INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x)

Similar documents
TOPIC 5: INTEGRATION

CONTINUITY AND DIFFERENTIABILITY

Instructions for Section 1

Chapter 16. 1) is a particular point on the graph of the function. 1. y, where x y 1

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals

Section 3: Antiderivatives of Formulas

CBSE 2015 FOREIGN EXAMINATION

CIVL 8/ D Boundary Value Problems - Rectangular Elements 1/7

Lecture 11 Waves in Periodic Potentials Today: Questions you should be able to address after today s lecture:

Ch 1.2: Solutions of Some Differential Equations

FSA. CmSc 365 Theory of Computation. Finite State Automata and Regular Expressions (Chapter 2, Section 2.3) ALPHABET operations: U, concatenation, *

Mathematics. Mathematics 3. hsn.uk.net. Higher HSN23000

Limits Indeterminate Forms and L Hospital s Rule

CONIC SECTIONS. MODULE-IV Co-ordinate Geometry OBJECTIVES. Conic Sections

SAFE HANDS & IIT-ian's PACE EDT-15 (JEE) SOLUTIONS

Fourier Transforms and the Wave Equation. Key Mathematics: More Fourier transform theory, especially as applied to solving the wave equation.

The Derivative of the Natural Logarithmic Function. Derivative of the Natural Exponential Function. Let u be a differentiable function of x.

MASTER CLASS PROGRAM UNIT 4 SPECIALIST MATHEMATICS SEMESTER TWO 2014 WEEK 11 WRITTEN EXAMINATION 1 SOLUTIONS

10. The Discrete-Time Fourier Transform (DTFT)

Multi-Section Coupled Line Couplers

MATHEMATICS PAPER IIB COORDINATE GEOMETRY AND CALCULUS. Note: This question paper consists of three sections A, B and C.

For more important questions visit :

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata

The Matrix Exponential

Solution: APPM 1360 Final (150 pts) Spring (60 pts total) The following parts are not related, justify your answers:

ASSERTION AND REASON

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths.

The Matrix Exponential

PH427/PH527: Periodic systems Spring Overview of the PH427 website (syllabus, assignments etc.) 2. Coupled oscillations.

, between the vertical lines x a and x b. Given a demand curve, having price as a function of quantity, p f (x) at height k is the curve f ( x,

SOLVED EXAMPLES. be the foci of an ellipse with eccentricity e. For any point P on the ellipse, prove that. tan

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero.

The graph of y = x (or y = ) consists of two branches, As x 0, y + ; as x 0, y +. x = 0 is the

Answers & Solutions. for MHT CET-2018 Paper-I (Mathematics) Instruction for Candidates

Note If the candidate believes that e x = 0 solves to x = 0 or gives an extra solution of x = 0, then withhold the final accuracy mark.

Objective Mathematics

MAXIMA-MINIMA EXERCISE - 01 CHECK YOUR GRASP

Functions and Graphs 1. (a) (b) (c) (f) (e) (d) 2. (a) (b) (c) (d)

PROOF OF FIRST STANDARD FORM OF NONELEMENTARY FUNCTIONS

u r du = ur+1 r + 1 du = ln u + C u sin u du = cos u + C cos u du = sin u + C sec u tan u du = sec u + C e u du = e u + C

Basic Polyhedral theory

EEO 401 Digital Signal Processing Prof. Mark Fowler

Thus, because if either [G : H] or [H : K] is infinite, then [G : K] is infinite, then [G : K] = [G : H][H : K] for all infinite cases.

cycle that does not cross any edges (including its own), then it has at least

1997 AP Calculus AB: Section I, Part A


Chapter 6 Techniques of Integration

Combinatorial Networks Week 1, March 11-12

Elliptical motion, gravity, etc

10. Limits involving infinity

Calculus II Solutions review final problems

Section 11.6: Directional Derivatives and the Gradient Vector

Engineering 323 Beautiful HW #13 Page 1 of 6 Brown Problem 5-12

Minimum Spanning Trees

Derangements and Applications

6.1 Integration by Parts and Present Value. Copyright Cengage Learning. All rights reserved.

MATHEMATICS PAPER IB COORDINATE GEOMETRY(2D &3D) AND CALCULUS. Note: This question paper consists of three sections A,B and C.

MATH1013 Tutorial 12. Indefinite Integrals

Integration by Parts

The Z transform techniques

SOLVED EXAMPLES. Ex.1 If f(x) = , then. is equal to- Ex.5. f(x) equals - (A) 2 (B) 1/2 (C) 0 (D) 1 (A) 1 (B) 2. (D) Does not exist = [2(1 h)+1]= 3

Last time: introduced our first computational model the DFA.

