Functions, Limit, And Continuity

Similar documents
LOCUS 1. Definite Integration CONCEPT NOTES. 01. Basic Properties. 02. More Properties. 03. Integration as Limit of a Sum

HOMEWORK 6 - INTEGRATION. READING: Read the following parts from the Calculus Biographies that I have given (online supplement of our textbook):

F.Y. Diploma : Sem. II [CE/CR/CS] Applied Mathematics

Integration and Differentiation

Special Functions. Leon M. Hall. Professor of Mathematics University of Missouri-Rolla. Copyright c 1995 by Leon M. Hall. All rights reserved.

Suggested Solution for Pure Mathematics 2011 By Y.K. Ng (last update: 8/4/2011) Paper I. (b) (c)

Week 8 Lecture 3: Problems 49, 50 Fourier analysis Courseware pp (don t look at French very confusing look in the Courseware instead)

[Nachlass] of the Theory of the Arithmetic-Geometric Mean and the Modulus Function.

Existence Of Solutions For Nonlinear Fractional Differential Equation With Integral Boundary Conditions

ONE RANDOM VARIABLE F ( ) [ ] x P X x x x 3

Supplement: Gauss-Jordan Reduction

MTH 146 Class 11 Notes

NOTES ON BERNOULLI NUMBERS AND EULER S SUMMATION FORMULA. B r = [m = 0] r

Review Exercises for Chapter 9

Approximate Integration

Calculus Limits. Limit of a function.. 1. One-Sided Limits...1. Infinite limits 2. Vertical Asymptotes...3. Calculating Limits Using the Limit Laws.

Limit of a function:

Important Facts You Need To Know/Review:

Department of Mathematical and Statistical Sciences University of Alberta

ERROR ESTIMATES FOR APPROXIMATING THE FOURIER TRANSFORM OF FUNCTIONS OF BOUNDED VARIATION

CITY UNIVERSITY LONDON

n 2 + 3n + 1 4n = n2 + 3n + 1 n n 2 = n + 1

ECE 636: Systems identification

Comparison between Fourier and Corrected Fourier Series Methods

f(bx) dx = f dx = dx l dx f(0) log b x a + l log b a 2ɛ log b a.

Experiment 6: Fourier Series

GRAPHING LINEAR EQUATIONS. Linear Equations. x l ( 3,1 ) _x-axis. Origin ( 0, 0 ) Slope = change in y change in x. Equation for l 1.

Reinforcement Learning

Linford 1. Kyle Linford. Math 211. Honors Project. Theorems to Analyze: Theorem 2.4 The Limit of a Function Involving a Radical (A4)

SLOW INCREASING FUNCTIONS AND THEIR APPLICATIONS TO SOME PROBLEMS IN NUMBER THEORY

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best

UNIT 1: ANALYTICAL METHODS FOR ENGINEERS

FM Applications of Integration 1.Centroid of Area

Definition Integral. over[ ab, ] the sum of the form. 2. Definite Integral

Infinite Series Sequences: terms nth term Listing Terms of a Sequence 2 n recursively defined n+1 Pattern Recognition for Sequences Ex:

MATH 104 FINAL SOLUTIONS. 1. (2 points each) Mark each of the following as True or False. No justification is required. y n = x 1 + x x n n

Local Fractional Kernel Transform in Fractal Space and Its Applications

ENGR 1990 Engineering Mathematics The Integral of a Function as a Function

1 Notes on Little s Law (l = λw)

2 f(x) dx = 1, 0. 2f(x 1) dx d) 1 4t t6 t. t 2 dt i)

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2

[ 20 ] 1. Inequality exists only between two real numbers (not complex numbers). 2. If a be any real number then one and only one of there hold.

BC Calculus Review Sheet

S.E. Sem. III [EXTC] Applied Mathematics - III

ON SOME FRACTIONAL PARABOLIC EQUATIONS DRIVEN BY FRACTIONAL GAUSSIAN NOISE

Math 2414 Homework Set 7 Solutions 10 Points

12 th Mathematics Objective Test Solutions

Sampling Example. ( ) δ ( f 1) (1/2)cos(12πt), T 0 = 1

LIMITS OF FUNCTIONS (I)

1. Solve by the method of undetermined coefficients and by the method of variation of parameters. (4)

Chapter 7 Infinite Series

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx),

The analysis of the method on the one variable function s limit Ke Wu

e t dt e t dt = lim e t dt T (1 e T ) = 1

Solutions to Problems 3, Level 4

Ideal Amplifier/Attenuator. Memoryless. where k is some real constant. Integrator. System with memory

A TAUBERIAN THEOREM FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY

( a n ) converges or diverges.

{ } { S n } is monotonically decreasing if Sn

DIFFERENCE EQUATIONS

10.5 Power Series. In this section, we are going to start talking about power series. A power series is a series of the form

Calculus BC 2015 Scoring Guidelines

Transient Solution of the M/M/C 1 Queue with Additional C 2 Servers for Longer Queues and Balking

POWER SERIES R. E. SHOWALTER

1. Six acceleration vectors are shown for the car whose velocity vector is directed forward. For each acceleration vector describe in words the

N! AND THE GAMMA FUNCTION

Extension of Hardy Inequality on Weighted Sequence Spaces

CHAPTER 11 PARAMETRIC EQUATIONS AND POLAR COORDINATES

Extremal graph theory II: K t and K t,t

Frequency-domain Characteristics of Discrete-time LTI Systems

Review of Sections

SUMMATION OF INFINITE SERIES REVISITED

PROGRESSIONS AND SERIES

PhysicsAndMathsTutor.com

The Trigonometric Representation of Complex Type Number System

L-functions and Class Numbers

( ) ( ) ( ) ( ) ( ) ( y )

Options: Calculus. O C.1 PG #2, 3b, 4, 5ace O C.2 PG.24 #1 O D PG.28 #2, 3, 4, 5, 7 O E PG #1, 3, 4, 5 O F PG.

Math-303 Chapter 7 Linear systems of ODE November 16, Chapter 7. Systems of 1 st Order Linear Differential Equations.

Lecture 15 First Properties of the Brownian Motion

Things I Should Know In Calculus Class

FIXED FUZZY POINT THEOREMS IN FUZZY METRIC SPACE

Moment Generating Function

A new approach to Kudryashov s method for solving some nonlinear physical models

David Randall. ( )e ikx. k = u x,t. u( x,t)e ikx dx L. x L /2. Recall that the proof of (1) and (2) involves use of the orthogonality condition.

INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS)

Unit 1. Extending the Number System. 2 Jordan School District

Fractional Fourier Series with Applications

Add Maths Formulae List: Form 4 (Update 18/9/08)

f(t)dt 2δ f(x) f(t)dt 0 and b f(t)dt = 0 gives F (b) = 0. Since F is increasing, this means that

Convergence rates of approximate sums of Riemann integrals

Math 2414 Activity 17 (Due with Final Exam) Determine convergence or divergence of the following alternating series: a 3 5 2n 1 2n 1

Riemann Integral and Bounded function. Ng Tze Beng

Using Linnik's Identity to Approximate the Prime Counting Function with the Logarithmic Integral

Graphing Review Part 3: Polynomials

Section 8 Convolution and Deconvolution

1 Section 8.1: Sequences. 2 Section 8.2: Innite Series. 1.1 Limit Rules. 1.2 Common Sequence Limits. 2.1 Denition. 2.

(A) 1 (B) 1 + (sin 1) (C) 1 (sin 1) (D) (sin 1) 1 (C) and g be the inverse of f. Then the value of g'(0) is. (C) a. dx (a > 0) is

K3 p K2 p Kp 0 p 2 p 3 p

Solutions to selected problems from the midterm exam Math 222 Winter 2015

Transcription:

Fucios, Limi d coiuiy of fucio Fucios, Limi, Ad Coiuiy. Defiiio of fucio A fucio is rule of correspodece h ssocies wih ech ojec i oe se clled f from secod se. The se of ll vlues so oied is he domi, sigle vlue clled he rge of he fucio. f Domi Rge For rel fucio f we c defie s follow f : y f c e clled he idepede vrile d y he depede vrile. The domi of he fucio f, commoly deoed y D is defied y {, such h } Df y y f Emple:. f is defied for D f f is defied for d.. f. Hece, { } f is defied for. Composiio of Fucios f f ( ) g( f ) g f g. Hece, D (, ] [, + ) If f wors o o produce f ( ) d g wors o f o produce f g f, we sy h we hve composed g wih f. The resulig fucio, clled he composiio of g wih f, is deoed y g f. Thus, g f g f Emple: Give he fucio f ( ), g. Fid g f d f g

Fucios, Limi d coiuiy of fucio Soluio f g f ( g ) p + 5 s composie fucio g f ( g f ) g f Emple: Wrie he fucio 5 Soluio: The mos ovious wy o decompose p is o wrie p g f f + 5, where g, d. Iverse Fucios Iverse Fucio Le f e fucio wih domi D d rge R. The he fucio domi R d rge D is he iverse of f if f ( f ) for ll i D d f f y y for ll y i R. ( ) Emple: Le f. Fid Soluio: To fid filly solve for y. f, le y f f if i eiss. f wih, he ierchge he d y vriles, d y, he y, implyig y ( ) +, hece f ( + ) Crieri For Eisece of A Iverse f A fucio f will hve iverse f o he iervl I whe here is ecly oe umer i he domi ssocied wih ech umer i he rge. Th is, f eiss if f ( ) d f ( ) re equl oly whe. A fucio wih his propery is sid o e oe-o-oe fucio. Horizol Lie Tes A fucio f hs iverse iff o horizol lie iersecs he grph of y f more h oe poi. A fucio is clled o e sricly moooic o he iervl I if i is sricly icresig or sricly decresig o h iervl. Sricly icresig o I: For, Isuch h < f < f Sricly decresig o I: For, Isuch h < f ( ) > f ( )

