Chapter 2 Notes, Kohler & Johnson 2e

Similar documents
Math 308 Exam I Practice Problems

Math 308 Exam I Practice Problems

Math 2214 Solution Test 1D Spring 2015

Sample Questions, Exam 1 Math 244 Spring 2007

Chapter1. Ordinary Differential Equations

2.4 Differences Between Linear and Nonlinear Equations 75

Assignment # 3, Math 370, Fall 2018 SOLUTIONS:

Problem Set. Assignment #1. Math 3350, Spring Feb. 6, 2004 ANSWERS

It is convenient to think that solutions of differential equations consist of a family of functions (just like indefinite integrals ).

P (t) = rp (t) 22, 000, 000 = 20, 000, 000 e 10r = e 10r. ln( ) = 10r 10 ) 10. = r. 10 t. P (30) = 20, 000, 000 e

Lecture Notes in Mathematics. Arkansas Tech University Department of Mathematics

Homework 2 Solutions Math 307 Summer 17

Solutions to the Review Questions

Math 392 Exam 1 Solutions Fall (10 pts) Find the general solution to the differential equation dy dt = 1

Solutions to the Review Questions

APPM 2360: Midterm exam 1 February 15, 2017

First Order Differential Equations Chapter 1

Solutions to Homework 1, Introduction to Differential Equations, 3450: , Dr. Montero, Spring y(x) = ce 2x + e x

Differential equations

Ordinary Differential Equations

Section , #5. Let Q be the amount of salt in oz in the tank. The scenario can be modeled by a differential equation.

Chapters 8.1 & 8.2 Practice Problems

Chapter 2: First Order DE 2.4 Linear vs. Nonlinear DEs

Math Applied Differential Equations

MATH 307 Introduction to Differential Equations Autumn 2017 Midterm Exam Monday November

MATH 4B Differential Equations, Fall 2016 Final Exam Study Guide

2r 2 e rx 5re rx +3e rx = 0. That is,

First Order ODEs, Part II

Lesson 10 MA Nick Egbert

Chapter 6 Differential Equations and Mathematical Modeling. 6.1 Antiderivatives and Slope Fields

Form A. 1. Which of the following is a second-order, linear, homogenous differential equation? 2

MA26600 FINAL EXAM INSTRUCTIONS December 13, You must use a #2 pencil on the mark sense sheet (answer sheet).

Differential Equations

First Order ODEs (cont). Modeling with First Order ODEs

Practice Midterm 1 Solutions Written by Victoria Kala July 10, 2017

Name: Solutions Final Exam

Second Order Linear Equations

Math 266, Midterm Exam 1

Antiderivatives. Definition A function, F, is said to be an antiderivative of a function, f, on an interval, I, if. F x f x for all x I.

Section 2.5 Mixing Problems. Key Terms: Tanks Mixing problems Input rate Output rate Volume rates Concentration

Differential Equations

Differential Equations & Separation of Variables

Lecture Notes for Math 251: ODE and PDE. Lecture 6: 2.3 Modeling With First Order Equations

MATH 251 Examination I October 10, 2013 FORM A. Name: Student Number: Section:

Ex. 1. Find the general solution for each of the following differential equations:

Sect2.1. Any linear equation:

Math Spring 2014 Homework 2 solution

Chapter 2: First Order ODE 2.4 Examples of such ODE Mo

Math 308, Sections 301, 302, Summer 2008 Review before Test I 06/09/2008

C H A P T E R. Introduction 1.1

Ordinary Differential Equations

MA 102 Mathematics II Lecture Feb, 2015

Old Math 330 Exams. David M. McClendon. Department of Mathematics Ferris State University

APPM 2360: Final Exam 10:30am 1:00pm, May 6, 2015.

