Symplectic maps. James D. Meiss. March 4, 2008

Similar documents
Symmetries. x = x + y k 2π sin(2πx), y = y k. 2π sin(2πx t). (3)

Hamiltonian Dynamics

ON THE BREAK-UP OF INVARIANT TORI WITH THREE FREQUENCIES

Introduction to Applied Nonlinear Dynamical Systems and Chaos

Hamiltonian Chaos and the standard map

Area-PReserving Dynamics

Aubry Mather Theory from a Topological Viewpoint

Theory of Adiabatic Invariants A SOCRATES Lecture Course at the Physics Department, University of Marburg, Germany, February 2004

In Arnold s Mathematical Methods of Classical Mechanics (1), it

A Glance at the Standard Map

Chaotic transport through the solar system

The Transition to Chaos

Physics 106b: Lecture 7 25 January, 2018

April 13, We now extend the structure of the horseshoe to more general kinds of invariant. x (v) λ n v.

Tesi di Laurea Magistrale in Matematica presentata da. Claudia Dennetta. Symplectic Geometry. Il Relatore. Prof. Massimiliano Pontecorvo

SHADOWING ORBITS FOR TRANSITION CHAINS OF INVARIANT TORI ALTERNATING WITH BIRKHOFF ZONES OF INSTABILITY

AMADEU DELSHAMS AND RAFAEL RAMíREZ-ROS

Eva Miranda. UPC-Barcelona and BGSMath. XXV International Fall Workshop on Geometry and Physics Madrid

= 0. = q i., q i = E

8.1 Bifurcations of Equilibria

ANALYTICAL MECHANICS. LOUIS N. HAND and JANET D. FINCH CAMBRIDGE UNIVERSITY PRESS

GEOMETRIC QUANTIZATION

Bibliography. [1] S.B. Angenent, The periodic orbits of an area preserving twist map, Comm. Math. Phys. 115 (1988), no. 3,

WHAT IS A CHAOTIC ATTRACTOR?

Pentahedral Volume, Chaos, and Quantum Gravity

Hamiltonian Chaos. Niraj Srivastava, Charles Kaufman, and Gerhard Müller. Department of Physics, University of Rhode Island, Kingston, RI

Maslov indices and monodromy

Resonance Zones and Lobe Volumes for Volume-Preserving Maps

Maps. A map is a dynamical system with discrete time. Such dynamical systems are defined by iterating a transformation φ of points x.

B5.6 Nonlinear Systems

Newtonian dynamics. 7.1 Hamiltonian flows

H. R. Dullin a) Department of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU, United Kingdom

An introduction to Birkhoff normal form

AVERAGING AND RECONSTRUCTION IN HAMILTONIAN SYSTEMS

PHY411 Lecture notes Part 5

A FRANKS LEMMA FOR CONVEX PLANAR BILLIARDS

Lecture 8 Phase Space, Part 2. 1 Surfaces of section. MATH-GA Mechanics

Hamiltonian flow in phase space and Liouville s theorem (Lecture 5)

Multiperiodic dynamics overview and some recent results

Some explicit formulas of Lyapunov exponents for 3D quadratic mappings

Hamiltonian Lecture notes Part 3

On the Birkhoff Conjecture for Convex Billiards. Alfonso Sorrentino

Chaos in Hamiltonian systems

Lecture 11 : Overview

Some Collision solutions of the rectilinear periodically forced Kepler problem

Nonlinear Single-Particle Dynamics in High Energy Accelerators

Symplectic Geometry versus Riemannian Geometry

A strong form of Arnold diffusion for two and a half degrees of freedom

The Breakdown of KAM Trajectories

Hamiltonian aspects of fluid dynamics

SYMPLECTIC MANIFOLDS, GEOMETRIC QUANTIZATION, AND UNITARY REPRESENTATIONS OF LIE GROUPS. 1. Introduction

Vered Rom-Kedar a) The Department of Applied Mathematics and Computer Science, The Weizmann Institute of Science, P.O. Box 26, Rehovot 76100, Israel

PERIODIC ORBITS FOR HAMILTONIAN SYSTEMS

One Dimensional Dynamical Systems

Solutions for B8b (Nonlinear Systems) Fake Past Exam (TT 10)