Fucios, Limi d coiuiy of fucio Theorem Le f e fucio h is sricly moooic o iervl I. The is moooic o I. Grph of f If f eiss, is grph my e oied y reflecig he grph of f i he lie y.. Iverse Trigoomeric Fucios Iverse Sie Fucio π π y si si y d y The fucio si is someimes wrie s rcsi. Iverse Tge Fucio π π y d < < The fucio is someimes wrie s rc Defiiio of Iverse Trigoomeric Fucio Iverse Fucio Domi Rge y si π π y y cos y π y < <+ π π < y < y csc or π π y, y π y sec or y π, y y co < <+ < y < π Emple: Evlue he give fucio f eiss d. si Soluio:. si π. cos c.. cos π π c. 6

Fucios, Limi d coiuiy of fucio Iverse Trigoomeric Ideiies Iversio Formuls si si for y y π π y for ll si si for π π ( y) y for < y< Emple: Evlue he give fucios. si ( si.5). si ( si.5) Soluio:. si ( si.5).5 ecuse.5 π π. si ( si.5).5, ecuse.5 Emple: For, show h. si si. cos( si ) Some oher Ideiies π si + cos π + co π sec + csc 5. Hyperolic Fucios d Their Iverses 5. Defiiio The hyperolic sie d hyperolic cosie fucio, deoed respecively y sih d cosh, re defied y e e e + e sih d cosh The oher hyperolic fucio, hyperolic ge, hyperolic coge, hyperolic sec d hyperolic cosec re defied i erms of sih d cosh s follows sih e e cosh e + e h coh cosh e + e sih e e sec h csc h cosh e + e sih e e 5. Hyperolic Ideiies /. cosh sih /. h sech /. coh csc h

Fucios, Limi d coiuiy of fucio /. sih + y sih cosh y+ cosh sih y /. cosh + y cosh cosh y+ sih sih y 5/. cosh + sih e 5/. cosh sih e 6/.sih sih cosh 6/. cosh cosh + sih 7/. cosh sih + 7/. cosh cosh 8/. cosh cosh 8/. sih 9/. 9/. sih sih y sih cosh y cosh sih y cosh y cosh cosh y sih sih y 5. Iverse Hyperolic Fucios The Hyperolic iverses h re impor d o e sudied here re he iverse hyperolic si e, he iverse hyperolic cosie, d iverse hyperolic ge. These fucios re y sih (or y Arcsih ), y cosh (or y Arccosh ) d y h (or y Arch ) re he iverses of y sih, y cosh d y h respecively. Theorem ih l ( ) ii/. cosh l ( ) i/. s + + ( for y rel umer) + ( ) + iii/. h l 6 Limis Defiiio: To sy h lim correspodig f c L δ > such h < c < δ f L ( < < ) mes h for ech give ε > ( o mer how smll) here is < ε. Emple: /.Prove h ( ) f L < ε provided h < c < δ ; h is lim 7 5 Righ-hd Limi d Lef-Hd Limi By lim /. lim 5 f Awe me h f is defied i some ope iervl (, ) c d f proches A s pproches hrough vlues less h, h is, s pproches 5

Fucios, Limi d coiuiy of fucio from he lef. Similrly, lim f A mes h f is defied i some ope iervl + ( d, ) d f pproches A s pproches from he righ. If f is defied i ier vl o he lef of d i iervl o he righ of, he lim f Aiff lim f Ad lim f A + Limi Theorems Le e posiive ieger, e cos, d f d g e fucios h hve limis c. The /. lim c /. lim /. lim f lim f c /. lim f c c ± g lim f ± lim g c c 5/. lim f g lim f c lim c ( c ) g f lim f c 6/. lim,lim g( ) c g lim g c c 7/. lim f lim f c c if defied. 7. Coiuiy of Fucios Coiuiy Poi Le f e defied o ope iervl coiig c. We sy h f is coiuous c if lim f f ( c ). c si, Emple: f ( ) A he poi, f is defied d f ( ) si lim f ( ) lim lim f f. Thus f is coiuous he poi We see h Emple: Show h f is discoiuous he poi +, > f +, <, A he poi f he fucio is defied, h is 6

Fucios, Limi d coiuiy of fucio lim f lim + + + lim f lim + We see h lim f lim f. The lim f f + He ce f is discoiuous he poi Defiiio Coiuiy o Iervl The fucio f is righ coiuous if lim f if lim f f. + f d lef coiuous We sy f is coiuous o ope iervl if i is coiuous ech poi of h iervl. I is coiuous o he clos ed iervl [, ] if i is coiuous o(, ), righ coiuous, d lef coiuous. E mple: Show h f 9 is coiuous o he closed iervl [,] Soluio: We see h he dom i of (,)we hve f ( c) lim f lim 9 9 c c c So f is coiuous o,. Also d lim lim 9 f ( ) f lim f lim 9 f ( ) + + So f is coiuous o [,]. Eercises Give ϕ + 5, deermie ϕ. f is he iervl[,]. For c i he iervl f ( α ) If f ( α ) ( α ), verify h f ( α ). f ( α ) f l d ϕ, deermie ( f ϕ ), ( f ϕ )( ) Give d ( ϕ f )( ). Fid he domi of he followig fucios. y d. y l. f + + 7 c. y l + ( l ) e. y rcsi ( 5) f. l( ) y + + + + 5 g. y si 7

Fucios, Limi d coiuiy of fucio 5 f +. f 5 If f ( ), show h. f ( ) f ( ) f 6 If f, show h + d f f ( ) 7 If f, he show h f ( ) f ( ) f f ( + h) f ( ) 8 Compue i he followig cses: h. f whe d + h f whe d + h. c. f 9 Prove h whe d + h - + (. sih l + + ), +. h l, ( < < ) Prove h ( ).. si cos f f cos si ( + ) ( + ) 5 sec( ) + c. d. si cos 9 e. ( si ) f. si ( ) + ( ) g. cos si h. ( ) y Prove h y + + y if π π < + y< d use he fc o prove h π. +. π + 7 Compue cos si + cos,si si + cos 5 5 5 Prove h f + is coiuous ( ) Prove h f is coiuous. 5 Ivesige he coiuiy of ech of he followig fucios h e idiced pois: f ( ) 8

Fucios, Limi d coiuiy of fucio si,. f he poi,. f he poi 8, c. f he poi, 6 Fid vlue for he cos, if possile, h will me he fucio coiuous 7,. f, >., f +, > s:. 5. 7 Fid he pois of discoiuiy, if y, of he fucio +, f,< <, s: discoiuous 8 If he fucio 6, f c, is coiuous, wh is he vlue of c? s: 8 9 For wh vlue o f is he followig coiuous fucio? 7+ 6+ 7,if d f if s: 8 f such h Le, < f c+ d, + 8, > Deermie c d d so h s: d, c f is coiuous (everywhere). 9

Fucios, Limi d coiuiy of fucio Deermie if he followig fucio is coiuous. f 5,, Deermie if he followig fucio is coiuous -. f +, 6, > Deermie if he followig fucio is coiuous 6, < f, + >, +. Deermie if he fucio h is coiuous -. + 5. For wh vlues of is he fucio f + + 5 + coiuous?

Differeiio Differeiio Defiiio A fucio f is sid o e differeile if d oly if f ( + h) f lim h h eiss. If his limi eiss, i is clled he derivive of f d is deoed y f f ( + h) f f lim h h Emple f, f? Soluio f + h f + h + h+ h + h h h h The f ( + h) f f lim lim( + h) h h h Emple Fid f ( ) if f Soluio f i geerl We c firs fid f + h f + h f lim lim h h h h h h lim lim( h) h h h d he susiue for f ( ) ( ) We c lso evlue f ( ) more direcly ( + h) ( ). Hece, f + h f h h f ( ) lim lim lim h h h h h h +, Emple Fid f ( ) if f +, < < Emple Fid he derivive of f 9 The process of fidig derivive is clled differeiio. I he cse where he idepede vrile is i is deoed y he symol d f d f wih respec o red he derivive of

Differeiio d f f d dy If he depede vrile y f, he we wrie f d Rules for Differeiig Fucios Assume h u, v, d w re differeile fucios of d h c d m re coss d ( c ) (The derivive of cos is zero) d d du ( cu) c d d d m m ( ) m (Power Rule) d d du dv ( u± v± w) ± ± dw (sum/differece rule) d d d d d du 5 ( uv) v + u dv (Produc Rule) d d d du dv v u d u 6 d d (Quoie Rule) d v v du d 7 d, u (Reciprocl Rule) d u u The Chi Rule If we ow he derivives of f d g, how c we use his iformio o fid he derivive of he composiio f g? The ey o solvig his prolem is o iroduce depede vriles y f g f g d u g ) ( f ( u) So h y. We use he uow derivives dy du f ( u) d g du d o fid he uow derivive dy d f ( g ) d d Theorem (The Chi Rule) If g is differeile he poi d f is differeile he poi g he he composiio f g is differeile he poi. Moreover, if y f ( g ) d u g he y f ( u) d dy dy du d du d Emple Fid dy y cos d if

