Partial Fractions. (Do you see how to work it out? Substitute u = ax + b, so du = a dx.) For example, 1 dx = ln x 7 + C, x x (x 3)(x + 1) = a

Similar documents
Partial Fractions. (Do you see how to work it out? Substitute u = ax+b, so du = adx.) For example, 1 dx = ln x 7 +C, x 7

Integration of Rational Functions by Partial Fractions

Integration of Rational Functions by Partial Fractions

Partial Fractions. June 27, In this section, we will learn to integrate another class of functions: the rational functions.

Updated: January 16, 2016 Calculus II 7.4. Math 230. Calculus II. Brian Veitch Fall 2015 Northern Illinois University

Partial Fraction Decomposition Honors Precalculus Mr. Velazquez Rm. 254

4.5 Integration of Rational Functions by Partial Fractions

7x 5 x 2 x + 2. = 7x 5. (x + 1)(x 2). 4 x

Math123 Lecture 1. Dr. Robert C. Busby. Lecturer: Office: Korman 266 Phone :

(x + 1)(x 2) = 4. x

Partial Fractions. Calculus 2 Lia Vas

Section 8.3 Partial Fraction Decomposition

Mathematics 136 Calculus 2 Everything You Need Or Want To Know About Partial Fractions (and maybe more!) October 19 and 21, 2016

Calculus II. Monday, March 13th. WebAssign 7 due Friday March 17 Problem Set 6 due Wednesday March 15 Midterm 2 is Monday March 20

PARTIAL FRACTION DECOMPOSITION. Mr. Velazquez Honors Precalculus

7.4: Integration of rational functions

4.8 Partial Fraction Decomposition

8.6 Partial Fraction Decomposition

8.3 Partial Fraction Decomposition

How might we evaluate this? Suppose that, by some good luck, we knew that. x 2 5. x 2 dx 5

6.3 Partial Fractions

PARTIAL FRACTIONS AND POLYNOMIAL LONG DIVISION. The basic aim of this note is to describe how to break rational functions into pieces.

Techniques of Integration

SECTION 7.4: PARTIAL FRACTIONS. These Examples deal with rational expressions in x, but the methods here extend to rational expressions in y, t, etc.

Partial Fraction Decomposition

Simplifying Rational Expressions and Functions

MATH 250 REVIEW TOPIC 3 Partial Fraction Decomposition and Irreducible Quadratics. B. Decomposition with Irreducible Quadratics

PARTIAL FRACTIONS: AN INTEGRATIONIST PERSPECTIVE

b n x n + b n 1 x n b 1 x + b 0

Partial Fractions. Combining fractions over a common denominator is a familiar operation from algebra: 2 x 3 + 3

PARTIAL FRACTIONS AND POLYNOMIAL LONG DIVISION. The basic aim of this note is to describe how to break rational functions into pieces.

Integration of Rational Functions by Partial Fractions

One important way that you can classify differential equations is as linear or nonlinear.

t 2 + 2t dt = (t + 1) dt + 1 = arctan t x + 6 x(x 3)(x + 2) = A x +

Systems of Equations and Inequalities. College Algebra

Examples 2: Composite Functions, Piecewise Functions, Partial Fractions

Commutative Rings and Fields

Integration by partial fractions

8.4 Partial Fractions

Math 106: Review for Exam II - SOLUTIONS

( ) and D( x) have been written out in

JUST THE MATHS UNIT NUMBER 1.9. ALGEBRA 9 (The theory of partial fractions) A.J.Hobson

Lesson 21 Not So Dramatic Quadratics

Section 1.3 Review of Complex Numbers

To factor an expression means to write it as a product of factors instead of a sum of terms. The expression 3x

5.2 Infinite Series Brian E. Veitch

INTEGRATION OF RATIONAL FUNCTIONS BY PARTIAL FRACTIONS

Math101, Sections 2 and 3, Spring 2008 Review Sheet for Exam #2:

7.5 Partial Fractions and Integration

Math 106: Review for Exam II - SOLUTIONS

Chapter 8B - Trigonometric Functions (the first part)

Sect Complex Numbers

Solving Quadratic & Higher Degree Equations

A quadratic expression is a mathematical expression that can be written in the form 2

Calculus II Lecture Notes

Warm up: Recall that if you require real coe cients (not complex), polynomials always factor into degree 1 or 2 parts.

