Energy of a Tossed Ball. Evaluation Copy. Motion Detector. Figure 1. volleyball, basketball, or other similar

Similar documents
Cart on a Ramp. Evaluation Copy. Figure 1. Vernier Dynamics Track. Motion Detector Bracket

Work and Energy Experiments

Evaluation copy. Momentum: A Crash Lesson. computer OBJECTIVES MATERIALS

Spring Thing: Newton s Second Law. Evaluation copy

Exploring the Poles (Without Leaving Your Classroom!)

Evaluation copy. Ground Temperature Measurements. computer OBJECTIVES MATERIALS PRE-LAB QUESTIONS

Distance From the Sun

Computer 3. Lifetime Measurement

Evaluation copy. First-Class Levers. computer OBJECTIVES MATERIALS

Energy Storage and Transfer: Gravitational Energy. Evaluation copy. Vernier Photogate (Extension only)

The Magnetic Field of a Permanent Magnet. Evaluation copy

Work and Energy. This sum can be determined graphically as the area under the plot of force vs. distance. 1

Photosynthesis and Respiration. Evaluation copy

Center of Mass. Evaluation copy

Newton s Third Law. Evaluation copy

Determining the Concentration of a Solution: Beer s Law. Evaluation copy. Figure 1

Heat of Combustion: Magnesium. This equation can be obtained by combining equations (1), (2), and (3): (1) MgO(s) + 2 HCl(aq) MgCl 2 (aq) + H 2 O(l)

Evaluation copy. The Molar Mass of a Volatile Liquid. computer OBJECTIVES MATERIALS

Evaluation copy 10A. Impulse and Momentum. Experiment INTRODUCTION OBJECTIVES MATERIALS PRE-LAB QUESTIONS

Evaluation copy. Acids and Bases. computer OBJECTIVES MATERIALS

Rate Law Determination of the Crystal Violet Reaction. Evaluation copy

PRELIMINARY ACTIVITY FOR. Seasons and Angle of Insolation

Work and Energy. computer masses (200 g and 500 g) If the force is constant and parallel to the object s path, work can be calculated using

Chemical Equilibrium: Finding a Constant, Kc

The Decomposition of Hydrogen Peroxide. Evaluation copy

Static and Kinetic Friction

Measuring Momentum: Using distance moved after impact to estimate velocity

Evaluation copy. Transpiration. Computer OBJECTIVES

Acid-Base Titration. Evaluation copy

Acid Rain. Evaluation copy

Diffusion through Membranes. Evaluation copy. dialysis tubing, 2.5 cm 12 cm

Ashes to Ashes: Using evaporation rate to identify an unknown liquid

Work and Energy. W F s)

Standardizing a Solution of Sodium Hydroxide. Evaluation copy

Transpiration. Evaluation copy

Establishing a Table of Reduction Potentials: Micro-Voltaic Cells. Evaluation copy

Picket Fence Free Fall

Falling Objects. Experiment OBJECTIVES MATERIALS

Weather Stations. Evaluation copy. 9. Post live weather data on the school s web site for students, faculty and community.

Air Resistance. Experiment OBJECTIVES MATERIALS

Static and Kinetic Friction

Prelab for Friction Lab

Date Course Name Instructor Name Student(s) Name. Atwood s Machine

Static and Kinetic Friction

Air Resistance. Experiment OBJECTIVES MATERIALS

Back and Forth Motion

Falling Objects. LabQuest OBJECTIVES MATERIALS PROCEDURE

THE CONSERVATION OF ENERGY - PENDULUM -

PHY221 Lab 2 - Experiencing Acceleration: Motion with constant acceleration; Logger Pro fits to displacement-time graphs

Impulse and Momentum

Chapter 4. Forces and the Laws of Motion. CH 4 Forces and the Laws of Motion.notebook. April 09, Changes in Motion. A. Force

Newton s Second Law. Sample

Static and Kinetic Friction

Motion with Changing Speed

Partner s Name: EXPERIMENT MOTION PLOTS & FREE FALL ACCELERATION

Simple Harmonic Motion

Work and Energy. Objectives. Equipment. Theory. In this lab you will

Simple Harmonic Motion

Spectrometer User s Guide

Name: Lab Partner: Section:

Conservation of Energy

Laboratory Exercise. Newton s Second Law

LAB 6 - GRAVITATIONAL AND PASSIVE FORCES

α m ! m or v T v T v T α m mass

PHY 221 Lab 3 Vectors and Motion in 1 and 2 Dimensions

One Dimensional Collisions 1 Fall 2018

PHYSICS LAB. Air Resistance. Date: GRADE: PHYSICS DEPARTMENT JAMES MADISON UNIVERSITY

PRELAB IMPULSE AND MOMENTUM

PHY 111L Activity 2 Introduction to Kinematics

Graphing Your Motion. Name Period Group

Understanding 1D Motion

Capacitors. The charge Q on a capacitor s plate is proportional to the potential difference V across the Q = C V (1)

ENERGYand WORK (PART I and II) 9-MAC

Simple Harmonic Motion Investigating a Mass Oscillating on a Spring

Motion with Constant Acceleration

PHY 221 Lab 7 Work and Energy

Ch 11 ENERGY and its CONSERVATION. work causes a change in the energy of a system KE (an increase or decrease in KE) ket.

EXPERIMENT 1: ONE-DIMENSIONAL KINEMATICS

Ocean Optics Red Tide UV-VIS Spectrometer (Order Code: SPRT-UV-VIS)

PHY 221 Lab 9 Work and Energy

Lab 1 Uniform Motion - Graphing and Analyzing Motion

The Spring-Mass Oscillator

July 19 - Work and Energy 1. Name Date Partners

PHY 123 Lab 4 The Atwood Machine

PICKET FENCE FREE FALL

Lab 4: Gauss Gun Conservation of Energy

LAB 6: WORK AND ENERGY

CONSERVATIVE FORCE SYSTEMS

Conservation of Momentum Using PASCO TM Carts and Track to Study Collisions in One Dimension

LAB 6: WORK AND ENERGY

Physics 103 Newton s 2 nd Law On Atwood s Machine with Computer Based Data Collection

Static and Kinetic Friction

LAB 4: FORCE AND MOTION

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department. Experiment 03: Work and Energy

Lab 4 Motion in One-Dimension Part 2: Position, Velocity and Acceleration Graphically and Statistically (pre-requisite Lab3)

Chapter 8: Energy. P = W t. KE = 1 2 mv2. PE = mgh. Text: Chapter 8 (skip sections 8.7 to 8.9) Think and Explain: 1-4 Think and Solve: 1-3

Hang Time Activity Background:

Physics 1020 Experiment 5. Momentum

LAB 3: WORK AND ENERGY

Lifetime Measurement

Transcription:

Energy of a Tossed Ball Computer 16 When a juggler tosses a bean ball straight upward, the ball slows down until it reaches the top of its path and then speeds up on its way back down. In terms of energy, when the ball is released it has kinetic energy, KE. As it rises during its free-fall phase it slows down, loses kinetic energy, and gains gravitational potential energy, PE. As it starts down, still in free fall, the stored gravitational potential energy is converted back into kinetic energy as the object falls. If there is no work done by frictional forces, the total energy remains constant. In this experiment, we will see if this is true for the toss of a ball. We will study these energy changes using a Motion Detector. OBJECTIVES Figure 1 Motion Detector Measure the change in the kinetic and potential energies as a ball moves in free fall. See how the total energy of the ball changes during free fall. MATERIALS computer Vernier computer interface Logger Pro Vernier Motion Detector PRELIMINARY QUESTIONS volleyball, basketball, or other similar fairly heavy ball wire basket Evaluation Copy For each question, consider the free-fall portion of the motion of a ball tossed straight upward, starting just as the ball is released to just before it is caught. Assume that there is very little air resistance. 1. What form or forms of energy does the ball have while momentarily at rest at the top of the path? Physics with Vernier Vernier Software & Technology 16-1