Differeiio Soluio Le u so h y cosu, he y chi rule dy dy du d [ cosu] d ( siu) ( ) si d du d du d I geerl, if ( ) f g is composie fucio i which he iside fucio g d he ouside fucio f re differeile, he d f ( g ) f ( g ) g d + Emple Fid he derivive of Soluio By usig he chi rule, we oi d + + d + d d d + Le clcule d d d ( ) ( + ) ( + ) ( d ) + d d ( ) ( + ) 5 d ( ) Hece d + + d + + 5 ( + ) 5 d d ( ) ( ) Derivives of Trigoomeric d Hyperolic Fucios d d ( si ) cos 5 ( sec ) sec d d d d ( cos ) si 6 ( csc ) csc co d d d d ( ) sec 7 ( cosh ) sih d d d d ( co ) csc 8 ( sih ) cosh d d si cos N.B: co sec cos si cos d csc si Proof sih cosh Recll h lim d lim h h h h From he defiiio of derivive, sec: sec d csc: cosec

Differeiio [ ] d si + h si si cos h+ cos si hsi si lim lim d h h h h cosh si h si h cos h lim si cos lim cos si h + h h h h h Sice lim( si ) si d lim( cos ) h h cos, d si h cos h [ si ] cos lim si lim cos () si ( ) cos d h h h h Thus, we hve show h d [ si ] cos d The derivive of cos is oied similrly: d cos( + h) cos cos cos hsi si hcos [ cos ] lim lim d h h h h cosh si h lim cos si h h h cosh sih cos lim si lim h h h h cos si si Thus, we hve show h d [ cos ] si d Emple Fid f if f Soluio d d f [ ] + d d sec + si Emple Fid dy d if y + cos Soluio d d dy d d + cos cos si si d + cos + cos ( + cos) [ si] si [ + cos] cos + cos + si cos + + cos ( + cos) ( + cos) ( ) 5 Derivives of Fucios o Represeed Eplicily 5- Implici differeiio Cosider he equio y. Oe wy o oi dy d is o wrie he equio s from which i follows h dy d d d y

Differeiio Aoher wy is o differeie oh sides d d ( y) () d d d d ( y) + y d d dy + y d dy y d dy Sice y, y d This secod mehod of oiig derivives is clled implici differeiio. Emple By implici differeiio fid dy d if 5y + si y Soluio Differeiig oh sides wih respec o d reig d reig y s differeile fucio of, we oi. d d ( 5y + si y) ( ) d d d d 5 ( y ) + ( siy) d d dy dy 5 y + ( cosy) d d dy dy y + cos y d d dy d y + cos y Emple Fid dy d if 7 + y+ Emple Fid d y d if y 9 5- Derivive of he Iverse Fucios dy Le y f e fucio whose iverse is f ( y). The d d dy Emple Fid he derivive of y rcsi. Soluio d d We hve y rcsi si y d hece ( si y) cos y. The dy dy dy d ( rcsi ) d d d cos y cos ( rcsi ) dy Emple Fid he derivive of y rccos d y rc. 5- Derivives of fucios Represeed Prmericlly If fucio y is reled o vrile y mes of prmeer 5

Differeiio The or, i oher oio, Emple Fid dy d if cos y si Soluio d dy We fid si, cos. Hece d d Emple Fid dy d if y ϕ y ψ dy d ( ) () dy d d d y y dy cos co. d si 6 Logrihmic Differeiio Tig he derivives of some compliced fucios c e simplified y usig logrihms. This is clled logrihmic differeiio. 5 Emple Differeie he fucio y + Soluio Tig logrihms of oh sides we oi 5 l y l + 5 l l l l y + Differeie oh sides wih respec o o ge y 5 ( + ) 5 + y + 5 5 + y y + Sovig for y 5 y y + 5 + 5 5 + 5 ( ) + + We c lso use logrihmic differeiio o differeie fucios i he form v y u Emple Differeie y, y, y where is cos. 6

Differeiio 7 Higher Order Derivives 7- Defiiio of Higher Order derivives A derivive of he secod order, or he secod derivive, of fucio derivive of is derivive; h is The secod derivive my e deoed s y, or y y d y d, or f Geerlly, he h derivive of fucio y f (-). For he h derivive we use he oio ( ) d y y, or y f is he is he derivive of he derivive of order d, or ( f ) ( ) Emple Fid he secod derivive of he fucio y l ( ) Soluio y, y 7- Higher-Order Derivives of fucios represeed Prmericlly If ϕ ( ) y ψ () dy d y he he derivive y, y,... c successively e clculed y he formuls d d y ( y ) y, y ( y ) d so forh. For he secod derivive we hve he formul y y y ( ) cos Emple Fid y if. Aswer: y si si. 8 Differeil 8- Firs-Order Differeil y f The differeil of fucio is he pricipl pr of i icreme, which is lier relive o he icreme Δ d of he idepede vrile. The differeil of fucio is equl o he produc of i derivive y he differeil of he idepede vrile dy y d whece dy y d 7

Differeiio 8- Properies of Differeil dc, c is cos d cu cdu d( u± v) du± dv d ( uv) udv + vdu u vdu udv d v v df u f u du 5 6 v 8- Approimio y Differeil For he fucio y f, y dy; h is ( +Δ ) Δ+ f f f 8- Higher-Order Differeil If y f d is he idepede vrile, he d y y d d y y d + Δ Δ whece Δ f ( ) f f ( d y y ) ( d) 9 Theorems Relive o Derivive 9- Rolle s Theorem If f is coiuous o he iervl [, ], differeile every ierior poi of he iervl d f ( ) f ( ), he here eis les poi ξ, < ξ < where f ( ξ ). Proof If f is coiuous o he iervl [, ], he i is o he iervl relive mimum vlue M d miimum vlue m. If mm, he f is cos, sy, f m, implyig h f ( ξ ). If m M, we suppose h M > d f is he mimum vlue M ξ, h is f ( ξ ) M, ξ,. If f ( ξ ) is he upper oud of f, he f ( ξ + h) f ( ξ) d herefore, f ( ξ + h) f ( ξ) f ( ξ + h) f ( ξ), h > lim h h h f ( ξ + h) f ( ξ) f ( ξ + h) f ( ξ), h < lim h h h Hece f ξ. Emple Cosider he fucio f ( ) si The fucio is oh coiuous d differeile everywhere, hece i is coiuous o [ ] Moreover f si, f π siπ, π d differeile o (, ). so h f sisfies he hypoheses of Rolle s heorem o he iervl [, π ]. Sice f ( c ) cosc ). Rolle s heorem gurees h here is les oe poi i (, π such h cos c 8

Differeiio which yields wo vlues for c, mely c π d c π Emple Verify h he hypoheses of Rolle s heorem is sisfied o he give iervl d fid ll vlues of c h sisfy he coclusio of he heorem f, [, ] Soluio,, O he iervl [ ] f is coiuous d i is differeile o + f ( ) ( ) ( ) f ξ ξ ξ + which hs he roos ξ, ξ + Hece ξ sisfies he heorem. 9- Me-Vlue Theorem Le f e differeile o ( ), d coiuous o[, ]. The here is les oe poi ξ i (, )such h f ( ) f ( ) f ( ξ )( ). Proof f ( ) f ( ) The slope of g is Q f ( ) sice g( ) psses hrough he poi (, f ( )), he he equio of he lie is defied y f g f ( ) Q( ) ( ) f g ( ) he g f ( ) + Q( ). Le F( ) which is coiuous o[, ] F( ). By Rolle's Theorem, ξ (, ) such h F ( ξ ). f ( ) f ( ) F f f ( ) f F f g f f + Q f f Hece we oi he fucio, differeile o ( ), d F f ( ) f ( ) F ( ξ) f ( ξ) f ( ) f ( ) he f ( ξ ). Hece f ( ) f ( ) f ( ξ )( ) Emple Le f +. Show h f is sisfies he hypoheses of he Me-Vlue Theorem o he iervl[, ] d fid ll vlues of ξ i his iervl whose eisece is gureed y he heorem. 9

Differeiio Soluio f is polyomil, f is coiuous d differeile everywhere, hece is Becuse coiuous o [, ] d differeile o (, ) Theorem re sisfied wih d. Bu f f f f 9,, f ( c) c f. Thus, he hypoheses of he Me-Vlue so h he equio f ( ) f ( ) f ( ξ ) ξ 7 which hs wo soluios ξ 7 d ξ 7 So ξ 7is he umer whose eisece is gureed y he Me-Vlue Theorem. 9- Cuchy's Theorem Le f d g e coiuous d differeile fucio over he iervl [, ] d g over[, ]. The here eiss ierior poi ξ o he iervl [, ] such h f ( ) f ( ) f ( ξ ) g( ) g( ) g ( ξ ) Proof f ( ) f ( ) Le defie Q y Q g ( ) g ( ) Noice h g( ) g( ) sice if o, g( ) g( ) he y Rolle's Theorem, g poi ierior o[, ]. I cordics o he codiio of he heorem. Le form fucio F f f ( ) Q g g( ), which sisfies he codiio of he Rolle's Theorem, he here eiss umer ξ, < ξ <, such h F ( ξ ). Sice f ( ξ ) F f Qg, he F ( ξ) f ( ξ) Qg ( ξ) Q. Hece g ( ξ ) f ( ) f ( ) f ( ξ ) g( ) g( ) g ( ξ ) 9- L' Hopil's Rule Cosider he fucio F f g, where oh f ( ) d g( ) whe. The, for y > here eiss vlue ξ, < ξ < such h f f ( ) f ( ξ ) g g( ) g ( ξ ) f f ( ξ ) or g g ( ξ ) Now s, ξ, herefore whe he limi eiss f f lim lim g ξ g This resul is ow s l' Hopil's Rule d is usully wrie s