FOURTH ORDER CONSERVATIVE TWIST SYSTEMS: SIMPLE CLOSED CHARACTERISTICS

On Periodic points of area preserving torus homeomorphisms

The topology of symplectic four-manifolds

Internal transport barriers in some Hamiltonian systems modeling the magnetic lines dynamics in tokamak

Solutions to the Hamilton-Jacobi equation as Lagrangian submanifolds

1 Introduction Definitons Markov... 2

27. Topological classification of complex linear foliations

Chaotic motion. Phys 420/580 Lecture 10

M3-4-5 A16 Notes for Geometric Mechanics: Oct Nov 2011

Topological Bifurcations of Knotted Tori in Quasiperiodically Driven Oscillators

THE POINCARÉ RECURRENCE PROBLEM OF INVISCID INCOMPRESSIBLE FLUIDS

Normal form for the non linear Schrödinger equation

(Non-)Existence of periodic orbits in dynamical systems

Robustly transitive diffeomorphisms

ON JUSTIFICATION OF GIBBS DISTRIBUTION

INVARIANT TORI IN THE LUNAR PROBLEM. Kenneth R. Meyer, Jesús F. Palacián, and Patricia Yanguas. Dedicated to Jaume Llibre on his 60th birthday

Perturbation theory, KAM theory and Celestial Mechanics 7. KAM theory

Smooth Structure. lies on the boundary, then it is determined up to the identifications it 1 2

Chaotic motion. Phys 750 Lecture 9

Dynamical Systems and Ergodic Theory PhD Exam Spring Topics: Topological Dynamics Definitions and basic results about the following for maps and

Twisted Poisson manifolds and their almost symplectically complete isotropic realizations

Symmetry Properties of Confined Convective States

Singular Perturbation Theory for Homoclinic Orbits in a Class of Near-Integrable Hamiltonian Systems

Hamiltonian Systems and Chaos Overview Liz Lane-Harvard, Melissa Swager

Coexistence of Zero and Nonzero Lyapunov Exponents

SPLITTING OF SEPARATRICES FOR (FAST) QUASIPERIODIC FORCING. splitting, which now seems to be the main cause of the stochastic behavior in

Abstracts. Furstenberg The Dynamics of Some Arithmetically Generated Sequences

Oscillatory Motion. Simple pendulum: linear Hooke s Law restoring force for small angular deviations. small angle approximation. Oscillatory solution

Symplectic integration. Yichao Jing

Oscillatory Motion. Simple pendulum: linear Hooke s Law restoring force for small angular deviations. Oscillatory solution

Chaos Indicators. C. Froeschlé, U. Parlitz, E. Lega, M. Guzzo, R. Barrio, P.M. Cincotta, C.M. Giordano, C. Skokos, T. Manos, Z. Sándor, N.

A Cantor set of tori with monodromy near a focus focus singularity

Computational Geometric Uncertainty Propagation for Hamiltonian Systems on a Lie Group

MATHER THEORY, WEAK KAM, AND VISCOSITY SOLUTIONS OF HAMILTON-JACOBI PDE S

ENERGY SURFACES AND HIERARCHIES OF BIFURCATIONS. Instabilities in the forced truncated NLS.

Greene s residue criterion for the breakup of invariant tori of volume-preserving maps

BILLIARDS THAT SHARE A TRIANGULAR CAUSTIC

A forced spring-pendulum

Introduction Hyperbolic systems Beyond hyperbolicity Counter-examples. Physical measures. Marcelo Viana. IMPA - Rio de Janeiro

arxiv: v1 [math.ds] 13 Mar 2012

Lectures on Dynamical Systems. Anatoly Neishtadt

Symbolic dynamics and chaos in plane Couette flow

Global theory of one-frequency Schrödinger operators

HS - Hamiltonian Systems

Smooth Ergodic Theory and Nonuniformly Hyperbolic Dynamics

Transcription:

Symplectic maps James D. Meiss March 4, 2008 First used mathematically by Hermann Weyl, the term symplectic arises from a Greek word that means twining or plaiting together. This is apt, as symplectic systems always involve a pair of n-dimensional variables, the configuration q, and momentum p, which are intertwined by the symplectic two form ω = dp dq. (1) This antisymmetric, bilinear form acts on a pair of tangent vectors and computes the sum of the areas of the parallelograms formed by projecting the vectors onto the planes defined by each canonical pair (q i,p i ),i=1,... n, giving n ω(v, w) = (v pi w qi v qi w pi ). i=1 A diffeomorphism f : X X on a 2n-dimensional manifold X with coordinates z =(q, p) is symplectic if it preserves the symplectic form, i.e., if f ω = ω (Arnold, 1989; McDuff and Salamon, 1995). If we write z = (q,p )=f(q, p), the symplectic condition becomes ( ) 0 I Df t JDf = J, where J =. (2) I 0 Here Df ij = f i / z j is the Jacobian matrix of f, J is the Poisson matrix, and I is the n n identity matrix. Equivalently, Stokes theorem can be used to show that the loop action, A[γ] = pdq, is preserved by f for any γ contractible loop γ on X. If f preserves the loop action for all loops, even those that are not contractible, then it is exact symplectic. When n = 1, the symplectic condition is equivalent to det(df) = 1, so that the map is area and orientation preserving. Examples include the 2

much studied standard map and the area preserving Hénon quadratic map f(q, p) =(p+a q 2, q) (Meiss, 1992). When n>1, the symplectic condition implies volume and orientation preservation, but as we will see, is stronger than this. A generalization of the standard map to higher dimensions is the map q = q + p V (q) p = p V (q), (3) where q T n is an angle, p R n is its conjugate momentum, and V (q) is a periodic potential. This map is exact symplectic for any V. Beginning in 1972, Claude Froeshlé studied case n = 2 and V (q) =a cos q 1 + b cos q 2 + c cos(q 1 + q 2 ). Similarly, the natural generalization of the Hénon map is the quadratic symplectic map whose normal form has been given by (Moser, 1994). Applications. Symplectic maps arise from Hamiltonian dynamics, because these preserve the loop action. Thus, for example, the time t map of any Hamiltonian flow is symplectic, as is a Poincaré return map defined on a cross section. It is often easier to study the Poincaré map instead of the flow because the dimension is reduced. Even though explicit construction of the map is typically impossible, approximation methods often suffice. For example, the time T map of a periodically forced system H(q, p, t) = H(q, p, t + T ), such as a pendulum with an oscillating support, is symplectic. An extreme example is H = 1 2 p2 k cos(q) δ(t) where δ is the periodic Dirac delta function; the corresponding map is the standard map. As Birkhoff showed, an ideal billiard (a free particle moving inside a rigid, convex table) is naturally written as a symplectic map. The canonical coordinates are the position and the tangential momentum at a collision point. Symplectic maps also arise naturally in systems where the forces are localized in time or space. For example a circular particle accelerator or storage ring has a sequence of accelerating and focusing elements that can be modeled by a composition of symplectic maps, providing the damping effects of radiation can be neglected (Forest, 1998). Area-preserving maps also arise in the study of the motion of Lagrangian tracers in incompressible fluids or of particles tightly gyrating around magnetic field lines. In particular, when one component of the field is particularly strong, such as in the plasma device called a tokamak, the transverse dynamics reduces to an area preserving map. 3

Autonomous canonical transformations are symplectic maps. For example, if F (q, q ) is a generating function for a canonical transformation then it generates a symplectic map. In particular, the Froeshlé map (3) is generated by F (q, q )= 1 2 (q q) 2 V (q). An algorithm that respects the symplectic nature of Hamiltonian dynamics is called a symplectic integrator. A first order symplectic algorithm with time step t for the Hamiltonian H(q, p) is generated by F (q, p )= qp + th(q, p ) where df = q dp + pdq, giving the map q = q + t H p (q, p ), p = p t H q (q, p ). (4) Note that the map is implicit since H is evaluated at p. However, for the case that H = K(p) +V (q) this becomes a leap-frog Euler scheme, an example of a splitting method. Symplectic versions of many standard algorithms such as Runge-Kutta can be obtained (Marsden et al., 1996). While there is still some controversy on the utility of symplectic methods versus methods that, for example, conserve energy and other invariants or have variable time-stepping, they are superior for stability properties since they respect the spectral properties of the symplectic group. The symplectic group. The stability of an orbit {...z t,z t+1,...} where z t+1 = f(z t ) is governed by the Jacobian matrix of f evaluated along the orbit, M = t Df(z t). When f is symplectic, M obeys (2), M t JM = J. The set of all such 2n 2n matrices form the symplectic group Sp(2n). This group is an n(2n + 1)-dimensional Lie group, whose Lie Algebra is the set of Hamiltonian matrices matrices of the form JS where S is symmetric. Thus every near-identity symplectic matrix can be obtained as the exponential of a Hamiltonian matrix and corresponds to the time t-map of a linear Hamiltonian flow. There are symplectic matrices, however, that are not the exponentials of Hamiltonian matrices, for example ( ) 1 1. 0 1 As a manifold, the symplectic group has a single nontrivial loop (its fundamental group is the integers). The winding number of a loop in the symplectic group is called the Maslov index (McDuff and Salamon, 1995); it is especially important for semi-classical quantization. 4