4. Some Applications of first order linear differential

Math 122 Fall Handout 15: Review Problems for the Cumulative Final Exam

MAT 275 Test 1 SOLUTIONS, FORM A

REVIEW PROBLEMS FOR MIDTERM I MATH 2373, SPRING 2015 ANSWER KEY

Basic Theory of Differential Equations

LECTURE 4-1 INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS

HOMEWORK # 3 SOLUTIONS

Modeling with First Order ODEs (cont). Existence and Uniqueness of Solutions to First Order Linear IVP. Second Order ODEs

Graded and supplementary homework, Math 2584, Section 4, Fall 2017

2tdt 1 y = t2 + C y = which implies C = 1 and the solution is y = 1

The Fundamental Theorem of Calculus: Suppose f continuous on [a, b]. 1.) If G(x) = x. f(t)dt = F (b) F (a) where F is any antiderivative

Tutorial-1, MA 108 (Linear Algebra)

The Princeton Review AP Calculus BC Practice Test 2

MATH 251 Examination I October 8, 2015 FORM A. Name: Student Number: Section:

First Order Differential Equations Lecture 3

A.P. Calculus BC Summer Assignment 2018 I am so excited you are taking Calculus BC! For your summer assignment, I would like you to complete the

The most up-to-date version of this collection of homework exercises can always be found at bob/math365/mmm.pdf.

Review Problems for Exam 2

FINAL REVIEW FALL 2017

Math Exam 02 Review

Systems of Differential Equations: General Introduction and Basics

Math 20D Final Exam 8 December has eigenvalues 3, 3, 0 and find the eigenvectors associated with 3. ( 2) det

APPLICATIONS OF DIFFERENTIATION

8.a: Integrating Factors in Differential Equations. y = 5y + t (2)

Three major steps in modeling: Construction of the Model Analysis of the Model Comparison with Experiment or Observation

DIFFERENTIAL EQUATIONS

MATH 1231 MATHEMATICS 1B Calculus Section 3A: - First order ODEs.

Final Examination Solutions

ANOTHER FIVE QUESTIONS:

Math 210 Differential Equations Mock Final Dec *************************************************************** 1. Initial Value Problems

Review for the Final Exam

Math 2Z03 - Tutorial # 3. Sept. 28th, 29th, 30th, 2015

Average rates of change May be used to estimate the derivative at a point

Ordinary Differential Equations: Worked Examples with Solutions. Edray Herber Goins Talitha Michal Washington

REVIEW PROBLEMS FOR MIDTERM I MATH 2373, FALL 2016 ANSWER KEY

Math 307 E - Summer 2011 Pactice Mid-Term Exam June 18, Total 60

Differential Equations Class Notes

Unforced Mechanical Vibrations

Final 09/14/2017. Notes and electronic aids are not allowed. You must be seated in your assigned row for your exam to be valid.

Solutions to Math 53 First Exam April 20, 2010

3.2 Systems of Two First Order Linear DE s

Math 2a Prac Lectures on Differential Equations

Practice Final Exam Solutions

MAT 285: Introduction to Differential Equations. James V. Lambers

Section 11.1 What is a Differential Equation?

Boyce/DiPrima/Meade 11 th ed, Ch 1.1: Basic Mathematical Models; Direction Fields

Transcription:

Contents 2 First Order Differential Equations 2 2.1 First Order Equations - Existence and Uniqueness Theorems......... 2 2.2 Linear First Order Differential Equations.................... 5 2.2.1 First Order Linear Homogeneous Equations.............. 5 2.2.2 First Order Linear Nonhomogeneous Equations............ 7 2.3 Mixing Problems and Cooling Problems.................... 11 2.4 Population Dynamics and Radioactive Decay.................. 14 2.5 First Order Nonlinear Differential Equations.................. 18 2.6 Separable Equations............................... 20 2.9 One Dimensional Motion with Air Resistance................. 22 2.10 Euler s Method (Tangent Lines)......................... 26 1