Differeiio f f lim lim g g cos Emple Evlue lim L'Hopil's Rule c sill e pplied i cses where f d g whe, simply y wriig f f lim lim g g Now f d g s d he rule pplies. Therefore, f g g f L lim lim lim g f g f f g g lim L lim g f f Hece f f lim lim g g f d g oh ed o zero, or oh ed o ifiiy s ed o ifiiy Similrly, if he rule pplies. By wriig u ( ) f f u lim lim lim f g ( u) g u g u u u u u f lim{ f ( u) g ( u) } lim u g If, fer oe pplicio of l' Hopil's rule he limi is sill ideermie, he process c e repeed uil deermie form is reched. Emple Evlue si (i) lim (s: ) (ii) lim e (s: ) + 9-5 Tylor's Theorem for Fucios of Oe Vrile Suppose h he fucio y f hs ( + )h order derivive i he eighorhood of he poi. We will fid he polyomil of order mos such h P f, P f, P f,, P f The sough-for polyomil is of he form P C + C + C + C + + C P Le clcule he h derivive of P C+ C( ) + C( ) + + C( ) P C + 6C( ) + + ( ) C( ) P 6C + C ( ) + + ( )( ) C ( )

Differeiio ( ) P C The we c oi f C f ( ) C f C ( f ) ( ) ( )( ) C d hece C f ( ) C f ( ) C f ( ) C f ( ) ( C ) f ( )! Therefore, we oi ( ) P f ( ) + f ( ) + f ( ) + f ( ) + + f! Le e he differece ewee he fucio P ; h is, The R ( ) f d he polyomil R f P + f P R + ( ) R Q( ) ( +! ) Q ( ) f f + f + f ( ) + f ( ) + + f + R!!!! is clled he remider d is defied y R where is he fucio o e defied. Now we hve + ( ) ( ) ( ) ( ) ( ) f f + f + f + f + + f ( ) + Q!!!! ( + )! we will fid Q. Cosider uiliry fucio F(), < < which is defie s ( ) ( ) ( ) () ( ) ( + ) + F () f f () f () f () f Q!!! By compuig F d simplifyig, we oi ()

Differeiio ( ) () ( ) F () f () + f () f () + f () f!! ( ) ( + ) () () ( + ) () ( ) + f () + f f + Q!!! +! ( ) F () f +!! Q We c see h he fucio F sisfies he codiio of Rolle's Theorem, he here eiss umerξ, d hus, () < ξ < such h F ( ξ ). The ( ξ) ( + f ) ( ξ ) ( ξ) + Q!! + Q f ξ ( ) ( + ) + ( + ) ( ξ ) R f! which is clled Lgrge formul for he remider. Sice ξ is ewee d we c wrie i i he form ξ + θ( ) where θ is ewee d ; h is < θ <. The he remider c e wrie s + ( ) ( + ) R f + θ ( ) (! ) + The formul ( ) ( ) f f ( ) + f ( ) + f ( ) + f ( ) +!!! + ( ) ( ) ( ) ( + ) + f ( ) + f + θ( ), θ! ( + )! < < is clled Tylor Formul for he fucio f ( ). If, i his formul, we oi + ( ( ) ( ) ( ) ) f f + f + f + + f ( ) + f!!!! ( + ) ( + ) ( θ ) which is ow s Mcluri Formul. Emple: Use Mcluri Formul o epd he fucios e,si, d cos. Eercises Eercise hrough, use defiiio of derivive Give y f + 58, fid Δy d Δy Δs chges () from o +Δ. () d o.8. Fid Δy Δ, give y. Fid lso he vlue of Δy Δwhe (), (), (c). Fid he derivive of y f d. Fid he derivive of f +

5 Differeie () y, () y + 6 Fid dy d, give y y Fid he derivive of he followig fucios 7 f co 8 y co 9 f si si + cos y si cos ( + ) y y si cos f rc + rc co 7 y e 5 y l 6 y e rcsi 7 y sih 8 y h 9 y cosh y si sih y h cosh y Derivive of composie fucio f ( + 5 ) y 5 f ( si) 5 6 y + 5 7 y co 8 y si + cos 9 y csc + sec y + si y y cos cos α y si ( 5+ ) + + cos y cos 5 f si si + φ 6 7 8 y si y si y cos e ( ) l ( l ) 9 y l + 7 y l y ( l ) + l ( ) y l + + l ( + ) y + Differeiio y l + e l + e + 5 y si ( ) 6 7 8 9 5 5 y rcsi + rccos si y rccos y y rcsi + y + rcsi y + rcsi 5 y l ( + ) + 5 y l + f rcsi + l 5

Differeiio 55 y cosh l 56 y + f. h 57 Give he fucio f e, deermie f 58 Give he fucio f ( ) +, clcule he epressio f ( ) ( ) f ( f ( ) 59 Give f, g l ( ), clcule g ( ) 6 Show h he fucio y e sisfies he equio y ( ) y 6 Show h he fucio 6 Show h he fucio y Logrihmic Differeiio y + + + 6 6 65 66 y y y ( + ) ( + ) ( + ) ( ) y e, sisfies he equio ( ) l y y + ), sisfies he equio y y ( y l ) + + 68 69 7 7 y y y si y + 7 y ( rc ) 67 y dy y is he fucio of d deermied i prmeric form. Fid y d 7 78 y cos 7 y si rccos + 8 y rcsi + + 75 y e 8 + y e + 76 ( ) y + 8 Compue dy d for π ( si ), if y ( cos) 8 Show h he fucio y give i he prmeric form y he equios + y + sisfies he equio 5

Differeiio dy dy y + d d dy Fid he derivive y of he implici fucio y d cos y + y 89 e + y 8 y 85 86 y y + 87 y rc y 88 + y y 9 l + e c 9 9 y + y crc y Fid he derivives y of specified fucios y he idiced pois 9 ( + y) 7 ( y ) for d y 9 y ye + e + for d y 95 y + l y for d y 96 Fid y ( of he fucio y si 97 Show h he fucio y e cos sisfied he differeil equio y + y 98 Fid he h derivives of he fucios ) y ) y c) y + d) y l ( + ) + e) y f) y l + ) g) y e ( d y 99 I he followig prolem fid d l rc ) ) y y l ( + ) l e e) f) y e y Use L Hopil Rule o fid he limis ) lim π si e) lim π 5 i) lim + cosh ) lim cos l si m f) lim l si j) lim rcsi c) y g) lim ) lim y cos d) y si π si c) lim d) lim si π co π h) lim l l si lim l) cos π Fid he pproime vlues of he followigs usig he formul f +Δ f Δ + f ) cos6 ) l.9 c) º d) rc.5 e). e 6

Differeiio Approime he fucios ) f + for. ) y e for.5 c) f + u, fid du. fid d y. y rccos, fid d y. 5 y si l, fid d y. 6 f for. o he iervls d sisfies he Rolle heorem. Fid he pproprie vlues of ξ. 7 Tes wheher he Me-Vlue heorem holds for he fucio f o he iervl [,] d fid he pproprie vlue of ξ. 8 ) For he fucio f + d g. Tes wheher he Cuchy heorem holds o he iervl[, ] d fid ξ. ) do he sme wih respec o f si d g cos 9 Verify he followig y Tylor s formul ) e e + + + +!! ) ( ) ( ). si si + cos si cos +!! c) ( ) cos cos si! d) l ( + ) l + + + Epd l i powers of ( ) o four erms. π Epd i powers of o hree erms π Epd si i powers of + o four erms. 6 7

Idefiie Iegrl Idefiie Iegrl Aiderivive or Idefiie Iegrl Prolem: Give fucio f ( ), fid fucio F whose derivive is equl o f ( ); h is F f. Defiiio We cll he fucio F( ) iderivive of he fucio f o he iervl [, ] if F f, [, ]. Defiiio We cll idefiie iegrl of he fucio f, which is deoed y f d, ll he epressios of he form F + Cwhere F( ) is primiive of f ( ). Hece, y he defiiio we hve f d F + C C is clled he cos of iegrio. I is irry cos. From he defiiio we oi. If F f, he ( f d) ( F C + ) f. d( f d) f d. df F + C Tle of Iegrls r+ r. d + Cr, r + d. l C + d rc + C rc co + C, + d. l + C, ( ) + d + 5. l + C, ( ) 6. d l ± + ± + C 7. d rcsi C rccos C, ( ) 8. d sih + c + 9. d cosh + c. d + C, ( > ) l. ed e + C.