UNIT # 08 (PART - I)

MSLC Math 151 WI09 Exam 2 Review Solutions

MATHEMATICS Class 12 FOR JEE MAIN & ADVANCED. Indefinite Integration. Exhaustive Theory. Formula Sheet Problems

u x v x dx u x v x v x u x dx d u x v x u x v x dx u x v x dx Integration by Parts Formula

This Week. Computer Graphics. Introduction. Introduction. Graphics Maths by Example. Graphics Maths by Example

ME 522 PRINCIPLES OF ROBOTICS. FIRST MIDTERM EXAMINATION April 19, M. Kemal Özgören

4 x 4, and. where x is Town Square

Propositional Logic. Combinatorial Problem Solving (CPS) Albert Oliveras Enric Rodríguez-Carbonell. May 17, 2018

Supplementary Materials

Calculus II (MAC )

MATH 319, WEEK 15: The Fundamental Matrix, Non-Homogeneous Systems of Differential Equations

Formulae For. Standard Formulae Of Integrals: x dx k, n 1. log. a dx a k. cosec x.cot xdx cosec. e dx e k. sec. ax dx ax k. 1 1 a x.

Linear-Phase FIR Transfer Functions. Functions. Functions. Functions. Functions. Functions. Let

Calculus concepts derivatives

Exam 1. It is important that you clearly show your work and mark the final answer clearly, closed book, closed notes, no calculator.

Continuous Random Variables: Basics

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA.

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018

Lecture 4. Conic section

1 Minimum Cut Problem

Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers Roy D. Yates and David J.

Garnir Polynomial and their Properties

BSc Engineering Sciences A. Y. 2017/18 Written exam of the course Mathematical Analysis 2 August 30, x n, ) n 2

1973 AP Calculus AB: Section I

QUESTIONS BEGIN HERE!

CS 6353 Compiler Construction, Homework #1. 1. Write regular expressions for the following informally described languages:

Where k is either given or determined from the data and c is an arbitrary constant.

Fundamental Theorem of Calculus

COLLECTION OF SUPPLEMENTARY PROBLEMS CALCULUS II

COHORT MBA. Exponential function. MATH review (part2) by Lucian Mitroiu. The LOG and EXP functions. Properties: e e. lim.

Strongly Connected Components

INDEFINITE INTEGR ATION

Chapter 1. Chapter 10. Chapter 2. Chapter 11. Chapter 3. Chapter 12. Chapter 4. Chapter 13. Chapter 5. Chapter 14. Chapter 6. Chapter 7.

Single Correct Type. cos z + k, then the value of k equals. dx = 2 dz. (a) 1 (b) 0 (c)1 (d) 2 (code-v2t3paq10) l (c) ( l ) x.

MATH 1080 Test 2-SOLUTIONS Spring

Differential Equations

PHA 5127 Answers Homework 2 Fall 2001

Unit 5. Integration techniques

Transcription:

Chptr 7 INTEGRALS 7. Ovrviw 7.. Lt d d F () f (). Thn, w writ f ( ) d F () + C. Ths intgrls r clld indfinit intgrls or gnrl intgrls, C is clld constnt of intgrtion. All ths intgrls diffr y constnt. 7.. If two functions diffr y constnt, thy hv th sm drivtiv. 7.. Gomtriclly, th sttmnt f ( ) d F () + C y (sy) rprsnts fmily of curvs. Th diffrnt vlus of C corrspond to diffrnt mmrs of this fmily nd ths mmrs cn otind y shifting ny on of th curvs prlll to itslf. Furthr, th tngnts to th curvs t th points of intrsction of lin with th curvs r prlll. 7.. Som proprtis of indfinit intgrls (i) (ii) (iii) Th procss of diffrntition nd intgrtion r invrs of ch othr, d i.., f ( ) d f ( ) d nd f '( ) d f ( ) + C, whr C is ny ritrry constnt. Two indfinit intgrls with th sm drivtiv ld to th sm fmily of curvs nd so thy r quivlnt. So if f nd g r two functions such tht d d d f ( ) d g( ) d d, thn f ( ) d nd g ( ) d r quivlnt. Th intgrl of th sum of two functions quls th sum of th intgrls of th functions i.., ( f ( ) + g( ) ) d f ( ) d + g ( ) d.