If M is a symplectic matrix and λ is an eigenvalue of M with multiplicity k, then so is λ 1. Moreover det(m) = 1, so M is volume and orientation preserving. A consequence of this spectral theorem is that orbits of a symplectic map cannot be asymptotically stable. There are four basic stability types for symplectic maps: an eigenvalue pair (λ, λ 1 ) is hyperbolic, if λ is real and larger than one; hyperbolic with reflection, if λ is real and less than minus one; elliptic, if λ = e 2πiω has magnitude one. part of a Krein quartet if λ is complex and has magnitude different from one, for then there is a quartet of related eigenvalues (λ, λ 1, λ, λ 1 ). Thus a periodic orbit can be linearly stable only when all of its eigenvalue pairs are elliptic. For this case the linearized motion corresponds to rotation with n rotation numbers ω i. Symplectic geometry. Every symplectic map is volume and orientation preserving, but the group Symp(X) of symplectic diffeomorphisms on X is significantly smaller than that of the volume-preserving ones. This was first shown in 1985 by Gromov in his celebrated nonsqueezing (or symplectic camel) theorem. Let B(r) be the closed ball of radius r in R 2n and C 1 (R) ={(q, p) :q 2 1 +p 2 1 R 2 } be a cylinder of radius R whose circular cross section is a symplectic plane. Since the volume of C 1 is infinite, it is easy to construct a volume-preserving map that takes B(r) into C 1 (R) regardless of their radii. What Gromov showed is that it is impossible to do this symplectically whenever r > R. This is one example of a symplectic capacity, and is leading to a theory of symplectic topology (McDuff and Salamon, 1995). Another focus of this theory is to characterize the number of fixed points of a symplectic map, i.e., to generalize the classical Poincaré-Birkhoff theorem for area preserving maps on an annulus. Arnold conjectured in the 1960s that any Hamiltonian diffeomorphism on a compact manifold X must have at least as many fixed points as a function on X must have critical points. A Hamiltonian map is a symplectic map that can be written as a composition of maps of the form (4). Conley and Zender proved this in 1985 for the case that X is the 2n-torus: f must have at least 2n + 1 fixed points (at least 2 2n if they are all nondegenerate) (Golé, 2001). 5