. si d cos + C. cos d si + C. sih d cosh + c 5. cosh sih + c d 6. h c cosh + d 7. C cos + d 8. coh c sih + d 9. co C si + d. l C l csc co si + d π. l + + C l + sec + C cos. Some Properies of Idefiie Iegrls Lieriy. f + f + + f f d+ f d+ + f d. If is cos, he f d f d Moreover,. If f d F + C, he f ( ) d F ( ) + C. If f d F + C, he f ( + ) d F( + ) + C 5. If f d F + C, he f ( + ) d F ( + ) + C Emple. ( si+ 5 ) d s: + cos+ + C. + + d s: 9 + + + C 9 d. s: l + + C +. cos 7d s: si ( 7 ) + c 7 5. si ( 5) d s: cos ( 5 ) + c + C Idefiie Iegrl Iegrio By Susiuio. Chge of Vrile i Idefiie Iegrl Puig ϕ ( ) where is ew vrile d ϕ is coiuously differeile fucio, we oi

ϕ ϕ Idefiie Iegrl f d f d () The emp is mde o choose he fucio ϕ i such wy h he righ side of () ecomes more coveie for iegrio. Emple Evlue he iegrl I d Soluio Puig, whece + d dd. Hece, d + d + d + 5 Someimes susiuio of he form u ϕ he iegrd f do he form 5 5 5 + + c re used. Suppose we succeeded i rsormig f d g( u) du where u ϕ. If g( u) duis ow, h is, g( u) du F( u) +, he f d F ϕ + c Emple Evlue () d () e d 5 Soluio Puig u 5; du 5 d; d du, we oi () 5 d du u 5 5 + c u 5 5 5 + c. Trigoomeric Susiuios ) If he iegrl cois he rdicl, we pu si ; whece cos ) If he iegrl cois he rdicl, we pu secwhece ) If he iegrl cois he rdicl +, we pu whece + sec We summrize i he he rigoomeric susiuio i he le elow. Epressio i he iegrd Susiuio Ideiies eeded si si cos + + sec sec sec

Emple Soluio Le siθ, Evlue I d π π θ θ d cosθdθ cosθdθ cosθdθ dθ I si θ cos θ si θ cosθ si θ csc co θdθ θ C C + + Idefiie Iegrl Emple I d + Soluio π π θ, < θ < I sec θdθ θ + d sec θ dθ sec θ d θ + C secθdθ l secθ + θ + C l + secθ + θ + Emple 5 Soluio l + + l + l + + + C C Evlue 5 d Le 5secθ d secθ θ or d 5sec d dθ θ θ θ Thus, 5 5sec θ 5 d ( 5sec ) d θ θ θ 5secθ 5θ 5sec d 5 5secθ 5 We oi θ. Hece 5 Emple 6 Evlue θ θ θ θ θ 5 sec θ dθ 5θ 5θ + C + d 5 5 5sec + 5 d θ d C 5 5

Idefiie Iegrl 5. Iegrio y Prs Suppose h u d v re differeile fucio of, he d ( uv) udv + vdu By iegrig, we oi uv udv + vdu Or udv uv vdu Emple. si d (leu ) s: cos + si + C. rc d (le u rc ) s: rc l + + C. ed (le u ) s: e ( + ) + C si cos si. ( + 75) cosd s: ( + 7 5) + ( + 7) + C 6 Sdrd Iegrls Coiig Qudric Triomil m + m + 6. Iegrls of he form d or d + + c where c< + + c We proceed he clculio y compleig squre he riomil d he use he pproprie formuls or susiuios. Emple d. s: + C + 5 d +. s: rc + C + 8 + 6 6. d s: l + + + c + 8 +. d s: l ( + 5) + rc + C + 5 5 + 5. d s: 5 + + 7l + + + + + C + + d 6. Iegrls of he Form ( m + ) + + c By mes of he iverse susiuio m + hese iegrls re reduced o iegrls of he form 6.. Emple Evlue 6. Iegrls of he Form d. As: + + ( ) + + cd ( ) + + l + By ig he perfec squre ou of he qudric riomil, he give iegrl is reduced o oe of he followig wo sic iegrls 5

Idefiie Iegrl ) ) Emple d + rcsi + c; > + d + + l + + + c; > Evlue d 7 Iegrio of Riol Fucios 7. The Udeermied Coefficies Iegrio of riol fucio, fer ig ou he whole pr, reduces o iegrio of he proper riol frcio P () Q where P d Q re iegrl polyomils, d he degree of he umeror P() is lower h h of he deomior Q(). If ( ) α ( ) Q l where,, l re rel disic roos of he polyomil Q(), d α,, λ re roo mulipliciies, he decomposiio of () i o pril frcio is jusified: P A A Aα L L Lλ + + + + + + + + α λ Q l l l () where A, A,, Aα,, L, L,, Lλ re coefficies o e deermied. Emple Fid d ) I As: + l C + + + + ) I d As: + l l + C If he polyomil Q() hs comple roos ± iof mulipliciy, he pril frcios of he form A + B A + B + + () + p+ q ( + p + q) will eer io he epsio (). Here, + p + q ( + i) ( i) d A, B,, A, B re udeermied coefficies. For, he frcio () is iegred direcly; for >, we use reducio mehod; here i is firs dvisle o represe he qudric p p riomil + p + q i he form + + q p d me he susiuio + z. Emple Fid + d + + 5 As: 7. The Osrogrdsy Mehod + + 5 ( + + ) λ ( ) + C 6

Idefiie Iegrl If Q() hs muliple roos, he P X Y d + Q Q Q d () where Q is he grees commo divisor of he polyomil Q() d i derivive Q ; : Q Q Q X() d Y() re polyomils wih udeermied coefficies, whose degrees re, Q. respecively, less y uiy h hose of Q d The udeermied coefficies of he polyomils X() d Y() re compued y differeiig he ideiy (). Emple Fid d I Soluio d A + B + C D + E + F d + ( ) Differeiig his ideiy, we ge ( A + B)( ) ( A + B + C) D + E + F + or ( A B)( ) ( A B C) ( D E F )( ) + + + + + + Equig he coefficies of he respecive degrees of, we will hve D ; E A ; F B ; D+ C ; E+ A ; B+ F whece A ; B ; C ; D ; E ; F d, cosequely, d d (5) To compue he iegrl o he righ of (5), we decompose he frcio L M + N + + + we will fid L, M, N. Therefore, d d + l l + d + + C + + + 6 d d + + + + l + + C 9 8 Iegrio of ceri Irriol fucios 7

Idefiie Iegrl p p q q 8. Iegrls of he ype R + +,,, dwhere R is riol fucio c + d c + d + d p, q, p, q, re ieger umers. We use he susiuio z where is he c + d les commo muliple (lcm) of q, q, Emple Evlue d Soluio le z, he d z dz, d hece d z dz z dz z dz ( z ) l z C + + + + z z z + z ( ) l( ) + + + C d Emple Evlue swer: l + + C + m 8. Iegrls of differeil iomils ( + ) p d where m, d p re riol umers. m If + is ieger, le r + z s where s is he deomior of he frcio p s m If + + p is ieger, le + z s d Emple Evlue ( + ) Soluio d We hve m + d +. We see h m,, r, s d ( + ), ieger. The ssume + z, he Hece, Emple z zdz, d d + z z z zdz d ( + ) ( z ) z Wor ou ( z ) dz ( z z ) C + + + + C + d + + + C 8

Idefiie Iegrl 8. Iegrl of he Form where Pu P P + + c is polyomil of degree d Q + + c + λ () d () P d + + c + + c is polyomil of degree wih udeermied coefficies re λ is where Q umer. The coefficies of he polyomil differeiig ideiy (). Emple 5 Soluio whece Muliplyig y Fid + d Q d he umer λ re foud y + d + d d ( A + B + C + D) + + λ + + ( + + + ) + A B C D ( A + B + C) + + + + + + λ + d equig he coefficies of ideicl degrees of, we oi A ; B ; C ; D ; λ Hece, + + d + l( + + ) + C 8. Iegrl of he form d () ( α ) + + c They re reduced o iegrls of he form () y he susiuio α d Emple 6 Fid 5 9 A Ceri Trigoomeric Iegrls 9. Iegrl of he Form si d d cos d If is odd posiive ieger, use he ideiy Emple Fid Soluio 5 si d d d 5 si si si si + cos 9

( cos ) sid ( cos cos ) sid ( cos cos ) d( cos ) + + 5 cos + cos cos + C 5 cos If is eve, use hlf-gled ideiies si d Emple Fid Soluio cos d Idefiie Iegrl + cos cos + cos cos d d ( cos cos ) cos ( ) ( cos ) + + d d d d + + + 8 cos cos 8d + d + d m Type: ( si cos d) + si + si + C 8 If eiher m or is odd posiive ieger d oher epoe is y umer, we fcor ou si or cos d use he ideiy si + cos Emple Fid Soluio si cos d ( ) ( si cos d cos cos si d cos cos ) d ( cos ) cos cos sec + C sec + C If oh m d re eve posiive iegers, we use hlf-gle ideiies o reduce he degree of he iegrd. Emple Fid Soluio si si cos d cos + cos cos d d ( cos cos cos ) 8 + d + cos ( + cos ) ( si ) cos 8 d