MATHEMATICS (iv) (v) A constnt fctor my writtn ithr for or ftr th intgrl sign, i.., f( ) d f ( ) d, whr is constnt. Proprtis (iii) nd (iv) cn gnrlisd to finit numr of functions f, f,..., f n nd th rl numrs, k, k,..., k n giving ( kf ( ) + kf ( ) +... +, kf n n( )) d k f( ) d + k f ( ) d +... + kn fn( ) d 7..5 Mthods of intgrtion Thr r som mthods or tchniqus for finding th intgrl whr w cn not dirctly slct th ntidrivtiv of function f y rducing thm into stndrd forms. Som of ths mthods r sd on. Intgrtion y sustitution. Intgrtion using prtil frctions. Intgrtion y prts. 7..6 Dfinit intgrl Th dfinit intgrl is dnotd y f ( ) d, whr is th lowr limit of th intgrl nd is th uppr limit of th intgrl. Th dfinit intgrl is vlutd in th following two wys: (i) Th dfinit intgrl s th limit of th sum (ii) f ( ) d F() F(), if F is n ntidrivtiv of f (). 7..7 Th dfinit intgrl s th limit of th sum Th dfinit intgrl f ( ) d is th r oundd y th curv y f (), th ordints, nd th -is nd givn y f ( ) d ( ) lim f( ) + f ( + h) +... f ( + ( n ) h) n n

INTEGRALS 5 or f ( ) d lim h f( ) + f ( + h) +... + f ( + ( n ) h), h whr h n s n. 7..8 Fundmntl Thorm of Clculus (i) Ar function : Th function A () dnots th r function nd is givn y A () f ( ) d. (ii) First Fundmntl Thorm of intgrl Clculus Lt f continuous function on th closd intrvl [, ] nd lt A () th r function. Thn A () f () for ll [, ]. (iii) Scond Fundmntl Thorm of Intgrl Clculus Lt f continuous function dfind on th closd intrvl [, ] nd F n ntidrivtiv of f. f ( ) d F( ) [ ] F() F(). 7..9 Som proprtis of Dfinit Intgrls P : f ( ) d f () t dt P : f ( ) d f ( ) d, in prticulr, f ( ) d P : f ( ) d f ( ) d + f ( ) d c c

6 MATHEMATICS P : f ( ) d f ( + ) d P : f ( ) d f ( ) d P 5 : f ( ) d f ( ) d + f ( ) d P 6 : f ( ) d f ( ) d,if f ( ) f ( ),, if f ( ) f ( ). P 7 : (i) f ( ) d f ( ) d, if f is n vn function i.., f ( ) f () (ii) f ( ) d, if f is n odd function i.., f ( ) f () 7. Solvd Empls Short Answr (S.A.) Empl Intgrt + c w.r.t. Solution + c d ( ) d d+ c d 5 9c + + + C. 5

INTEGRALS 7 Empl Evlut c Solution Lt v + c, thn dv c d d Thrfor, d + c c dv v log c C c. Empl Vrify th following using th concpt of intgrtion s n ntidrivtiv. d log C Solution d log C d +. Thus + log + + C d + Empl Evlut d,. Solution Lt + d I d d + sin + I,

8 MATHEMATICS d whr I. Put t d t dt. Thrfor I dt t + C C Hnc I sin C. Empl 5 Evlut d ( α)( β ), β > α Solution Put α t. Thn nd d tdt. Now t t t I t tdt ( β α t ) ( β α t ) dt k dt t, whr k t sin C sin C k + α β α +. Empl 6 Evlut tn 8 sc d Solution I tn 8 sc d 8 tn sc sc d ( ) 8 ( + ) tn tn sc d

INTEGRALS 9 8 tn sc d+ tn sc d 9 tn tn + + C. 9 Empl 7 Find d + + Solution Put t. Thn d dt. Now I d t dt + + t + t+ t A B Considr + t + t+ t+ t+ Compring cofficint, w gt A, B. Thn I dt dt t+ t+ log t+ log t+ log + + C + d Empl 8 Find sin + 5cos Solution Dividing numrtor nd dnomintor y cos, w hv I sc d tn 5

5 MATHEMATICS Put tn t so tht sc d dt. Thn dt dt I t + 5 5 t + t tn + C 5 5 tn tn + C 5. Empl 9 Evlut 7 5 d s limit of sums. Solution Hr,, nd h +, i., nh nd f () 7 5. n Now, w hv ( 7 5) d lim h f ( ) + f ( + h) + f ( + h) +... + f ( + ( n ) h) Not tht h f ( ) 7 5 f ( + h) 7 + 7h 5 + 7h f ( + (n ) h) 7 (n ) h. Thrfor, ( ) ( ) ( ) 7 5 d lim h + (7 h ) + ( h ) +... + (7 n h ). h ( ) lim h 7h + +... + n n h

INTEGRALS 5 h ( n ) n 7 ( )( ) h lim h 7 h.n lim nh nh h nh 7 7 9 6 9. Empl Evlut cot tn 7 7 7 + tn d Solution W hv I cot tn 7 7 7 + tn d...() 7 tn d y (P 7 7 ) cot + tn cot cot 7 ( ) d d + tn 7 7...() Adding () nd (), w gt 7 7 tn + cot I 7 7 d tn + cot d which givs I.