2 First Order Differential Equations 2.1 First Order Equations - Existence and Uniqueness Theorems A differential equation of the form: y + p(t)y = g(t) (2.1) is called a first order linear differential equation. Equation (2.1) is called homogeneous if g(t) = 0. Equation (2.1) is called nonhomogeneous if g(t) 0. Example 2.1.1. Consider the following initial value problems: a) y = xy 3 (x 2 + 1) 1/2, y(0) = 1 b) t 2 y + 4ty = cos t, y( 1) = 2 c) y = t y, y(0) = 0 d) (t 2 4t)y + ty = e t, y(2) = 1 Which of these are first order? Which are linear? Homogeneous? Given the initial value problem y + p(t)y = g(t), y(t 0 ) = y 0 several questions arise: 1. Under what circumstances can we be sure the equation has a solution passing through the given point? 2. Is it possible for an equation to have more than one solution through an initial point? Or equivalently, if we find a solution passing through a point, can we be sure it is the only solution? 2

Theorem 2.1. [Existence - Uniqueness Theorem I] Given the IVP y + p(t)y = g(t), y(t 0 ) = y 0, if and are both continuous on an open interval containing, the IVP is guaranteed to have a unique solution on. Applied to (a), (b), (c), and (d)? Consider the following first order linear differential equation. For each of the initial conditions, determine the largest interval a < t < b on which Theorem 2.1 guarantees the existence of a unique solution. Example 2.1.2. y + t t 2 + 1 y = sin t a) y( 2) = 1 b) y(0) = π c) y(π) = 0 3

Example 2.1.3. y + t t 2 4 y = 0 a) y(6) = 0 b) y(1) = 1 c) y(0) = 1 d) y( 6) = 2 4

2.2 Linear First Order Differential Equations 2.2.1 First Order Linear Homogeneous Equations Consider a linear first order differential equation of the form: y + p(t)y = g(t) (2.2) where p(t) and g(t) are continuous functions on some interval a t b. We will begin by solving this equation for the homogeneous case (g(t) = 0). We would like to find a function whose derivative is close to the original function. A good choice is y = e h(t). The trick will be to choose h(t) appropriately so lets try our choice for y in the original function and see what happens. We will need a derivative first: y = h (t)e h(t) Now we substitute into equation (2.2) to get: h (t)e h(t) + p(t)e h(t) = 0 h (t)e h(t) = p(t)e h(t) h (t) = p(t) Taking a few liberties with the notation we can integrate both sides to solve for h(t): h(t) = h (t) dt = p(t) dt And our solution to the first order homogeneous differential equation is: y = e p(t) dt (2.3) Example 2.2.1. Solve y 2y = 0 5

In general they are not so easy. Example 2.2.2. Solve ty + 2y = 0, y(1) = 0 We need to fix the equation so it has the correct form: y + p(t)y = 0 Example 2.2.3. Solve y + 2ty = 0, y(0) = 2 Choose y = e 2t dt = e t2 +c Example 2.2.4. Solve y + (2t + sin t)y = 0, ( π ) y = π 2 2 6

2.2.2 First Order Linear Nonhomogeneous Equations The Product Rule and Integration by Parts: Recall: Product Rule: d[uv] = uv + vu or d[uv] = udv + vdu We can rewrite this as d[uv] vdu = udv and integrate both sides: d[uv] vdu = udv to get uv vdu = udv Integration by Parts Also from the product rule we can get uv = (udv + vdu) (2.4) We will use equation (2.4) with a change of variables to solve differential equations. If we start with a differential equation of the form: y + p(t)y = 0 then we could easily integrate it if we could write it in the form: u(t)y + u (t)y = 0 for some appropriate u(t) since this is in the form of the right hand side of equation (2.4). What do we mean by appropriate? We need to multiply by some function u(t) so that u(t)y + u(t)p(t) y = 0. }{{} =u (t) We will choose u(t) = e p(t)dt = e P (t) (2.5) and this is called the integrating factor. To see why this is a good choice of u(t) notice that u (t) = p(t)e p(t)dt = p(t)u(t). If we take our original differential equation y + p(t)y = 0 and multiply by u(t) we get 7

u(t)y + u(t)p(t)y = u(t)y + u (t)y d (u(t)y(t)) = 0 (2.6) dt which is what we wanted. Integrating both sides of equation (2.6) we have a solution If the original equation is not homogenous u(t)y(t) = C y + p(t)y = g(t) we can still multiply by the integrating factor: u(t) = e p(t)dt 8