Idefiie Iegrl cos ( cos ) ( si ) cos 8 + + d cos si cos 8 + d d cos d ( ) si d ( si ) 8 8 + si + si + C 8 8 6 9. Iegrl of he Form si m cos d, si msi d, cos m cos d To hdle hese iegrls, we use he produc ideiies /. si m cos si ( m + ) + si ( m ) Emple 5 Soluio m m m /. si si cos( + ) cos( ) m m m /. cos cos cos( + ) + cos( ) Fid si cosd si cosd si 5 si si 5 ( 5 ) si + d d cos 5+ cos + C 9. Iegrls of he Form or co We use he formul Emple 6 Evlue Soluio d m m d d where m is posiive umer sec or co csc d d d d + + C ( sec ) ( sec ) Iegrls of he ypes R (si,cos ) d where R is riol fucio. We c use he susiuio si + + d Emple Clcule + si + cos, cos, d d hece we hve d +

Idefiie Iegrl Soluio Le, he we oi d d I + l + + C l + C + + + + + + R si, cos R si, cos is verified, he we c me he If he equliy susiuio. Ad hece we hve si, cos d + + d rc, d. + d Emple Clcule I + si Soluio d Le,si, d, he + + d d I rc ( ) + C rc ( ) + C + ( + ) + + Iegrio of Hyperolic Fucios Iegrio of hyperolic fucios is compleely logous o he iegrio of rigoomeric fucio. The followig sic formuls should e rememered ) cosh sih ) sih ( cosh ) ) cosh ( cosh + ) ) cosh sih sih Emple Fid cosh d Soluio cosh d ( cosh + ) d sih + + C Emple Fid ) sih si d cosh d ) ) sih cosh cosh Trigoomeric d Hyperolic Susiuios for Fidig Iegrls of he Form R (, + + c ) d () where R is riol fucio. Trsformig he qudric riomil + + c io sum or differece of squres, he iegrl () ecomes reducile o oe of he followig ypes of iegrls R z, m z dz R z, m + z dz R z, z m dz ) ) The ler iegrls re, respecively, e y mes of susiuios ) z msi or z mh d

Idefiie Iegrl ) z m or z msi ) z msec or z mcosh Emple d fid I + + + Soluio We hve + + + +. Puig + z, we he hve d sec zdz d ( ) ( ) d sec zdz cos z + + + I dz + C C + + + zsec z si z si z + Emple Soluio We hve Fid + + d + + + + Puig + sih d d cosh d we oi sih cosh cosh sih cosh cosh 8 8 I d d d cosh cosh cosh sih cosh 8 8 d + + C 8 8 Sice sih +,cosh + + d l + + + + + l we filly hve I + + + + + l + + + + 6 Eercises Usig sic formuls o evlue iegrls. ( 6 + 8 + ) d d 8. +. ( + )( + ) d + 9.. ( + ) d d + +. d 6. d + d 5. ed. 6 6. d rcsi +. d 7. d

Idefiie Iegrl d d.. d ( + ) l + + si cos si.. ( e e ) d + cos d si cos 5. d 5. e + e d cos si + si 6. d ( ) cos 6. d 7. ( sih5 cosh5) d ( ) 7. + e d 8. d + 8. 7 d 9. d 8 9. d + 5 5 + 7 + +. d. d + 5 + d. e l. d si e. cos d. e e d. d d. si ( l ) + d cos.. 5 d si sec d 5. + cos sid 5. rc + l 6. 6. d d + rc e + l ( + ) + rc 7. 7. d d + + 8. sec ( + ) d 8. d d 9. 5 5 9. d d. d 5. si e + d rccos. cos 5. d. si ( ) d 5. Applyig he ideced susiuios, fid he followig iegrls d ), c) 7 5 d,5 d d d) ), l, + + e +

Idefiie Iegrl cos d e), si + si Applyig he suile susiuio, compue he followig iegrls ( rcsi ) + 5. d 6. d, + d 5. + d 6. + d 55. d 6. +, e e + l d 56. d 6. l d e 57. 6. d + X e + d si d 58. 65. rcsi cos 59. + 5 d, +5 d 66. Fid he iegrl y pplyig he susiuio si 67. Fid he iegrl + d y pplyig he susiuio sih By usig he fomul of iegrio y prs 68. l d 77. d 69. 7. si d d 7. si d 7. cos d 7. d e 7. d 75. l d 76. l d Iegrio ivolvig qudric riomil epressio d 85. 5 + 7 d 86. + + 5 d 87. + d 88. + 78. rcsi d d 79. l ( + + ) d 8. si 8. e si d 8. cos d si l d 8. 8. ( rcsi ) d d 89. 7 + 9. d + 5 d 9. 6 + d 9. d 5

Idefiie Iegrl 9. 6 d + 5 9. 8 d 95. d 5 + d 96. Fid he Iegrls 8. d + + ( 5+ 9 9. d 5 + 6 d. + + +. ( )( + )( ) ) + 9 5 +. d 5 + Osrogrdsy s Mehod 7 +. d + +. 5. d 97. 98... As: d + + d ( ) d + d ( + )( + + 5) d 5. + + 5 6. + + + + rc l + + + + + + C + + ( 8 ) ( ) d As: l ( ) ( + ) ( ) + + ( ) d + ( ) As: ( + )( + ) ( + ) ( + ) d + + rc + C + + rc + C d + 6. As: l + C + + 7. d ( + + ) As: ( + ) 8( + + ) rc + + + C 68 + + ( + + ) ( + ) d + 8. As: rc ( + ) + + + C + + 8 8 + + + + + 57 + + 57 9. d As: C rc + 8 + 8 6

Idefiie Iegrl p p q q Compue iegrls of he form R + +,,, d c + d c + d d. d 5. + + +. d 6. d + ( + ) + d. + + + d 7. d. ( + ) +. d ( ) + + + Iegrio of iomil differeils 8. + 9... d d + d 5 + d 5 + Trigoomeric Iegrls. cos d.. 5. 6. 7. 8. 9. 5 si d si si si cos 5 d cos d cos d 5 cos d si si d si cos Iegrl ( si,cos ) 5. 56. 57. d R d d + 5cos d si + cos cos d + cos. si cos d d. 6 cos d. si cos d. si cos d. 5 si 5. si cos5d 6. sisi5d 7. cos si d 8. si si d cos + cos d 9. 5. siωsi ( ω+ ϕ) 58. 59. 6. d 8 si + 7cos d cos + si + si d cos 7

+ 6. d Iegrios of hyperolic fucio 6. sih d 6. 6. 65. cosh d sih sih cosh cosh d d Iegrl (, + + ) 69. 7. 7. 7. 7. R c d d + d + d d + d Idefiie Iegrl d 66. sih cosh 67. h d d 68. sih + cosh 7. 6 7d 75. 76. + + d d + 7

Defiie Iegrl Defiiio Iegrl. Riem Sum Le f e fucio defied over he close iervl wih < < < e rirry priio i suiervl. We clled he Riem Sum of he fucio f over[, ] he sum of he form S i f ξ Δ i where i ξi i, Δ i i i, i,,...,. i y f ξ ξ. Defiie Iegrl The limi of he sum S whe he umer of he suiervl pproches ifiiy d h he lrges Δ i pproches zero is clled defiie iegrl of he fucio f wih he upper limi d lower limi. lim f ( ξ ) f d i Δ i m Δi i or equivlely lim f ( i) Δ i f + i d If he fucio f is coiuous o [, ] e iegrle o[, ]. or if he limi eiss, he fucio is sid o If is i he domi of f, we defied f d d If f is iegrle o[, ] f d f d. defie Emple Fid he Riem Sum for he fucio [ ] S, he we f + over he iervl, y dividig io equl suiervls, d he fid he limi lim S. Soluio 9 9i Δ i ξ i i + iδ i +

Defiie Iegrl d hece f he 9i 9i ξ i + + + ( ξ ) S f Δ i i i 9i 9 + i 8 8 + i i i 8 8 + + + + 8 ( ) 8 + 8 8 + ( ) 8 8 7 lim S lim 8 + 8 + Emple ( ) 8 d Soluio Divide he iervl [, ] io equl suiervls. Hece we oi Δ i. I ech suiervl[, i i i], choose ξi such h ξ i +Δ i i + i f ( ξi) Δ i + 8 i i 8i 6i + 8 i 6i i 6 + i 6i 8i + i 6 8 ( + + + ) + ( + + + ) 6 ( + ) 8 ( + )( + ) + 6 8 + + + + 6

Defiie Iegrl ( 8) lim ( ξi) d f Δ i i 8 lim + + + + 6 8 + Suiervl propery If f is iergrle o iervl coiig he pois,, d c, he + c c f d f d f d o mer wh he order of,, d c.. The firs Fudmel Theorem of Clculus Theorem A Firs Fudmel heorem of Clculus, d le e vrile poi i (, ), Le f e coiuous o he closed iervl [ ] he d d () f d f y f f Proof For (, ) we defie F f ( ) d, he d f () d F d F( + h) F lim h h + h lim f () d f () d h h + h lim f () d h h + h Bu f () d represes he re ouded y -is he curve + h hf ; h is f () d hf + h, which is pproime o d f () d lim hf f d. h h + h f ewee d. So,