5 MATHEMATICS Empl Find 8 d + Solution W hv I 8 d +...() 8 ( ) d y (P ) I 8 + d () Adding () nd (), w gt Hnc I 8 I d 8 6 Empl Find Solution W hv + sin d I + sin ( sin + cos ) d d ( sin + cos ) d

INTEGRALS 5 ( cos + sin ) I. Empl Find tn d. Solution I tn d d d + tn. tn d + tn + log + + C. 6 6 Empl Find + d Solution W hv I d d Put t, thn dt d. I t + Thrfor, ( ) dt t 9 9 t log t t 9 C 9 ( ) ( ) + 9 + log ( ) + ( ) + 9 + C.

5 MATHEMATICS Long Answr (L.A.) Empl 5 Evlut d. + Solution Lt t. Thn t t A B + + t + t ( t+ ) ( t ) t+ t So t A (t ) + B (t + ) Compring cofficints, w gt A, B. So + + + Thrfor, d d d + + + tn + log + C 6 + Empl6 Evlut d 9 Solution W hv I d 9 d d 9 9 I + I.

INTEGRALS 55 Now Put I 9 t 9 so tht d dt. Thrfor I dt t log t C log 9 C + Agin, d I 9. Put u so tht d du. Thn du u I u log C 6 u + log + C. Thus I I + I + log 9 log + C +. Empl 7 Show tht sin log ( ) + sin + cos Solution W hv I sin d sin + cos

56 MATHEMATICS sin d sin cos (y P) + I cos d sin + cos Thus, w gt I d cos sc d log sc tn + log sc tn log sc tn + + log ( + ) log( ) + log ( ) log + log ( + ) log +. Hnc I ( ) Empl 8 Find ( tn ) d

INTEGRALS 57 Solution I ( tn ) d. Intgrting y prts, w hv I ( tn ) tn. d +.tn + d I, whr I + tn d Now I + tn + d tn d tn + d I ( ( ) ) tn I Hr I tn d ( tn ) + d ( log ) + log. Thus I log

58 MATHEMATICS Thrfor, I log + log 6 log 6 +. Empl 9 Evlut f ( ) d, whr f () + + +., if < Solution W cn rdfin f s f ( ) +, if <, if < (y P ) Thrfor, f ( ) d ( ) d + ( + ) d + d + + + + + + 5 + 5 + 9 9. Ojctiv Typ Qustions Choos th corrct nswr from th givn four options in ch of th Empls from to. Empl ( cos sin ) dis qul to (A) cos + C (B) sin + C (C) cos + C (D) sin + C

INTEGRALS 59 ' Solution (A) is th corrct nswr sinc f ( ) + f ( ) d f ( ) + C. Hr f () cos, f () sin. d Empl is qul to sin cos (A) tn + cot + C (C) tn cot + C (B) (tn + cot) + C (D) (tn cot) + C Solution (C) is th corrct nswr, sinc d I sin cos ( sin + cos ) sin cos d sc d + cosc d tn cot + C Empl If 5 + 5 d + log + 5 + C, thn (A) (C) 7, (B) 8 8 7, (D) 8 8 7, 8 8 7, 8 8 Solution (C) is th corrct nswr, sinc diffrntiting oth sids, w hv 5 + 5 ( 5 ) + + 5, giving 5 ( + 5 ) + ( 5 ). Compring cofficints on oth 7 sids, w gt + nd 5 5 5. This vrifis,. 8 8

6 MATHEMATICS + c Empl f ( ) d + c is qul to (B) f ( + c) (A) f ( c) d d (C) f ( ) d (D) f ( ) d Solution (B) is th corrct nswr, sinc y putting t + c, w gt I f ( c+ t) dt f ( + c) d. Empl If f nd g r continuous functions in [, ] stisfying f () f ( ) c c nd g () + g ( ), thn f ( ). g( ) d is qul to (A) (B) f ( ) d (C) f ( ) d (D) f ( ) d Solution B is th corrct nswr. Sinc I f ( ). g( ) d ( ) f ( ) g( ) d f ( ) g( ) d f ( ) d f ( ). g( ) d f ( ) d I

INTEGRALS 6 or I f ( ) d. Empl 5 If + 9t y dt nd d y d y, thn is qul to (A) (B) 6 (C) 9 (D) Solution (C) is th corrct nswr, sinc dt + 9t d dy + 9y y which givs 8y d y d + 9y. dy d 9y. Empl 6 + + d is qul to + + (A) log (B) log (C) log (D) log Solution (B) is th corrct nswr, sinc I + + d + + + + d + + + + + + ( + ) d [odd function + vn function] + d d + ( + ) log + log.

