96 2 64.4697 843.228 2 3 1 4 6 7 8 9 1 11 7. 1 187.113 261.16 371.2819 877.878 9.6296 146.96 818.9.377 818.9 6.4398 818.9 2 3 4 6 7 8 9 1 11 Tandem Mass Spectrometry (MS/MS) 3. Tandem Mass Spectrometry 1 Da 272.23;y2 peptide masses MS spectra cycles of MS and peptide fragment masses 1 MS spectrum = mass of the intact peptides 449 4 41 42 43 44 3 4 6 7 8 9 1 11 12 13 14 1 19.76;b1 1.139;y1 83.383;y 387.2;y3 486.297;y4 712.443;y6 1 2 3 4 6 7 8 9 1 11 12 13 14 MS/MS spectrum = mass of the peptide fragments general undersampling: many unidentified peptides speed to isolate and fragment peptides is a limiting factor hybrid mass spectrometers with multiple mass analyzers such as quadrupole (Q) time of flight (TOF) iontrap orbitrap orbitrap Q-Exactive instrument quadrupole

21239_C1_sn8 #94-983 RT: 29.3-29.17 AV: 1 NL: 1.11E6 F: FTMS + p NSI Full ms [3.-2.] 1 9 8 7 6 4 4 3 2 1 1 2.3274 2.8292 3.334 4.3398 4.8423 6.289 1.87 3.8319 4.7413.2914 1. 2.416 2.429.8367 6.78 1. 1. 2. 2. 3. 3. 4. 4... 6. 6. 7. 21239_C1_sn8 #979 RT: 29.1 AV: 1 NL:.E4 T: ITMS + c NSI d Full ms2 2.33@cid. [14.-111.] 1 9 8 7 6 4 4 3 2 1 1 21239_C1_sn8 #979 RT: 29.1 AV: 1 NL:.E4 T: ITMS + c NSI d Full ms2 2.33@cid. [14.-111.] 1 9 8 7 6 4 4 286.218 399.33 6.4398 21239_C1_sn8 #979 RT: 29.1 AV: 1 NL:.E4 T: ITMS 479.331 + c NSI d Full ms2 2.33@cid. 92.34 [14.-111.] 12.383 1 9 8 7 43.9283 399.33.377 479.331 92.34 12.383 43.9283 6.4398 772.292 818.9.377 479.331 92.34 12.383 64.4697 843.228 6 772.292 7. 187.113 261.16 3 43.9283 371.2819 4 877.878 9.6296 286.218 399.33 146.96 2 4 64.4697 843.228 2 3 4 6 7 8 9 1 11 1 772.292 7. 1 261.16 3 187.113 371.2819 286.218 877.878 9.6296 146.96 2 64.4697 843.228 2 3 1 4 6 7 8 9 1 11 7. 1 187.113 261.16 371.2819 877.878 9.6296 146.96 818.9 6.4398.377 818.9 2 3 4 6 7 8 9 1 11 Mass spectrometry-based proteomics trypsin protein extract peptides LC-MS/MS 1. Liquid Chromatography 2. ElectroSpray Ionization (ESI) 3. Tandem Mass Spectrometry peptide masses MS spectra peptide fragment masses peptide separation C18 nanoflow HPLC peptide ionization (positive charge) cycles of MS and