Example 2.2.5. y + 2ty = 2te t2 Choose u = e 2tdt = e t2 +c. What do we do with c? Example 2.2.6. ty + y = 3t cos 2t, t > 0 First put the equation in the correct form. The coefficient of y must be 1. 9

Example 2.2.7. Initial Value Problem: we can solve for C when we have an initial condition. ty + 2y = sin t, y ( π 2 ) = 1 sin t Example 2.2.8. ty + 2y = g(t), y (0) = 3; g(t) = sin t if 0 t π if π t 2π 10

2.3 Mixing Problems and Cooling Problems Example 2.3.1. A tank originally contains 100 gal of fresh water. Then water containing 1 2 lb of salt per gallon is poured into the tank at a rate of 2 gal/min, and the mixture is allowed to leave at the same rate. After 10 minutes the process is stopped, and fresh water is poured into the tank at a rate of 2 gal/min, with the mixture again leaving at the same rate. Find the amount of salt in the tank at the end of an additional 10 min. 11

Example 2.3.2. In an oil refinery, a storage tank contains 2000 gallons of gasoline that initially has 100 lbs. of additive mixed in. In order to produce a different grade of gas, gasoline containing 2 lbs. of additive per gallon is pumped into the tank at the rate of 40 gallons per minute, and the well stirred mixture is pumped out at the same rate. Find the amount and concentration of additive after 35 minutes. 12

Example 2.3.3. In Example 2.3.2, suppose the tank holds 3000 gallons and is initially only 2/3 full of the original mixture. Gasoline containing 2 lbs. of additive per gallon flows into the tank at the rate of 40 gallons per minute but the well-stirred mixture is draining out at the slower rate of 10 gallons per minute. How many pounds of additive will be in the tank at the moment the tank becomes full? 13

2.4 Population Dynamics and Radioactive Decay Example 2.4.1. Radiocarbon Dating: The amount of carbon-14 present in a piece of wood decreases at a rate proportional to the current amount. a) If carbon-14 has a half life of 5730 years find an expression for Q(t), the amount of carbon-14 present at any time t, if Q(0) = Q 0. b) Suppose that certain remains are discovered in which the current residual amount of carbon-14 is 20% of the original amount. Determine the age of these remains. 14

Example 2.4.2. Suppose 200 mg. of Einsteinium-253 are present in a closed container and additional amounts are added at the rate of 3 mg. per day. a) Find a formula for the amount y(t) present at time t if the decay constant for this substance is 0.02828. b) Find the limiting amount y i as t. c) After how long will the amount present be 150 mg.? Since the amount decreases at a rate proportional to the current amount we can write our differential equation as dy dt = 0.02828y(t) + 3 The important thing to check is your units. dy/dt is mg/day and the amount being added is mg/day so the units agree. Solving the differential equation is fairly straight forward using the integrating factor. y + 0.02828y(t) = 3 Multiply by the integrating factor u = e 0.02828t to get e 0.02828t y + 0.02828e 0.02828t y(t) = 3e 0.02828t Integrate (e 0.02828t y + 0.02828e 0.02828t y(t) ) dt = 3e 0.02828t dt Solve for y(t) to get e 0.02828t y = y = 3 0.02828 e0.02828t + C 3 0.02828 + Ce 0.02828t Apply the initial condition y(0) = 200 = 3 + C so C = 93.9 and our final answer is 0.02828 y = 3 0.02828 + 93.9e 0.02828t 15

Example 2.4.3. Suppose that 50 mg of a radioactive substance, having a half-life of 3 years, is initially present. More of this material is to be added at a constant rate so that 100 mg of the substance is present at the end of 2 years. At what constant rate must this radioactive material be added? 16

