(x/2) 2 +1 Add them together and throw in a constant c.

Similar documents
Odd Answers: Chapter Eight Contemporary Calculus 1 { ( 3+2 } = lim { 1. { 2. arctan(a) 2. arctan(3) } = 2( π 2 ) 2. arctan(3)

Exact Equations. M(x,y) + N(x,y) y = 0, M(x,y) dx + N(x,y) dy = 0. M(x,y) + N(x,y) y = 0

90 Chapter 5 Logarithmic, Exponential, and Other Transcendental Functions. Name Class. (a) (b) ln x (c) (a) (b) (c) 1 x. y e (a) 0 (b) y.

Section: I. u 4 du. (9x + 1) + C, 3

Math 1000 Final Exam Review Solutions. (x + 3)(x 2) = lim. = lim x 2 = 3 2 = 5. (x + 1) 1 x( x ) = lim. = lim. f f(1 + h) f(1) (1) = lim

Math 205, Winter 2018, Assignment 3

Math 181, Exam 2, Fall 2014 Problem 1 Solution. sin 3 (x) cos(x) dx.

Integration Techniques for the AB exam

16 Inverse Trigonometric Functions

MATH 101 Midterm Examination Spring 2009

First Midterm Examination

Section 7.4 #1, 5, 6, 8, 12, 13, 44, 53; Section 7.5 #7, 10, 11, 20, 22; Section 7.7 #1, 4, 10, 15, 22, 44

AP Calculus AB/BC ilearnmath.net 21. Find the solution(s) to the equation log x =0.

Integration Techniques for the AB exam

Differential Calculus

1969 AP Calculus BC: Section I

VII. Techniques of Integration

4.4 Using partial fractions

Chapter 7: Techniques of Integration

Chapter 2 Section 3. Partial Derivatives

Math 2300 Calculus II University of Colorado

EXACT EQUATIONS AND INTEGRATING FACTORS

Math 112 Section 10 Lecture notes, 1/7/04

Math 106: Review for Exam II - SOLUTIONS

Mat104 Fall 2002, Improper Integrals From Old Exams

Math 102 Spring 2008: Solutions: HW #3 Instructor: Fei Xu

VANDERBILT UNIVERSITY MAT 155B, FALL 12 SOLUTIONS TO THE PRACTICE FINAL.

2 (x 2 + a 2 ) x 2. is easy. Do this first.

In this note we will evaluate the limits of some indeterminate forms using L Hôpital s Rule. Indeterminate Forms and 0 0. f(x)

Integration by Parts

du u C sec( u) tan u du secu C e du e C a u a a Trigonometric Functions: Basic Integration du ln u u Helpful to Know:

= 1 2 x (x 1) + 1 {x} (1 {x}). [t] dt = 1 x (x 1) + O (1), [t] dt = 1 2 x2 + O (x), (where the error is not now zero when x is an integer.

APPM 1360 Final Exam Spring 2016

Lesson 50 Integration by Parts

MATH1120 Calculus II Solution to Supplementary Exercises on Improper Integrals Alex Fok November 2, 2013

Part I: Multiple Choice Mark the correct answer on the bubble sheet provided. n=1. a) None b) 1 c) 2 d) 3 e) 1, 2 f) 1, 3 g) 2, 3 h) 1, 2, 3

2016 FAMAT Convention Mu Integration 1 = 80 0 = 80. dx 1 + x 2 = arctan x] k2

Math 142, Final Exam, Fall 2006, Solutions

AB 1: Find lim. x a.

Chapter 7, Continued

Math 162: Calculus IIA

TOTAL NAME DATE PERIOD AP CALCULUS AB UNIT 4 ADVANCED DIFFERENTIATION TECHNIQUES DATE TOPIC ASSIGNMENT /6 10/8 10/9 10/10 X X X X 10/11 10/12

1993 AP Calculus AB: Section I

Calculus I Sample Final exam

Fall 2013 Hour Exam 2 11/08/13 Time Limit: 50 Minutes

1. Evaluate the integrals. a. (9 pts) x e x/2 dx. Solution: Using integration by parts, let u = x du = dx and dv = e x/2 dx v = 2e x/2.

TRIG REVIEW NOTES. Co-terminal Angles: Angles that end at the same spot. (sines, cosines, and tangents will equal)

1985 AP Calculus AB: Section I

MA 114 Worksheet #01: Integration by parts

Lesson 53 Integration by Parts

McKinney High School AP Calculus Summer Packet

Mathematics 132 Calculus for Physical and Life Sciences 2 Exam 3 Review Sheet April 15, 2008

CALCULUS: Graphical,Numerical,Algebraic by Finney,Demana,Watts and Kennedy Chapter 3: Derivatives 3.3: Derivative of a function pg.

Homework Problem Answers

2 nd ORDER O.D.E.s SUBSTITUTIONS

MATH section 3.4 Curve Sketching Page 1 of 29

Review (2) Calculus II (201-nyb-05/05,06) Winter 2019

du u C sec( u) tan u du secu C e du e C a u a a Basic Integration Trigonometric Functions: du ln u u Helpful to Know: Inverse Trigonometric

Questions. x 2 e x dx. Use Part 1 of the Fundamental Theorem of Calculus to find the derivative of the functions g(x) = x cost2 dt.