21239_C1_sn8 #94-983 RT: 29.3-29.17 AV: 1 NL: 1.11E6 F: FTMS + p NSI Full ms [3.-2.] 1 9 8 7 6 4 4 3 2 1 1 2.3274 2.8292 3.334 4.3398 4.8423 6.289 1.87 3.8319 4.7413.2914 1. 2.416 2.429.8367 6.78 1. 1. 2. 2. 3. 3. 4. 4... 6. 6. 7. 21239_C1_sn8 #979 RT: 29.1 AV: 1 NL:.E4 T: ITMS + c NSI d Full ms2 2.33@cid. [14.-111.] 1 9 8 7 6 4 4 3 2 1 1 21239_C1_sn8 #979 RT: 29.1 AV: 1 NL:.E4 T: ITMS + c NSI d Full ms2 2.33@cid. [14.-111.] 1 9 8 7 6 4 4 286.218 399.33 6.4398 21239_C1_sn8 #979 RT: 29.1 AV: 1 NL:.E4 T: ITMS 479.331 + c NSI d Full ms2 2.33@cid. 92.34 [14.-111.] 12.383 1 9 8 7 43.9283 399.33.377 479.331 92.34 12.383 43.9283 6.4398 772.292 818.9.377 479.331 92.34 12.383 64.4697 843.228 6 772.292 7. 187.113 261.16 3 43.9283 371.2819 4 877.878 9.6296 286.218 399.33 146.96 2 4 64.4697 843.228 2 3 4 6 7 8 9 1 11 1 772.292 7. 1 261.16 3 187.113 371.2819 286.218 877.878 9.6296 146.96 2 64.4697 843.228 2 3 1 4 6 7 8 9 1 11 7. 1 187.113 261.16 371.2819 877.878 9.6296 146.96 818.9 6.4398.377 818.9 2 3 4 6 7 8 9 1 11 21239_C1_sn8 #979 RT: 29.1 AV: 1 NL:.E4 T: ITMS + c NSI d Full ms2 2.33@cid. [14.-111.] 1 9 8 7 6 4 4 3 2 1 1 21239_C1_sn8 #979 RT: 29.1 AV: 1 NL:.E4 T: ITMS + c NSI d Full ms2 2.33@cid. [14.-111.] 1 9 8 7 6 6.4398 21239_C1_sn8 479.331 #979 RT: 29.1 AV: 1 NL:.E4 T: ITMS + c NSI d Full ms2 2.33@cid. 92.34 [14.-111.] 12.383 1 9 399.33 8 7.377 6.4398 818.9 43.9283 479.331 92.34 21239_C1_sn8 #979 RT: 29.1 AV: 1 NL:.E4 12.383 T: ITMS + c NSI d Full ms2 2.33@cid. [14.-111.].377 1 43.9283 772.292 4 286.218 399.33 9 479.331 92.34 4 64.4697 843.228 6 12.383 818.9 772.292 8.377 7. 187.113 261.16 3 43.9283 371.2819 286.218 4 7 877.878 9.6296 2 64.4697 146.96 843.228 4 399.33 479.331 92.34 2 1 3 4 6 7 8 9 1 7. 11 6 12.383 1 187.113 261.16 772.292.377 3 371.2819 877.878 9.6296 43.9283 146.96 286.218 2 2 4 3 4 6 7 64.4697 8 9 843.228 399.33 1 11 1 4 7. 1 187.113 261.16 772.292 3 371.2819 877.878 9.6296 146.96 286.218 2 2 3 4 6 7 64.4697 8 9 843.228 1 11 1 7. 1 187.113 261.16 371.2819 877.878 9.6296 146.96 6.4398 818.9 6.4398 818.9 2 3 4 6 7 8 9 1 11 Mass spectrometry-based proteomics trypsin protein extract peptides LC-MS/MS 1. Liquid Chromatography 2. ElectroSpray Ionization (ESI) 3. Tandem Mass Spectrometry 4. Data analysis peptide masses MS spectra peptide fragment masses spectra algorithm to identify peptide & protein protein database peptide separation C18 nanoflow HPLC peptide ionization (positive charge) cycles of MS and Bio-informatics