MA1131 Lecture 15 (2 & 3/12/2010) 77. dx dx v + udv dx. (uv) = v du dx dx + dx dx dx

Equations in Quadratic Form

MATH1231 CALCULUS. Session II Dr John Roberts (based on notes of A./Prof. Bruce Henry) Red Center Room 3065

Numerical Methods. Equations and Partial Fractions. Jaesung Lee

Complex Numbers: Definition: A complex number is a number of the form: z = a + bi where a, b are real numbers and i is a symbol with the property: i

9.4 Radical Expressions

MAT01B1: Integration of Rational Functions by Partial Fractions

Algebra & Trig Review

Math Analysis Notes Mrs. Atkinson 1

Chapter Five Notes N P U2C5

Methods of Integration

Math 10860, Honors Calculus 2

Chapter 2.7 and 7.3. Lecture 5

A polynomial expression is the addition or subtraction of many algebraic terms with positive integer powers.

1 Lesson 13: Methods of Integration

Constructing Taylor Series

Main topics for the First Midterm

Quadratic Formula: - another method for solving quadratic equations (ax 2 + bx + c = 0)

APPENDIX : PARTIAL FRACTIONS

Unit 2-1: Factoring and Solving Quadratics. 0. I can add, subtract and multiply polynomial expressions

Section 3.6 Complex Zeros

Calculus for Engineers II - Sample Problems on Integrals Manuela Kulaxizi

UNIT 3 INTEGRATION 3.0 INTRODUCTION 3.1 OBJECTIVES. Structure

3 Algebraic Methods. we can differentiate both sides implicitly to obtain a differential equation involving x and y:

MATH 31B: MIDTERM 2 REVIEW. sin 2 x = 1 cos(2x) dx = x 2 sin(2x) 4. + C = x 2. dx = x sin(2x) + C = x sin x cos x

GALOIS GROUPS OF CUBICS AND QUARTICS (NOT IN CHARACTERISTIC 2)

Radicals: To simplify means that 1) no radicand has a perfect square factor and 2) there is no radical in the denominator (rationalize).

MSM120 1M1 First year mathematics for civil engineers Revision notes 3

The final is cumulative, but with more emphasis on chapters 3 and 4. There will be two parts.

Section 4.3. Polynomial Division; The Remainder Theorem and the Factor Theorem

CALCULUS I. Review. Paul Dawkins

The Exponential of a Matrix

DRAFT - Math 102 Lecture Note - Dr. Said Algarni

Spring Nikos Apostolakis

Algebra. Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed.

Course Notes for Calculus , Spring 2015

SECTION 2.5: FINDING ZEROS OF POLYNOMIAL FUNCTIONS

Basic Equation Solving Strategies

2.57 PART E: THE FUNDAMENTAL THEOREM OF ALGEBRA (FTA) The Fundamental Theorem of Algebra (FTA)

Read the following definitions and match them with the appropriate example(s) using the lines provided.

Par$al Fac$on Decomposi$on. Academic Resource Center

1.4 Techniques of Integration

Math 112 Rahman. Week Taylor Series Suppose the function f has the following power series:

SOME SOLUTION OF CALCULUS OF STEWART OF 7.4

Transcription:

Partial Fractions 7-9-005 Partial fractions is the opposite of adding fractions over a common denominator. It applies to integrals of the form P(x) dx, wherep(x) and Q(x) are polynomials. Q(x) The idea is to break P(x) into a sum of smaller terms which are easier to integrate. Q(x) (A function of the form P(x), where P(x) and Q(x) are polynomials, is called a rational function.) Q(x) I ll start by doing an example to give you a feel for the procedure. Then I ll go back and explain the steps in the method. The procedure is a bit long, and requires a substantial amount of algebra. Therefore, before using partial fractions, you should be sure that there isn t an easier way to do the integral. First, I want to mention a formula that often comes up in these problems: ax + b ln ax + b + C, a 0. a (Do you see how to work it out? Substitute u = ax + b, so du = a dx.) For example, ln x 7 + C, x 7 7x + 5 ln 7x + 5 + C, 7 x ln x + C. 7 x x x dx. x x = (x )(x + ). Write 7 x (x )(x + ) = a x + b x +. Multiply both sides by (x )(x + ) to clear denominators: Let x =. I get Let x =. I get Therefore, So 7 x = a(x + ) + b(x ). 7 9 = 4a + 0, so 8 = 4a, or a =. 7 + = 0 4b, so 0 = 4b, or b = 5. 7 x (x )(x + ) = x 5 x +. ( 7 x x x x 5 ) ln x 5 ln x + + C. x +