AP Calculus BC Chapter 6 - AP Exam Problems solutions

Midterm Exam #1. (y 2, y) (y + 2, y) (1, 1)

1993 AP Calculus AB: Section I

The answers below are not comprehensive and are meant to indicate the correct way to solve the problem. sin

Prelim 2 Math Please show your reasoning and all your work. This is a 90 minute exam. Calculators are not needed or permitted. Good luck!

Math Calculus II Homework # Due Date Solutions

Techniques of Integration

Calculus II Practice Test Problems for Chapter 7 Page 1 of 6

It s Your Turn Problems I. Functions, Graphs, and Limits 1. Here s the graph of the function f on the interval [ 4,4]

Worksheet 7, Math 10560

Inverse Relations. 5 are inverses because their input and output are switched. For instance: f x x. x 5. f 4

Problem Set 9 Solutions

Math 106: Review for Exam II - SOLUTIONS

Lecture 4: Integrals and applications

6.1 Antiderivatives and Slope Fields Calculus

Lecture 5: Integrals and Applications

Answer Key 1973 BC 1969 BC 24. A 14. A 24. C 25. A 26. C 27. C 28. D 29. C 30. D 31. C 13. C 12. D 12. E 3. A 32. B 27. E 34. C 14. D 25. B 26.

Chapter 8: Techniques of Integration

AP Calculus BC : The Fundamental Theorem of Calculus

MATH QUIZ 3 1/2. sin 1 xdx. π/2. cos 2 (x)dx. x 3 4x 10 x 2 x 6 dx.

dx. Ans: y = tan x + x2 + 5x + C

Mathematics 1052, Calculus II Exam 1, April 3rd, 2010

Calculus 1 (AP, Honors, Academic) Summer Assignment 2018

AP Calculus AB/BC ilearnmath.net

Answers to Even-Numbered Exercises

Josh Engwer (TTU) Area Between Curves 22 January / 66

11.4. Differentiating ProductsandQuotients. Introduction. Prerequisites. Learning Outcomes

Review of elements of Calculus (functions in one variable)

Math 122 Fall Unit Test 1 Review Problems Set A

x 2 y = 1 2. Problem 2. Compute the Taylor series (at the base point 0) for the function 1 (1 x) 3.

Chapter 2 Overview: Anti-Derivatives. As noted in the introduction, Calculus is essentially comprised of four operations.

Section Inverse Trigonometry. In this section, we will define inverse since, cosine and tangent functions. x is NOT one-to-one.

Summer Review Packet for Students Entering AP Calculus BC. Complex Fractions

Questions. x 2 e x dx. Use Part 1 of the Fundamental Theorem of Calculus to find the derivative of the functions g(x) = x cost2 dt.

Multivariate Calculus Solution 1

Math 226 Calculus Spring 2016 Practice Exam 1. (1) (10 Points) Let the differentiable function y = f(x) have inverse function x = f 1 (y).

A1. Let r > 0 be constant. In this problem you will evaluate the following integral in two different ways: r r 2 x 2 dx

3 Applications of Derivatives Instantaneous Rates of Change Optimization Related Rates... 13

AP Calculus AB Summer Review Packet

Unit 3. Integration. 3A. Differentials, indefinite integration. y x. c) Method 1 (slow way) Substitute: u = 8 + 9x, du = 9dx.

Transcription:

Calculus, 5/6, Solutions Solutions Chapter Solutions to Eercises... (a) 6 + + c (b) 5 + c (c) This integral can be evaluated using the substitution u +. Alternatively, we can first use polynomial division to get + + + + +, and then integrate this to find / + +ln + + c. (d) /8( +) 6 + c (substitution u +) (e) /cos( ) + c (substitution u ) (f) /9( +7) 9 + c (substitution u +7) (g) /ep( )+c (substitution u ) (h) /8sin 8 ()+c (substitution u sin()) (i) ln cos() + c (substitution u cos()) (j) Note that + +.Integrateseparately + + + + d /ln( +) (subst. u +), + d / d /arctan(/) (/) + Add them together and throw in a constant c. (k) sin()+cos()+c (subst. u /). (integration by parts with u, v cos) (l) ( +) +) + c (integration by parts with u, v ( +) ) (m) / cos() +/sin() +c (integration by parts with u, v sin()) (n) e e + c (integration by parts with u, v e ) (o) e e e + c (use integration by parts twice: first time with u and v e,secondtimewithu and v e ) (p) We use the substitution tanu. Then d du cos u arctan d arctan(tan u) cos u du and hence u cos u du. Integrating this by parts gives u du u tan u tan u du u tan u +ln cos u + c. cos u