Defiie Iegrl d Emple d d + 7 + 7 Emple d d cosd cosd d d d cosd cos d d Emple Fid ( ) d d Soluio Le u du d hece d d u ( ) d ( ) d d d d u d ( ) d u du d u 6 Theorem B Compriso Propery, If f d g re iegrle o [ ] d if f g for ll i [, ] f d g d, he Proof Over he iervl[, ], le here e rirry priio < < <. Le ξi e smple poi o he i h suiervl[, i i], he we coclude h f ( ξi) g( ξi) f ξ Δ g ξ Δ i i i i ( ξ ) ( ξ ) f Δ g Δ i i i i i i lim f i i g i i i f d g d ( ξ ) lim ( ξ ) Δ Δ Theorem C Boudedess Propery If f is iegrle o [, ] d m f M for ll i[, ], he Proof m f d M Le h( ) m, [, ], he h f, [, ] Hece, ( ) h d f d m f d. i y M m y f

Defiie Iegrl By similr wy, le g M, [ ] f g, [, ] f ( d ) g d f d M ( ) Therefore m ( ) f( d ) M( ),, he. Secod Fudmel Theorem of Clculus d Me vlue heorem For Iegrls Secod Fudmel Theorem of Clculus Le f e iegrle o [, ] d F e y primiive of f o[, ], he f ( d ) F ( ) F ( ) I is lso ow s Newo-Leiiz Formul. For coveiece we iroduce specil symol for F( ) F( ) y wriig F ( ) F( ) F or F ( ) F( ) F Emple Emple 5 5 5 8 7 d π π si cos d 9 si 8 8 Me Vlue Theorem for Iegrl If f is coiuous o[, ], here is umer c ewee d such h Proof Le, () ( ) f d f c F f d By Me vlue heorem for derivive, we oi F F F c () ( ) f d f c () ( ) f d f c f () dis clled he me vlue, or verge vlue of f o [, ] f c Emple Fid he verge vlue of f o he iervl [, ] Soluio 7 f ve f d d 5

Defiie Iegrl Emple Fid he verge vlue of f ( ) cos o he iervl [,π ] 5. Chge of vrile i defiie iegrl If f is coiuous over he close iervl, if ϕ ( ) is coiuous d is derivive is ϕ ( ) over he iervlα β, where ϕ ( α ) d ϕ ( β ) d if f ϕ ( ) is defied e coiuous over he iervlα β, he ϕ ϕ β f d f d α Emple Fid d ( > ) Soluio π Le si, d cos, rcsi, α rcsi d β rcsi. he we oi π d si si cos d Emple Evlue Emple Evlue π π si cos d si d π π π ( cosd ) si 8 8 6 le (swer: l + 6. Iegrio y prs If he fucios u d d ) l e d le e z (swer: π ) v( ) re coiuous differeile over [, ] u v d u v v u d π π Emple Evlue cos d (swer: ) e + Emple Evlue e d(swer: ) 8 π Emple Evlue e si d (swer: ( e π + )), we hve 7. Improper Iegrl Improper iegrls refer o hose ivolvig i he cse where he iervl of iegrio is ifiie d lso i he cse where f (he iegrd) is uouded fiie umer of pois o he iervl of iegrio. 7. Improper Iegrl wih Ifiie Limis of Iegrio Le e fied umer d ssume h f N deiss for ll N. The if 6

Defiie Iegrl N f deiss, we defie he improper iegrl + f lim N + lim N N + + f d f d dy The improper iegrl is sid o e coverge if his limi is fiie umer d o e diverge oherwise. + d Emple Evlue I Soluio + N d d N lim lim lim N + + N + N + N Thus, he improper iegrl coverges d hs he vlue. Emple Evlue + d p + e d Le e fied umer d ssume f lim f deiss we defie he improper iegrl The improper iegrl f deiss for ll <. The if lim f d f d dis sid o e coverge if his limi is fiie umer d o diverge oherwise. If oh f dad f + d coverge for some umer, he improper iegrl of f o he eire -is is defied y + + + + f d f d f d d d Emple Evlue + (swer:π ) (swer:π ) + + 7. Improper Iegrls wih Uouded Iegrds If f is uouded d f + deiss for ll such h <, he lim f d f d + 7

Defiie Iegrl If he limi eiss (s fiie umer), we sy h he improper iegrl coverge; oherwise, he improper iegrl diverges. Similrly, if f is uouded d f deiss for ll such h <, he If f is uouded c where lim f d f d < < f dd f c he improper iegrl oh coverge, he f c + f d d f d c c y y f y g A c d We sy h he iegrl o he lef diverges if eiher or oh of he iegrls o he righ diverge. d d Emple Fid ( ) Noe: + +. For f g d if g dcoverges, he f d +, if coverge d + f d g d Emple Ivesige he covergece of diverges.. For + d ( + e ), if f g d if f Emple Ivesige he covergece of + + + + + d. If f dis coverge he f solue coverge. + si Emple Ivesige he covergece of d 8 Are Bewee Two Curves y f y g 8. Are Bewee d If f d g re coiuous fucios o he iervl[, ], d if f g for ll i [, ], he he re of he regio ouded ove y y f, elow y y g, o he lef y lie, d o he righ y he lie is defied y A f g d ddiverges, he + g d dis lso coverge, specificlly 8

Defiie Iegrl Emple Fid he re of regio ouded ove y y + 6, ouded elow y y, d ouded o he sides y he lies d. s: Emple Fid he re of he regio eclosed ewee he curves y + 6. 5 6 y d 8. Are Bewee v( y) d w( y) If w d v re coiuous fucios d if w( y ) v ( y) for ll y i [ cd, ], he he re of he regio ouded o he lef y v( y) y w( y) y c, o he righ, elow y, d ove y y d is defied y d c A w y v y dy d c y d y Emple Fid he re of he regio eclosed y 9 wih respec o y. (s: ) Emple Fid he re of he regio eclosed y he curves iegrig /. wih respec o 8. Are i Polr Coordies /. wih respec o y v( y ) w( y) y, iegrig d y y A θ β θ α β r ρ θ A ρ θ α dθ r ρ ( θ ) r ρ θ A θ β θ α β ( ) ρ θ ρ θ A α dθ Emple Clcule he re eclosed y he crdioid r cosθ (swer: π ) Emple Fid he re of regio h is iside he crdioid r + cosθ d ouside he circle r 6 (swer: 8 π ). 9 Volume of Solid 9. Volume By Cross Secios Perpediculr To The X-Ais Le S e solid ouded y wo prllel ples perpediculr o he -is d. If, for ech i he iervl[, ], he cross-seciol re of S 9

Defiie Iegrl perpediculr o he -is iegrle, is defied y A, he he volume of he s s is A is solid, provided V A ( ) d A 9. Volume By Cross Secios Perpediculrr To The Y-Ais S e solid ouded y wo prllel ples perpediculr oo he y-is y c d y d. If, for ech y i he iervl[ c,d, he cross-seciol re of S perpediculr y y Emple Derive he formul for he volume of righ pyrmid whose liude is h d whose se is squre wih sides of legh. h. 9. Volumes of Solids Of Revoluio f R c ] o he y-is is A y, he he volume of he solid, provided A y is iegrle, is defied y d V A( y) dy d Emple curve y.. Volumes y Diss Perpediculr To he -Ais V π f d Fid he volume of he solid h is oied whe he regio uder he 5π over he iervl [, ] is revolved ou he -is.( s: ) Emple Derive he formul for he volume off sphere of rdius r. (s: r.. Volumes y Wshers Perpediculr o he -Ais Suppose h f d g re oegive coiuous fucios such h g f for. Le L R e he regio eclosed ewee he grphs of hese fucios d lies d. Whe his regio is revolved ou he -is, i geeres solid whose volumes is defied y π ) V ( π f ( ) g( ) ) d

Defiie Iegrl Emple Fid he volume of he solid geered whe he regio ewee he grphs of f + d g over he iervl [, ] is revolved ou he -is. As: 69 π..c Volumes By Diss Perpediculr To he y-is V d c π u dy..d Volumes By Wshers Perpediculr To y-is d c ( ) V π u y v y..e Cylidricl Shells Ceered o he y-is Le R e he ple regio ouded ove y coiuous curve, elow y he -is, d o he lef d righ respecively y he lies d. The he volume of he solid geered y revolvig R ou he y-is is give y V π f d dy y f Emple 5 Fid he volume of he solid geered whe he regio eclosed ewee y,, d he -is revolved ou he y-is. Soluio Sice f,,, he he volume of he solid is 5 π π V π d π d π [ ] 5 5 5 Emple 6 Fid he volume of he solid geered whe he regio R i he firs qudr eclosed ewee y d y is revolved ou he y-is. (Aswer: π 6 ) Legh of Ple Curve, o is defied y If f is smooh fucio o [ ], he he rc legh L of he curve y f dy d d L + f d + Similrly, for curve epressed i he form g( y) where g is coiuous o [ cd, ], he rc legh L from y co y d defied y d d d L + g ( y) dy + dy dy c c