Computer 16 2. What form or forms of energy does the ball have while in motion near the bottom of its path? 3. Sketch a graph of velocity vs. time for the ball. 4. Sketch a graph of kinetic energy vs. time for the ball. 5. Sketch a graph of potential energy vs. time for the ball. 6. If there are no frictional forces acting on the ball, how is the change in the ball s potential energy related to the change in kinetic energy? PROCEDURE 1. Measure and record the mass of the ball you plan to use in this experiment. 2. Connect the Motion Detector to a digital (DIG) port of the interface. Set the Motion Detector sensitivity switch to Ball/Walk. Place the Motion Detector on the floor and protect it by placing a wire basket over it. 3. Open the file 16 Energy of a Tossed Ball from the Physics with Vernier folder. 4. In this step, you will toss the ball straight upward above the Motion Detector and let it fall back toward the Motion Detector. This step may require some practice. a. Hold the ball directly above and about 0.25 m from the Motion Detector. Use two hands. b. Have your partner click to start data collection. c. Wait one second, then toss the ball straight upward. Move your hands out of the way after you release it. A toss of 0.5 to 1.0 m above the Motion Detector works well. You will get the best results if you catch and hold the ball when it is about 0.5 m above the Motion Detector. d. Verify that the position vs. time graph corresponding to the free-fall motion is parabolic in shape, without spikes or flat regions, before you continue. If necessary, repeat data collection until you get a good graph. When you have good data on the screen, proceed to the Analysis section. DATA TABLE Mass of the ball (kg) Position Time (s) Height (m) Velocity (m/s) PE KE TE After release Between release and top Top of path Between top and catch Before catch 16-2 Physics with Vernier

ANALYSIS Energy of a Tossed Ball 1. Click Examine,, and move the mouse across the position or velocity graphs of the motion of the ball to answer these questions. a. Identify the portion of each graph where the ball had just left your hands and was in free fall. Determine the height and velocity of the ball at this time. Enter your values in your data table. b. Identify the point on each graph where the ball was at the top of its path. Determine the time, height, and velocity of the ball at this point. Enter your values in your data table. c. Find a time where the ball was moving downward, just before it was caught. Measure and record the height and velocity of the ball at that time. d. Choose two more points approximately halfway in time between the three recorded so far. e. For each of the five points in your data table, calculate the Potential Energy (PE), Kinetic Energy (KE), and Total Energy (TE). Use the position of the Motion Detector as the zero of your gravitational potential energy. 2. How well does this part of the experiment show conservation of energy? Explain. 3. Calculate the ball's kinetic and potential energy. 1 a. Logger Pro can graph the ball s kinetic energy according to mv 2 ball s mass. To do this, adjust the mass parameter. b. Logger Pro can also calculate the ball s potential energy according to PE = mgh. Here, m is the mass of the ball, g is the free-fall acceleration, and h is the vertical height of the ball measured from the position of the Motion Detector. The same mass parameter will be used to find PE. c. Go to the next page of Logger Pro by clicking Next Page,. KE 2 if you supply the 4. Inspect your kinetic energy vs. time graph for the toss of the ball. Explain its shape and print or sketch the graph. 5. Inspect your potential energy vs. time graph for the free-fall flight of the ball. Explain its shape and print or sketch the graph. 6. Compare your energy graph predictions (from the Preliminary Questions) to the real data for the ball toss. 7. Logger Pro will also calculate Total Energy (TE), the sum of KE and PE, for plotting. Record the graph by printing or sketching. 8. What do you conclude from this graph about the total energy of the ball as it moved up and down in free fall? Does the total energy remain constant? Should the total energy remain constant? Why? If it does not, what sources of extra energy are there or where could the missing energy have gone? Physics with Vernier 16-3

Computer 16 EXTENSIONS 1. What would change in this experiment if you used a very light ball, like a beach ball? 2. What would happen to your experimental results if you entered the wrong mass for the ball in this experiment? 3. Try a similar experiment using a bouncing ball. Mount the Motion Detector high and pointed downward so it can follow the ball through several bounces. 16-4 Physics with Vernier

Vernier Lab Safety Instructions Disclaimer THIS IS AN EVALUATION COPY OF THE VERNIER STUDENT LAB. This copy does not include: Safety information Essential instructor background information Directions for preparing solutions Important tips for successfully doing these labs The complete Physics with Vernier lab manual includes 35 labs and essential teacher information. The full lab book is available for purchase at: www.vernier.com/pwv Vernier Software & Technology 13979 S.W. Millikan Way Beaverton, OR 97005-2886 Toll Free (888) 837-6437 (503) 277-2299 FAX (503) 277-2440 info@vernier.com www.vernier.com