Calculus, 5/6, Solutions Now note that cos u sin u+cos u cos u tan u + and hence cosu / p +tan u.thus arctan d u tan u+ln cos u +c arctan()+ln / p + +c. (q) ln() + c (integration by parts with u ln and v ) p (r) arccos() + c (first substitution cos(u), then integration by parts). (a) R d R ln u (b) R du ln u + c ln ln + c d R u du ln u + ( ) u u + c ln + + c (c) R sec 5 tan d R u du 5 u5 + c 5 sec5 + c (d) R e +e d R +u du arctan(u)+c arctan(e )+c (e) R 5sin 7 d R 5( u ) du 5u +5u u 5 + 5 7 u7 + c 5cos()+5cos () cos 5 ()+ 5 7 cos7 ()+c (f) R p + d R 8u (u ) du u 7 56 5 u5 + 8 u + c 7/ 56 ( +) ( 5 +)5/ + 8( +)/ + c (g) R p d R cos u du u + sin u cos u + c arcsin()+ p + c (The integral of cos u in this computation can be found using integration by R parts: cos u du R R cos u cos u du cosusin u ( sin u)sinu du cosusin u + R R ( cos u)du cosusin u + u cos u du, hence R cos u du u +sinucos u + c.) Solutions to Eercises... (a) R e 5 d lim T! e 5e T 5 5 (b) undefined, because R pd lim [p ] T T! eist (c) R d lim + [arctan T! ]T / e (sin (d) R e cos d lim T!. If s 6 then T lim s T s+ d lim T! T! s + p and the limit lim T does not T! cos ) T s + which converges if and only if s <. If s thenweendupwith lim T! ln(t ), which diverges. Thus, the integral eists for s< anddoesn t eist for s.

Calculus, 5/6, Solutions. We define b a from the right. (a) R (b) R f() d lim T!a b pd lim / T! T d lim ( ) ( ) / / 9/ T! T Solutions to Eercises... R R y d dy R. R / T 8 y dy f() d, whereinthelimitt approaches a R / sin( + y) d dy R / ( cos( /+y)+cos(y)) dy sin( /) + sin( /) + p Solutions to Eercises... RR ( + y) d dy R R +y ( + y) d dy R y +y + 5 y dy 7 6. RR ( y) d dy R 9 R py ( y) d dy R 9 9 9y +y y/ y 5/ dy 9 5. If you plot the points you get a square rotated by 5 degrees. So, I split the integral into two. The first has limits apple y apple and y apple apple +y and the second integral is apple y apple andy apple apple y. +y y y d dy y d dy + y d dy y y dy + y (y y )dy. Another split. First region is apple y apple andapple apple and the second is apple y apple andappleapple y. y y d dy y d dy + y d dy P 9 y dy + y y + y dy 8 5. The integral RR d dy is the volume under the surface z andabovethe region. This volume is the area of times the height, i.e. it s just the same as the area of the region. Limits of integration: apple y apple and y apple apple y +. y+ d dy ddy + y y (y )dy 9

Calculus, 5/6, Solutions Solutions to Eercises.5.. (a) (i) (ii) y ( + y )d dy y dy 7.5 y.5.5.5.5.5 (iii) new limits: apple apple and apple y apple (b) (i) y dy d (8 8 + )d 8 (ii) y.5.5 (iii) new limits: apple y apple andapple apple ( y)/ (c) (i) p y y y d dy y y dy

Calculus, 5/6, Solutions 5 (ii) y.5.5 (iii) new limits: apple apple and apple y apple. (a) It is di cult to integrate in the current order. Switching the order gives the new limits apple apple andapple y apple /. y 6y p + d dy / 6y p + dy d p + d (b) Again, it is worth switching on account of the integration. The new limits are / apple apple andapple y apple /. /y / cos( y)d dy / / / ( sin() sin( )) d cos( y)dy d cos(/) sin(/) + cos(/) cos() + sin(). If you draw the region, you will see that the region can be epressed more compactly as apple apple and/ apple y apple. / sin y dy d d 8

6 Calculus, 5/6, Solutions Solutions to Eercises.6.. y d dy y y dy 7. p y e y d dy Solutions to Eercises.7. ye y dy. Set u + y and v y.thentheregionin the (, y)-plane becomes the rectangle in the (u, v)-plane given by apple u apple 6andapple v apple. The Jacobian is @(,y) /( + ), which is always positive in the region of @(u,v) interest. Thus, the integral becomes @(, y) ( + y)( + ) d dy ( + y)( + ) du dv @(u, v) u du dv 6 u du dv which is now easy to integrate. You should get.. Set u y and v y/ p. Then the region in the (, y)-plane becomes the rectangle in the (u, v)-plane given by apple u apple andapplevapple p 5. The Jacobian is @(,y) p,whichisalwayspositiveintheregionofinterest. @(u,v) 7 y Thus @(, y) d dy du dv y y @(u, v) p 5 du dv, 7 uv which can now be easily integrated to give /7ln( p 5) ln().. Use polar coordinates. The integral becomes a (r cos( )) p r r d dr a r cos ( ) d dr a 5.. Use polar coordinates. We have that apple r apple, so apple r apple. The integral becomes / r cos( )r sin( ) p r r d dr / 5. The Jacobian of the change of variables is @(,y) @(r, ) ( + r cos( ))( + r sin( ))r dr d. r sin( )cos( ) d dr. r, andtheintegralbecomes