Now I ll describe the steps in the method. Some of this will seem a little abstract until you see some examples. Consider an integral of the form P(x) Q(x) dx, where P(x) and Q(x) are polynomials. Recall that the degree of a polynomial is the highest power of the variable that occurs in it. Nonzero constants have degree 0; by convention, 0 has degree. Step. If the degree of the top is greater than or equal to the degree of the bottom, divide the bottom into the top. Step. You will now have an integral that looks like P(x) Q(x) dx, where P(x) and Q(x) are polynomials, and the top is smaller in degree than the bottom. Factor the bottom of the fraction into a product of linear terms and irreducible quadratic terms. A linear term is a term where the variable occurs only to the first power. Here are some linear terms: x, x, x. An irreducible quadratic term is a quadratic term with only imaginary (complex) roots. That is, it is a quadratic which doesn t factor. Here are some irreducible quadratic terms: x +, x x + 5. You can check that a quadratic is irreducible by using the general quadratic formula to find its roots. If the roots are complex numbers, the quadratic does not factor. Warning: x is not irreducible: x = (x )(x + ). ( Ugly factors are allowed.) And x is not considered an irreducible quadratic: It is (x 0)(x 0), the square of a linear term. This distinction will become important in Step. Step. Obtain the partial fractions decomposition for the fraction. This is the heart of the partial fractions method. It is basically a lot of algebra, but it s sufficiently complicated that the best way to describe it is by doing some examples. x 5x x + 5 x dx. The top has degree while the bottom has degree. Divide the bottom into the top: x 5x x + 5 x So x 5x x + 5 x = x 5 + x x. ( x 5 + x ) dx. x

Integrate x x by substitution: x x du u = ln u + C = ln x + C. [ u = x, du = x dx, du ] x Hence, ( x 5 + x ) x 5x + x ln x + C. In this problem, division simplified the integral enough that it wasn t necessary to go any further in the partial fractions procedure. Example. Consider the integral bottom into the top: Therefore, I can do (x )(x + ). Then x dx. The top and the bottom have the same degree. Divide the x x x = + x. x ( x + ) x dx. dx easily; I need to integrate the second term. Factor the denominator: (x )(x + ) = a x + b, so = a(x ) + b(x + ). x + x = Let x =. I get = b, so b =. Let x =. I get = a, so a =. Thus, Therefore, ( + ) ( x x = x + x + x +. ) x x + ln x + ln x + + C. Long division in Step is a preliminary operation which puts the integral into the right form for the rest of the procedure. If you do a division, check before going on to see whether you can use a simple technique (like substitution) to do the integrals you ve obtained. Sometimes you can complete the integration immediately; otherwise, you ll need to go on to Step. x x(x ) dx.

This example will show how to handle repeated factors in this case, (x ). Here s what you do: x x(x ) = a x + b x + c (x ). For a repeated factor, you have one term for each power up to the power the factor is raised to. In this case, you have a term for x and a term for (x ). Multiply to clear denominators: Let x = 0. I get = a. Let x =. I get = c. Plug the a and c values back in: x = a(x ) + bx(x ) + cx. x = (x ) + bx(x ) + x. ( ) With only b left, I can plug in any number and solve for b. I ll let x = : Therefore, Hence, 4 = + b +, 6 = b, b =. x x(x ) = x x + (x ). x ( x(x ) x ) x + ln x ln x (x ) x + C. Alternatively, take equation (*). Multiply out the b-term: x = (x ) + b(x x) + x. Since this is an identity, I can differentiate both sides: x = 4(x ) + b(x ) +. Now I can recycle x =. Plugging in x = gives = b +, so b = as before. At any point, you can plug in an arbitrary number for x, or you can differentiate both sides of the equation. 7x 5x + 0 x(x ) dx. In this case, the repeated factor is the (x ). I want a, b, and c so that Clear denominators: 7x 5x + 0 x(x ) = a x + b x + c (x ). 7x 5x + 0 = a(x ) + bx(x ) + cx. Let x = 0. I obtain 0 = 4a + 0 + 0, so a = 5. Next, let x =. Then 8 50 + 0 = 0 + 0 + c so c =. 4