Dynamics. In general the dynamics of a symplectic map consists of a complicated mixture of regular and chaotic motion (Meiss, 1992). Numerical studies indicate that the chaotic orbits have positive Lyapunov exponents and fill sets of positive measure that are fractal in nature. Regular orbits include periodic and quasiperiodic orbits. The latter densely cover invariant tori whose dimensions range from 1 to n. Near elliptic periodic orbits the phase space is foliated by a positive-measure cantor set of n-dimensional invariant tori. There are chaotic regions in the resonant gaps between the tori, but the chaos becomes exponentially slow and exponentially small close to the periodic orbit. Some of these observations, but not all, can be proved. The simplest case is that of an integrable symplectic map, which can be written in Birkhoff normal form: f(θ, J) =(θ + S(J),J). Here (θ, J) are angle-action coordinates (each n dimensional) and Ω = S is the rotation vector. Orbits for this system lie on invariant tori; thus the structure is identical to that for integrable Hamiltonian systems. The Birkhoff normal form is also an asymptotically valid description of the dynamics in the neighborhood of a nonresonant elliptic fixed point, one for which m Ω(0) 0 for any integer vector m. However, the series for the normal form is not generally convergent. Nevertheless, KAM theory implies that tori with Diophantine rotation vectors do exist near enough to the elliptic point providing the map is more than C 3 and that the twist, det DΩ(0), is nonzero. Each of these tori is also a Lagrangian submanifold (an n-dimensional surface on which the restriction of the symplectic form (1) vanishes). The relative measure of these tori approaches one at the fixed point. Nevertheless, the stability of a generic, elliptic fixed point is an open question. Arnold showed by example in 1963 that lower-dimensional tori can have unstable manifolds that intersect the stable manifolds of nearby tori and thereby allow nearby trajectories to drift around the n-dimensional tori; this phenomenon is called Arnold diffusion (Lochak, 1993). When the map is analytic, the intersection angles become exponentially small in the neighborhood of the fixed point, and the existence of connections becomes a problem in perturbation theory beyond all orders. Aubry Mather theory gives a nonperturbative generalization of KAM theory for the case of monotone twist maps when n = 1. These are symplectic diffeomorphisms on the cylinder S R (or on the annulus) such that q / p c>0. For this case Aubry Mather theory implies that there exist orbits for all rotation numbers ω. When ω is irrational these orbits lie on a 6

Lipschitz graph, p = P (q), and their iterates are ordered on the graph just as the iterates of the uniform rotation by ω. They are either dense on an invariant circle or an invariant cantor set (called a cantorus when discovered by Percival). These orbits are found using a Lagrangian variational principle, and turn out be global minima of the action. Aubry Mather theory can be partially generalized to higher dimensions, for example to the case of rational rotation vectors, where the orbit is periodic (Golé, 2001). Moreover, Mather (1991) has shown that action-minimizing invariant measures exist for each rotation vector, though they are not necessarily dynamically minimal. The existence of invariant cantor sets with any incommensurate rotation vector can also be proven for symplectic maps near an anti-integrable limit (MacKay and Meiss, 1992). Finally, converse KAM theory, which gives parameter domains where there are no invariant circles for the standard map, implies that, for example, the Froeshlé map has no Lagrangian invariant tori outside a closed ball in the space of its parameters (a, b, c) (MacKay et al., 1989). See also Aubry Mather theory; Cat maps; Chaotic Dynamics; Conservation laws and constants of motion; Ergodic theory; Fermi Map; Hamiltonian dynamics; Hénon map; Horseshoes and hyperbolicity; Lyapunov exponents; Maps; Measures; Melnikov method; Phase space; Standard Map. References Arnold, V. I. (1989). Mathematical Methods of Classical Mechanics, volume 60 of Graduate Texts in Mathematics. Springer Verlag, New York. Forest, E. (1998). Beam Dynamics : A New Attitude and Framework (The Physics and Technology of Particle and Photon Beams). Harwood Academic, Amsterdam. Golé, C. (2001). Symplectic Twist Maps: Global Variational Techniques, volume 18 of Advanced Series in Nonlinear Dynamics. World Scientific. Lochak, P. (1993). Hamiltonian perturbation theory: Periodic orbits, resonances and intermittancy. Nonlinearity, 6:885 904. MacKay, R. S. and Meiss, J. D. (1992). Cantori for symplectic maps near the anti integrable limit. Nonlinearity, 5:149 160. 7

MacKay, R. S., Meiss, J. D., and Stark, J. (1989). Converse KAM theory for symplectic twist maps. Nonlinearity, 2:555 570. Marsden, J. E., Patrick, G. W., and Shadwick, W. F., editors (1996). Integration Algorithms and Classical Mechanics, volume 10 of Fields Inst. Communications. American Math. Soc., Providence. Mather, J. N. (1991). Action minimizing invariant measures for positive definite Lagrangian systems. Mathematische Zeitschrift, 207:169 207. McDuff, D. and Salamon, D. (1995). Introduction to Symplectic Topology. Oxford Mathematical Monographs. Clarendon Press, Oxford. Meiss, J. D. (1992). Symplectic maps, variational principles, and transport. Reviews of Modern Physics, 64(3):795 848. Moser, J. K. (1994). On quadratic symplectic mappings. Mathematische Zeitschrift, 216:417 430. 8