Example 2.4.4. An art dealer claims that a painting he is selling is a 400-year old original. A pigment in the painting contains white lead 210 Pb, a radioactive isotope having a half-life of 22 years. Careful measurements indicate that 97.5% of the original amount of 210 Pb has disintegrated. Using the fact the rate of decay of such a substance is directly proportional to the amount of substance present at the time, determine the actual age of the painting 17

2.5 First Order Nonlinear Differential Equations Given the initial value problem y = f(t, y), y(t 0 ) = y 0 several questions arise: 1. Under what circumstances can we be sure the equation has a solution passing through the given point? 2. Is it possible for an equation to have more than one solution through an initial point? Or equivalently, if we find a solution passing through a point, can we be sure it is the only solution? Theorem 2.2. [Existence - Uniqueness Theorem II] Given the IVP y = f(t, y), y(t 0 ) = y 0, if and are both continuous on an open rectangle R, containing, the IVP is guaranteed to have a unique solution on. Example 2.5.1. Apply Theorem 2.2 to find the largest interval where the following have solutions: a) 2t + (1 + y 2 )y = 0, y(1) = 1 b) 3ty + 2 cos y = 1, y(π/2) = 1 c) (cos y)y = 2 + tan t, y(0) = 0 18

Autonomous Differential Equations: First order autonomous differential equations have the form y = f(y). If you have two different initial conditions for y = f(y) you will get two different solutions: y 1 (t) and y 2 (t). Theorem 2.3 shows that the solution y 2 (t) is related to the solution y 1 (t) by: y 2 (t) = y 1 (t c), where c is a constant. Theorem 2.3. Let the initial value problem y = f(y), y(0) = y 0 satisfy the conditions of Theorem 2.2 and let y 1 (t) be the unique solution, where the interval of existence for y 1 (t) is a < t < b, with a < 0 < b. Consider the initial value problem y = f(y), y(t 0 ) = y 0 (2.7) Then the function y 2 (t) defined by y 2 (t) = y 1 (t t 0 ) is the unique solution of the initial value problem (2.7), and has an interval of existence t 0 + a < t < t 0 + b. Example 2.5.2. The solution of the initial value problem y = f(y), y(0) = 8, is known to be y(t) = (4 + t) 3/2. Let ȳ(t) represent the solution of the initial value problem y = f(y), y(t 0 ) = 8. Suppose we know that ȳ(0) = 1. What is t 0? 19

2.6 Separable Equations Separable means we can group the xs and ys separately. Usually solved by integration. Example 2.6.1. y = Rewrite and integrate x 2 y(1 + x 3 ) Example 2.6.2. y = ( cos 2 x ) ( cos 2 2y ) 20

Example 2.6.3. y = 2x 1 + 2y, y(2) = 0 Example 2.6.4. y = 2 (1 + x) ( 1 + y 2) dy If you remember 1 + y dy = 2 tan 1 y then this is finished. Otherwise you can try a substitution such as y = tan u and dy = sec 2 u du 21

2.9 One Dimensional Motion with Air Resistance The equation of the forces acting on an object is F = ma If we have a falling object with air resistance then we can construct a differential equation to describe the motion. Usually the force of air resistance is proportional to the velocity (or the velocity squared). Example 2.9.1. Write an equation that models the motion of an object of mass m falling in the atmosphere near sea level. There are two forces acting on the object: F g = mg the force of gravity and air resistance. For the purposes of this problem the force of the air resistance is proportional to the velocity. If γ is the drag coefficient then the force of the air resistance is γv. Here γ depends on the properties of the falling object. Here we will assume that positive acceleration/velocity/position is upward. m dv dt = mg γv, v(0) = v 0 m dv dt = mg kv2, v(t) > 0, m dv dt = mg + kv2, v(t) < 0, 22