Put a = 5 and c = back into the equation: 7x 5x + 0 = 5(x ) + bx(x ) x. Let x =. I get = 5 b, so b =. Substitute the a, b, and c values into the original decomposition: 7x 5x + 0 x(x ) = 5 x + x (x ). Finally, do the integral: 7x ( 5x + 0 5 x(x ) x + ) x 5 ln x + ln x + (x ) x + C. Example. How would you try to decompose 5x 4 x + (x ) 4 (x + ) using partial fractions? That is, what is the initial partial fractions equation? The linear factor x is repeated 4 times, and the linear factor x + is repeated times. So you use 5x 4 x + (x ) 4 (x + ) = a x + b (x ) + c (x ) + d (x ) + e 4 x + + f (x + ). You could do the x + terms first instead. Notice that the numerator 5x 4 x + has no effect on the decomposition. Example. How would you try to decompose x + 4x 7 x (x ) using partial fractions? That is, what is the initial partial fractions equation? The linear factor x is repeated times and the linear factor x is repeated twice. Therefore, you should try to solve x + 4x 7 x (x ) = a x + b x + c x + d x + e (x ). Notice that the top of the fraction is irrelevant in deciding how to set up the decomposition. It only comes in during the solution process. Notice also that x is considered a linear term (x) raised to the third power. You get one term on the right for x, one for x, and one for x no skipping! 9 + 9x x (x 5)(x + 4) dx. The quadratic factor x + 4 is irreducible. Here s how I try to decompose the fraction: 9 + 9x x (x 5)(x + 4) = a x 5 + bx + c x + 4. 5

Thus, a quadratic factor (or a quadratic factor to a power) will produce terms on the right with two letters on top. The rationale is the same as the one I gave for repeated factors. I don t know what kind of fraction to expect, so I have to take the most general case. Clear denominators: 9 + 9x x = a(x + 4) + (bx + c)(x 5). Let x = 5. I get 9 = 9a, so a =. Plug a = back in: 9 + 9x x = (x + 4) + (bx + c)(x 5). Let x = 0. I get 9 = 4 5c, so 5 = 5c, or c =. Plug c = back in: 9 + 9x x = (x + 4) + (bx )(x 5). At this point, I ve run out of nice numbers to plug in for x. There are several ways to proceed. First, since I only have one letter to find (b), I can plug in a random value for x and solve. For example, plugging in x = gives 7 = 5 + (b )( 4). Simplifying gives 7 = 4b + 9, so 8 = 4b, or b =. Second, since the equation is an identity, I can differentiate both sides. Doing so, I get 9 x = x + b(x 5) + (bx ). (I got two b-terms by applying the Product Rule to (bx )(x 5).) Now I can recycle an old x-value, say x = 0. Plugging this in gives 9 = 5b, or 0 = 5b, so b = again. You can use any combination of differentiating and plugging in that you wish. Thus, 9 + 9x x ( (x 5)(x + 4) x 5 x + ) ( x + 4 x 5 x x + 4 ) x + 4 ln x 5 ln x + 4 tan x + C. The first and third terms come from basic formulas. I integrated the second term using the substitution u = x + 4. You handle repeated quadratic factors just as you handle repeated linear factors. Example. How would you try to decompose x + x + 5 (x + 4) using partial fractions? That is, what is the initial partial fractions equation? The quadratic x + 4 is irreducible. Try the decomposition x + x + 5 (x + 4) = ax + b x + 4 + cx + d (x + 4) + ex + f (x + 4). x x + 8 (x + )(x + ) dx. 6