21239_C1_sn8 #979 RT: 29.1 AV: 1 NL:.E4 T: ITMS + c NSI d Full ms2 2.33@cid. [14.-111.] 1 9 8 7 6 4 4 3 2 1 1 21239_C1_sn8 #979 RT: 29.1 AV: 1 NL:.E4 T: ITMS + c NSI d Full ms2 2.33@cid. [14.-111.] 1 9 8 7 6 6.4398 21239_C1_sn8 479.331 #979 RT: 29.1 AV: 1 NL:.E4 T: ITMS + c NSI d Full ms2 2.33@cid. 92.34 [14.-111.] 12.383 1 9 399.33 8 7.377 6.4398 818.9 43.9283 479.331 92.34 21239_C1_sn8 #979 RT: 29.1 AV: 1 NL:.E4 12.383 T: ITMS + c NSI d Full ms2 2.33@cid. [14.-111.].377 1 43.9283 772.292 4 286.218 399.33 9 479.331 92.34 4 64.4697 843.228 6 12.383 818.9 772.292 8.377 7. 187.113 261.16 3 43.9283 371.2819 286.218 4 7 877.878 9.6296 2 64.4697 146.96 843.228 4 399.33 479.331 92.34 2 1 3 4 6 7 8 9 1 7. 11 6 12.383 1 187.113 261.16 772.292.377 3 371.2819 877.878 9.6296 43.9283 146.96 286.218 2 2 4 3 4 6 7 64.4697 8 9 843.228 399.33 1 11 1 4 7. 1 187.113 261.16 772.292 3 371.2819 877.878 9.6296 146.96 286.218 2 2 3 4 6 7 64.4697 8 9 843.228 1 11 1 7. 1 187.113 261.16 371.2819 877.878 9.6296 146.96 6.4398 818.9 6.4398 818.9 2 3 4 6 7 8 9 1 11 Mass spectrometry-based proteomics trypsin protein extract peptides LC-MS/MS Database searching: 4. Data analysis by software algorithms that compare recorded to theoretical spectra generated by in silico digestion of a protein sequence database you can only identify proteins that are in the database popular free algorithm is MaxQuant spectra algorithm to identify peptide & protein protein database Bio-informatics

Mass spectrometry can be quantitative vs. sample A isotopic labeling approaches sample B label-free quantification based on non-radioactive, stable isotopes (e.g. 13 C, 18 O, 1 N) metabolic labeling (e.g. SILAC) non-metabolic labeling relies on highly reproducible sample prep & LC almost as accurate as labeling approaches no sample mixing, separate LC-MS/MS sample mixing before LC-MS/MS

Overview Mass spectrometry-based proteomics: general workflow Identification of protein post-translational modifications (PTMs) Take-home messages are in red 17

Identification of PTMs trypsin protein extract peptides LC-MS/MS Two principles: I. modification leads to a measurable mass difference II. pre-enrichment of modified peptides

I. Measurable mass difference: example from the lab Purified protein X mod Question: is the bacterial protein X modified by host enzymes? 837.61 2+ 21.6 8.9618 2+ incubation with host cell nuclear extract MS spectra Acetyl 42.1 42.112 Da Trimethyl 42.469 3.2 min +/- % DLALIKADLAEFEAR? 33.63 min Protein X gelband Ac + DLALIKADLAEFEAR? +/- % 836 838 84 842 844 846 848 2 4 6 8 86 862 864 Time (min)

I. Measurable mass difference: example from the lab Purified protein X Question: is the bacterial protein X modified by host enzymes? incubation with host cell nuclear extract mod b4; 413.24 b; 26.32 b6; 4.42 b7; 7.46 I K A y8;.43 y9; 121.47 y1: 1149.4 y11; 1262.7 A K I DLALIKADLAEFEAR LntA gelband b 6 b b 4 b 3 b 2 b 1 y 1 y 2 y 3 y 4 y y 6 y8;.43 y9; 121.47 y1: 1191. y11; 134.9 MS/MS spectra b4; 413.24 b; 26.32 b6; 696.43 b7; 7.46 I K-Ac A A K-Ac I 166.9 Ac DLALIKADLAEFEAR 8.41 842.36 1694.86 4 6 8 1 12 14 16

II. Pre-enrichment of modified peptides trypsin protein extract peptides LC-MS/MS

II. Pre-enrichment of modified peptides trypsin protein extract peptides pre-enrichment of modified peptides LC-MS/MS

II. Pre-enrichment of modified peptides trypsin protein extract peptides pre-enrichment of modified peptides LC-MS/MS Ubiquitin MQIFVKTLTGKTITLEVEPSDTIENV KAKIQDKEGIPPDQQRLIFAGKQLE DGRTLSDYNIQKESTLHLVLRLRGG trypsin xxxxxxxrxxxxkxxxkxxxxrxxx GG xxxxkxxxk xxx xxxxr xxxxxxxr peptide IP GG xxxxkxxxk LC-MS/MS

Acknowledgements An Staes Evy Timmerman Delphi Van Haver Jarne Pauwels Teresa Maia Kris Gevaert Fabien Thery Lia Martina Katie Boucher