Defiie Iegrl Emple Fid he rc legh of f from (,) o (, ) Soluio f f + f + + The he rc legh is defied y L + d + + l + + 5+ l( + 5) If he curve is give i polr coordie sysem r ρ ( θ), α θ β he he rc legh of he curve is defied y β β dr ρ ( θ) ρ ( θ) θ d dθ α α θ L + d r + Emple Fid he circumferece of he circle or rdius. Soluio As polr equio his circle is deoed y r The he rc legh is π π, θ π π L dθ dθ θ π Emple Fid he legh of he crdioid r cosθ If he curve is defied y he prmeric equio, y y, [, ] legh of he curve is Emple Soluio () () L + y d Fid he circumferece of he circle of he rdius r, he he Prmeric form, he circle is defied y ( ) rcos, y( ) rsi wih [, π ] he π π L r cos + r si d rd π r Emple 5 Fid he rc legh of he sroid, cos, y si.(s6). Are of Surfce of Revoluio Le f e smooh, oegive fucio o[, ]. The he surfce re S geered y f ewee ou -is is y revolvig he porio of he curve d

Defiie Iegrl S π f + f d For curve epressed i he form g( y) where g is coiuous o [, ] g( y) for c y d curve from d d, he surfce re S geered y revolvig he porio of he y co y d ou he y-is is give y d S π g y + g y c Emple Fid he surfce re geered y revolvig he curve y, ou he -is. Soluio f f. Thus, S π + d π d π Emple Fid he surfce re geered y revolvig he curve y, y ou he y-is. Soluio y g( y) y. Thus, g ( y) y, he π S π y + ydy y + ydy π π ( + y ) ( 7 ) 6 9 Eercises Wor ou he followig iegrls d 8. l + 6 8. d + rc + π. si cos d π. sec θdθ 5. 9 ( ) ( ) d π 8 + + dy

Defiie Iegrl π d π 6. si + 7. d l + d π 8. rc e e + e π π 9. si d 6 π π. cos d 8 e d. l ( + l ) e d. ( + l) d 9. l + + 8 z π. dz 8 z + 6 d π 5. 5 d π 6. 5+ π 7. si d e d 8. l e l Fid he derivive of he followig fucios 9. F l d, As: l. + d, As: +. F e d, As: e + e. F cos( ) d, As: cos cos + Wor ou he followig iegrls d.. e d + d π 5., ( > ) +

Defiie Iegrl 6. d π 7. l d + d 8. π + + 9 d 9. 9 d. e l l d π. + d π. e + e d. l l Compue he improper iegrls (or prove heir divergece) d. 5. e d, > + d 6. + + l 7. d d 8. + 9. ( + ) d d. d. +.. e d e d rc. d d 5. + + d 6. + 5

Defiie Iegrl lp 7. For p, is d coverge? (Hi: l p p for e ) d d 8. For wh vlues of re he iegrls d l l 9. For wh vlues of is he iegrl 5. Show h 5. Show h 5. Show h d,( ( ) f d f d if e π π e d e d d π d rccos 5. ( si ) ( cos ) si d f d f d < ) coverge? coverge? f is eve d f d if f is odd. 5. The Lplce Trsformio of he fucio f is defied y he improper iegrl + s L { } () F s f e f d. Show h for cos (wih s > ). L { e }. L {} c. {} s s s e. L { si } s + 55. Fid he firs qudr re uder he curve s + L d. L { cos } y e (swer: ) 56. Le R e he regio i he firs qudr uder y 9 d o he righ of. Fid he volume geered y revolvig R ou he -is. (swer: 8π ) 57. Derive formul V d rdius of se r. π r hfor he volume of righ circulr coe of heigh h 58. Le R e he regio ove he curve y uder he lie y d ewee d. Fid he volume geered y revolvig R ou ). -is, ). ou y-is. (swer: ). 6 7 π, ). 5 π ) s 59. Fid he re of he regio ewee y d he lies y d y 6. Fid he re of he regio ouded y he curve y si, y cos d d π (swer: ) 6

Defiie Iegrl 6. Fid he re of he regio ouded y prols y (Aswer: 9) d y + 6. 6. Fid he re of he regio ouded y he prol y + d he lie y 8. (swer: 5 ) 6 6. Fid he re of he regio ouded y he prols y d y. (Aswer: ) 6. Fid he rc legh of he curve 6. Fid he rc legh of he curve 6. Fid he rc legh of he curve y + from o (s: 8 6 ) + y from o 8 (s: 9) 6y + from o (s: 7 ) π 65. Fid he re iside he crdioid r + cosθ d ouside r (s: + ) 66. Fid he re iside he circle r siθ d ouside he crdioid r cosθ 67. Fid he volume geered y revolvig he ellipse Aswer: π y + ou -is. 7

Noro Uiversiy Ifiie Series Ifiie Series. SEQUENCES AND THEIR LIMITS Sequeces A sequece { } is fucio whose domi is se of oegive iegers d whose rge is he suse of rel umer. The fuciol vlue,, re clled erms of he sequece d is clled he h erm, or geerl erm of he sequece. Limi of he sequece If he erms of he sequece pproch he umer L s icreses wihou oud, we sy h he sequece coverges o he limi L d wrie L lim + Coverge sequece The sequece { } coverges o he umer L, d we wrie L lim if for every ε >, here is ieger N such h sequece diverges. lim f Limi Theorem for Sequeces If lim Ld lim M, he. Lieriy Rule: lim ( ). Produc Rule: ( ) LM r + s rl + sm L < ε wheever > N. Oherwise, he lim L. Quoie Rule: lim provided M M m. Roo Rule: lim m L provided m is defied for ll d m L eiss. Emple: Fid he limi of he coverge sequeces + 57 + /. /. 5 + + c/.{ } + Limi of sequece from he limi of coiuous fucio The sequece{ }, le f e coiuous fucio such h f ( ) for,,, If eiss d lim f L Emple: Give h he, he sequece { } e coverge d lim L. coverges, evlue lim e

Noro Uiversiy Ifiie Series Bouded, Moooic Sequeces Nme Codiio Sricly icresig < < < < < Icresig Sricly decresig > > > > > Decresig Bouded ove y M M for,,,... Bouded elow y m m for,,,... Bouded If i is ouded oh ove d elow. INFINITE SERIES; GEOMETRIC SERIES A ifiie series is epressio of he form + + + d he h pril sum of he series is The series is sid o coverge wih sum I his cse, we wrie + + + S S if he sequece of pril sums { s } coverges o S. lim S S If he sequece { S } does o coverge, he series diverges d hs o sum. Emple: Show h he series coverges d fid is sum. + Soluio: We hve + +. The S + + + + + + lim S lim + Emple: Prove h he series coverge d fid is sum.. + c. ( ) Geomeric Series A geomeric series is ifiie series i which he rio of successive erm i he series is cos. If his cos rio is r, he he series hs he form r + r + r + r + + r +,

Noro Uiversiy Ifiie Series Geomeric Theorem The geomeric series r wih diverges if r d coverges if r < wih sum r r Proof: The h pril sum of he geomeric series is S + r + r + + r. The, rs r + r + r + + r rs S r ( r ) S, r r If r > r lim S If r < r lims r THE INTEGRAL TEST, p-series Diverge Tes If lim, he he series mus diverge. Proof: Suppose he sequece of pril sums { S } coverges wih sum L, so h lim S L. The we lso hve lim S L. We hve S S, d he i follows h lim lim ( S S ) L L We see h if coverges, he lim. Thus, if lim, he diverges. Emple: + + + + + Diverges sice + + lim ( ) + The Iegrl Tes If f ( ) for,,,... where f is posiive coiuous d decresig fucio o f for he Ad f d eiher oh coverge or oh diverge. Emple: Tes he series for covergece Soluio: We hve f is posiive, coiuous d decresig for. d lim d lim[ l ], implyig h d diverges.

Noro Uiversiy Ifiie Series Hece diverges. Emple: Ivesige he followig series for coverge.. 5. + + + + e e e e p-series A series of he form + + + p p p p where p is posiive cos, is clled p-series. Noe: The hrmoic series is he cse where p. Ad Theorem, he p-series es The p-series p coverges if p > d diverges if p. Proof: Le f p p f he f if p p < p > Hec e f p is coiuous, posii ve d decre sig d p >. For p, he series is hrmoic, h is i diverges For p > d p we hve:, p > l lim, < p < Th is, his improper iegrl coverges if p > d diverges if < p < For p, he series ecomes + + + For p <, we hve lim p, so he series diverges y he covergece es. Hece, p-series coverges oly whe p >. Emple: Tes ech of he followig series for covergece.. e Soluio:.. So p > d he series coverges.. We hve coverges, ecuse i is geomeric series wih r <. e e diverges ecuse i is p-series wih p < Hece e diverges. p d p im d p p p

Noro Uiversiy Ifiie Series. COMPARISON TEST coverges. Direc Compriso Tes Suppose cfor ll N for some N. If c coverges, he lso Le d for ll N for some N. If d diverges, he lso diverges. Emple: Tes he seri es for covergece. + Soluio: We hve + > > for. The < <. Sice coverges, + i implies h coverges. + Emple: Tes for covergece he followig series..! Limi Compriso Tes Suppose > d > for ll sufficiely lrge d h lim L where L is fiie d posiive( < L < ). The d eiher oh coverge or oh diverge. Emple: Tes he series for covergece. 5 Soluio: We see h is coverge series for i is he geomeric series wih r <. Moreover lim 5 5 Hece is coverge oo. 5 The zero-ifiiy limi compriso es Suppose > d > for ll sufficie lrge. If lim d coverges, he coverges If lim d diverges, he diverges. 5. THE RATIO TEST AND THE ROOT TEST Theorem: Give he series w ih >, suppose h lim + L 5