Try the decomposition x x + 8 (x + )(x + ) = a x + + bx + c x +, so x x + 8 = a(x + ) + (bx + c)(x + ). Let x =. I get 50 = 0a, so a = 5. Plug a = 5 back in to obtain x x + 8 = 5(x + ) + (bx + c)(x + ). Let x = 0. I get 8 = 5 + c, so c =. Plug c = back in to obtain x x + 8 = 5(x + ) + (bx + )(x + ). I can differentiate both sides, or I can plug in another value of x. I ll plug in x =. Doing so gives = 0 + 4(b + ), or = 4 + 4b, so b = 4. Thus, the integral becomes x ( x + 8 5 (x + )(x + ) x + + 4x + ) ( 5 x + x + 5 ln x + ln x + + tan x + C. 4x x + + ) x + The first and third terms are integrated using basic formulas; the second term is integrated using the substitution u = x +. Try the decomposition 40 6x 6x (x + )(x + 9) dx. 40 6x 6x (x + )(x + 9) = ax + b x + + cx + d x + 9, so 40 6x 6x = (ax + b)(x + 9) + (cx + d)(x + ). In this case, there is no value of x I can plug in which will allow me to solve for one of a, b, c, d immediately. Therefore, I ll have to plug in and get equations, which I ll solve simultaneously later. Let x = 0. This gives 40 = 9b + d. Differentiate the equation to obtain 6 8x = a(x + 9) + x(ax + b) + c(x + ) + x(cx + d). Let x = 0. This gives 6 = 9a + c. Before I differentiate again, I ll multiply the x-terms in, so that I can avoid using the Product Rule: Differentiate: 6 8x = a(x + 9) + ax + bx + c(x + ) + cx + dx. 6x = ax + 4ax + b + cx + 4cx + d. Let x = 0. This gives 0 = b + d, or b + d = 0, so b = d. Plug this into 40 = 9b + d to obtain 40 = 9d + d, or d = 5. Then b = d gives b = 5. Differentiate one more time: 6 = a + 4a + c + 4c. Thus, 6 = 6a + 6c, or 6 = a + c. Solve simultaneously with 6 = 9a + c: 6 = 9a + c 6 = a + c 0 = 8a 7

Therefore, a = 0. Plugging a = 0 into 6 = a + c gives c = 6. Therefore, the integral becomes 40 6x 6x ( 5 (x + )(x + 9) x + 6x + 5 ) ( 5 x + 9 x + 6x x + 9 5 ) x + 9 5 tan x ln x + 9 5 tan x + C. The first and third terms are integrated using basic formulas. The second term is integrated using the substitution u = x + 9. x + x + (x + )(x + x + 0) dx. The quadratic x + x + 0 does not factor. Try the decomposition x + x + (x + )(x + x + 0) = a x + + bx + c x + x + 0, so x + x + = a(x + x + 0) + (bx + c)(x + ). Let x =. I get 6 = a, so a =. Plug a = back in to obtain x + x + = (x + x + 0) + (bx + c)(x + ). Let x = 0. I get = 0 + c, so c =. Plug c = back in to obtain Differentiate: Let x = 0. I get = 4 + b. so b = 0. Therefore, the integral becomes x + x + = (x + x + 0) + (bx )(x + ). 4x + = (x + ) + (bx )() + b(x + ). x ( ) + x + (x + )(x + x + 0) x + dx. x + x + 0 I ll do the second term separately, since the first term is easy. The idea is to complete the square, then do a substitution: x + x + 0 (x + ) + 9 u + 9 du = u tan + C = x + tan + C. [u = x +, du = dx] Hence, ( ) x + ln x + tan x + + C. x + x + 0 First, x dx. x = (x )(x + x + ). 8

In this example, there s an irreducible quadratic factor x + x +. I try the decomposition (x )(x + x + ) = a x + bx + c x + x +. Clear denominators: = a(x + x + ) + (bx + c)(x ). Let x =. Then = a, so a =. Plug it back in: = (x + x + ) + (bx + c)(x ). Let x = 0. I get = c, so c =. Plug it back in: = (x + x + ) + (bx )(x ). Now I can either plug in a value for x at random, or differentiate. I ll differentiate: 0 = (x + ) + (bx ) + b(x ). Differentiate again: 0 = + b + b. This gives B = /. Plug the values back into the original fractional decomposition: (x )(x + x + ) = x x + x + x +. The integral is ( (x )(x + x + ) x ) x + x dx. + x + I ll do the integrals separately. First, x = ln x + C. Next, x + x + x + 6 ( 6 x + x + x + dx + I can do the first integral using a substitution: x + 4 x + x + x + + 6 x + x + ) x + x + dx. x + du x + x + u = ln u + C = ln x + x + + C. [ u = x + x +, du = (x + )dx, du ] x + 9

The second requires completing the square: x + x + x + x + 4 + (x + 4 ) + 4 [ x + ] = u, du 4 u + du = 4 Putting the two together, Finally, answer to the original problem is u + du = arctan u + C = (x + arctan ) + C. x + x + x + 6 ln x + x + + (x + arctan ) + C. (x )(x + x + ) ln x 6 ln x + x + (x + arctan ) + C. What a mess! This is why you should consider other methods before you turn to partial fractions! c 005 by Bruce Ikenaga 0