6 MATHEMATICS Empl 7 If t dt, thn + t ( + t) t dt is qul to (A) + (B) + (C) (D) + + Solution (B) is th corrct nswr, sinc I t + t dt t t + + t ( + t) dt (givn) Thrfor, t +. ( + t) Empl 8 cos d is qul to (A) 8 (B) (C) (D) Solution (A) is th corrct nswr, sinc I cos d cos d cos d + cos d + cos d 8. Fill in th lnks in ch of th Empls 9 to. Empl 9 sin cos 6 8 d.

INTEGRALS 6 Solution 7 tn 7 + C Empl f ( ) d if f is n function. Solution Odd. Empl f ( ) d f ( ) d, if f ( ). Solution f (). n sin d Empl n sin + cos n. Solution. 7. EXERCISE Short Answr (S.A.) Vrify th following :. d log ( + ) + C + +. d log + + C + Evlut th following:. ( + ) d. + 6log log 5log log d

6 MATHEMATICS 5. 7. ( + cos) d 6. + sin tn sc d 8. d + cos sin + cos d + sin 9. + sind. d (Hint : Put + z). +. d (Hint : Put z ). + + d d dt. 5. 6 9 t t 6. d 7. + 9 5 + d 8. d 9. d put t. d. sin d ( ). ( cos5 + cos ) d. cos 6 6 sin + cos d sin cos

INTEGRALS 65. d 5. cos cos d cos 6. d (Hint : Put sc θ) Evlut th following s limit of sums: 7. ( + ) d 8. d Evlut th following: 9. d. + tn d tn + m. d ( ). ( ) d +. sin cos d. d ( + ) (Hint: lt sinθ) Long Answr (L.A.) 5. d 6. d ( )( ) 7. sin 8. + d ( )( + )( )

66 MATHEMATICS 9. + + + tn d. sin d + (Hint: Put tn θ). + cos 5. ( cos ) cos d. tn d (Hint: Put tn t ). d ( cos + sin ) (Hint: Divid Numrtor nd Dnomintor y cos ) 5. log (+ d ) 6. log sin d 7. log (sin + cos d ) Ojctiv Typ Qustions Choos th corrct option from givn four options in ch of th Erciss from 8 to 6. 8. cos cosθ d is qul to cos cosθ (A) (sin + cosθ) + C (C) (sin + cosθ) + C (B) (sin cosθ) + C (D) (sin cosθ) + C

INTEGRALS 67 9. sin d sin is qul to (A) sin ( ) log sin( ) sin( ) sin( ) + C (B) cosc ( ) log sin( ) + C (C) cosc ( ) log sin( ) sin( ) sin( ) + C (D) sin ( ) log sin( ) + C 5. tn d is qul to (A) ( + ) tn + C (B) tn + C (C) tn + C (D) ( + ) tn + C 5. d is qul to + (A) C + + (B) C + + (C) ( ) + + C (D) ( ) + + C 5. 9 ( + ) 6 d is qul to (A) + 5 5 + C (B) + 5 5 + C (C) ( + ) 5 + C (D) 5 + + C

68 MATHEMATICS 5. If d ( log + + )( + ) + tn + log + + C, thn 5 (A), 5 (C), 5 (B), 5 (D), 5 5. is qul to + (A) (C) + + log + C (B) log+ + C (D) + log + C + log+ + C 55. + sin d is qul to + cos (A) log + cos + C (B) log + sin + C (C) tn + C (D).tn + C 56. If d ( ) C, thn (A), (B), (C), (D),

INTEGRALS 69 57. d is qul to +cos (A) (B) (C) (D) 58. sind is qul to (A) (B) ( + ) (C) (D) ( ) 59. 6. cos sin dis qul to. + d ( + ). Fill in th lnks in ch of th following Ercis 6 to 6. 6. If d, thn. + 8 sin 6. d. + cos 6. Th vlu of sin cos d is.