Example 2.9.2. A sky diver weighing 180 lbs falls vertically downward from an altitude of 5000 ft, and opens the parachute after 10 sec of free fall. Assume that the force of air resistance is 0.75 v when the parachute is closed and 12 v when the parachute is open, where the velocity is measured in ft/sec. a) Find the speed of the sky diver when the parachute opens. b) Find the distance fallen before the parachute opens. c) What is the limiting velocity after the parachute opens? d) Determine how long the sky diver is in the air after the parachute opens. 23

Example 2.9.3. A ball weighing 0.75 lb. is thrown vertically upward from a point 6 feet above the ground with an initial velocity of 20 feet per second. As it rises, it is acted on by air resistance equal to v/64 lbs. How high will the ball rise? 24

One-Dimensional Dynamics with Distance as the Independent Variable dv dt = dv dx dx dt = v dv dx Using this formula we can change an equation from being velocity as a function of time to velocity as a function of distance. Example 2.9.4. A boat of mass m is pushed away from a dock in the positive x direction. The only horizontal force acting on the boat is a drag force that we assume is proportional to the boats velocity. The velocity at the initial position x 0 = 0 is v 0 > 0. The initial time is t 0 = 0. Find the velocity of when the boat has position x 1 > 0. Example 2.9.5. A boat of mass m is pushed away from a dock in the positive x direction. The only horizontal force acting on the boat is a drag force that we assume is proportional to the square of the boats velocity. The velocity at the initial position is v 0. Find the velocity of the boat when it is a distance d from the dock. 25

2.10 Euler s Method (Tangent Lines) Eulers method is a numerical approximation to a differential equation using tangent lines. This method is easy to implement because we know that the slope of the line is y and we have a starting point (x 0, y 0 ). Recall (from Algebra I): The equation of a line using the point slope formula. If m = slope and (x 0, y 0 ) = a point then the equation of the line is given by: or y y 0 = m(x x 0 ) y = y 0 + m(x x 0 ) If we start with a differential equation initial value problem how does this apply? Start with the IVP: dy dx = f(t, y); y(t 0) = y 0 then f(t, y) = slope and (t 0, y 0 ) = point. We can approximate the solutions near that point by a straight line approximation: y = y 0 + f(t 0, y 0 )(t t 0 ) Figure 1: A tangent line approximation 26

As long as we stay close to (t 0, y 0 ) this approximation is good, however, we would like to be able to approximate the value of y at any time t. To do this we will find a linear approximation at the point t 1 which is close to t 0 and then, using that point, we will find an approximation for t 2 which is close to t 1 and so on. We still dont know the function y(t) so we dont know the y value at t 1 but we can assume that if we use our linear approximation at (t 0, y 0 ) this point will be close enough to the actual value of the function. We are going to use the linear approximation to calculate the new y-value using the slope dy dx = f(t 0, y 0 ). Then the new y-value is y 1 = y 0 + f(t 0, y 0 )(t 1 t 0 ). Using this new point (t 1, y 1 ) we can approximate the solutions near (t 1, y 1 ) using the line: y = y 1 + f(t 1, y 1 )(t t 1 ). To find another point we use t 2 to get y 2 = y 1 + f(t 1, y 1 )(t 2 t 1 ). In general we can find the point (t n+1, y n+1 ) by the following formula: y n+1 = y n + f(t n, y n )(t n+1 t n ) An if we let the difference t n+1 t n = h always be constant (h) then the formula reduces to: The algorithm for the Euler Method is as follows: Step 1: Define f(t, y) Step 2: Input initial values of t 0 and y 0 Step 3: Input step size h and the number of steps n. Step 4: Output t = t 0 and y = y 0 Step 5: For j from 1 to n Do k 1 = f(t, y) Step 6: y = y + h k 1 t = t + h Step 7: Output t and y. Step 8: End y n+1 = y n + f(t n, y n )h (2.8) 27

Example 2.10.1. Using the Euler method with h = 0.1 find approximate values to the solution of y = 3 + t y at t = 0.1, 0.2, 0.3 and 0.4. 28