Numerical Methods of Electromagnetic Field Theory II (NFT II) Numerische Methoden der Elektromagnetischen Feldtheorie II (NFT II) /

Similar documents
Electromagnetic Field Theory I (NFT I) Numerische Methoden der. 7th Lecture / 7. Vorlesung Dr.-Ing. René Marklein

Wavelets for Computer Graphics. AK Computergrafik WS 2005/06. Markus Grabner

Fourier Sampling. Fourier Sampling. Bioengineering 280A Principles of Biomedical Imaging. Fall Quarter 2005 Linear Systems Lecture 3.

Klausur zur Vorlesung Vertiefung Theoretische Informatik Sommersemester 2016

! Circular Convolution. " Linear convolution with circular convolution. ! Discrete Fourier Transform. " Linear convolution through circular

Nachklausur zur Vorlesung Vertiefung Theoretische Informatik Wintersemester

D-optimally Lack-of-Fit-Test-efficient Designs and Related Simple Designs

EFIT SIMULATIONS FOR ULTRASONIC NDE

Biophysics of Macromolecules

Fall 2011, EE123 Digital Signal Processing

A simple method for solving the diophantine equation Y 2 = X 4 + ax 3 + bx 2 + cx + d

Polynomial transform based algorithms for computing two-dimensional generalized DFT, generalized DHT, and skew circular convolution

A Class of Interval-Newton-Operators. R. Krawczyk, Clausthal-Zellerfeld. Received March 26, 1984; revised July 17, Abstract -- Zusammenfassung

Power. Wintersemester 2016/17. Jerome Olsen

MA3232 Summary 5. d y1 dy1. MATLAB has a number of built-in functions for solving stiff systems of ODEs. There are ode15s, ode23s, ode23t, ode23tb.

Klausur zur Vorlesung Vertiefung Theoretische Informatik Sommersemester

Solid state physics. Lecture 2: X-ray diffraction. Prof. Dr. U. Pietsch

Algebra. Übungsblatt 8 (Lösungen) m = a i m i, m = i=1

1. Einleitung. 1.1 Organisatorisches. Ziel der Vorlesung: Einführung in die Methoden der Ökonometrie. Voraussetzungen: Deskriptive Statistik

Full-Potential Electronic Structure Method

The Mathematics of Minkowski Space-Time

BME I5000: Biomedical Imaging

Methoden moderner Röntgenphysik: Streuung und Abbildung

THE FOURIER TRANSFORM OF FUNCTIONS OF THE GREATEST COMMON DIVISOR. Wolfgang Schramm Schulgasse 62 / 11, A-1180 Vienna, AUSTRIA

Gauss s Law. The first Maxwell Equation A very useful computational technique This is important!

Seminar Pareigis Wess: WS 1996/97 Liinearkompakte algebraische Strukturen (Korrigierte Fassung v. 3.Sept. 2008)

Numerical Solution of the Generalised Poisson Equation on Parallel Computers

THEOREM AND METRIZABILITY

Counterexamples in the Work of Karl Weierstraß

International Steam Tables - Properties of Water and Steam based on

The Fastest Convolution in the West

Discrete Fourier Transform

The lift on a small sphere touching a plane in the presence of a simple shear flow

Observation and Control for Operator Semigroups

Solving Algebraic Computational Problems in Geodesy and Geoinformatics

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2012

INTRODUCTION TO THE DFS AND THE DFT

Keywords: Eddy current sensors, Force and stress measurement, and Monitoring of bridge structures.

EE6604 Personal & Mobile Communications. Week 15. OFDM on AWGN and ISI Channels

TOPOSES ARE SYMMETRIC MONOIDAL CLOSED CATEGORIES

Ordinals and Cardinals: Basic set-theoretic techniques in logic

Active Compensation of the Voltage Follower

h m h a + ρ c h c + ρ a + ρ m

Online Multi-Object Tracking with Dual Matching Attention Networks

Oliver Kullmann Computer Science Department Swansea University. MRes Seminar Swansea, November 17, 2008

de Gruyter Textbook Distributions Generalized Functions with Applications in Sobolev Spaces Bearbeitet von Pulin Kumar Bhattacharyya

Computational Acoustics of Noise Propagation in Fluids - Finite and Boundary Element Methods

Lecture 20: Discrete Fourier Transform and FFT

Schrödinger Equations and Diffusion Theory

3. Rational curves on quartics in $P^3$

Superlinear Parabolic Problems

The Quantum Mechanics Solver

ELEG 305: Digital Signal Processing

EE 435. Lecture 30. Data Converters. Spectral Performance

Quantum Mechanics of Molecular Structures

Computational Chemistry Workbook

Stability of Mass-Point Systems

Image Processing 1 (IP1) Bildverarbeitung 1

An Introduction to Kinetic Monte Carlo Simulations of Surface Reactions

Definability in fields Lecture 1: Undecidabile arithmetic, decidable geometry

Algebra. Übungsblatt 12 (Lösungen)

Digital Signal Processing. Midterm 2 Solutions

Definition. A signal is a sequence of numbers. sequence is also referred to as being in l 1 (Z), or just in l 1. A sequence {x(n)} satisfying

MAHALAKSHMI ENGINEERING COLLEGE-TRICHY

Fast Polynomials Multiplication Using FFT

CONVERGENT SEQUENCES IN SEQUENCE SPACES

Introduction to Wave Scattering, Localization and Mesoscopic Phenomena

Size Exclusion Chromatography

EE123 Digital Signal Processing

Review of Linear Systems Theory

.' : Topics in. Interval Analysis EDITED BY E. HANSEN OX+ORD AT THE CLARENDON PRESS

EDISP (NWL3) (English) Digital Signal Processing DFT Windowing, FFT. October 19, 2016

Open Field Cup Anemometry

Stochastic Analysis of Wind Turbine Power Curves. Edgar Anahua

SOME APPLICATIONS OF THE GAUSS-LUCAS THEOREM

Advances in Radio Science

VU Signal and Image Processing. Torsten Möller + Hrvoje Bogunović + Raphael Sahann

Elliptic Curves Spring 2013 Lecture #3 02/12/2013

3. Applications of the integral representation theorems

DSP Algorithm Original PowerPoint slides prepared by S. K. Mitra

Algebra. Übungsblatt 5 (Lösungen)

A RECURRENCE RELATION FOR BERNOULLI NUMBERS

Fiber Optics. Physics and Technology. Bearbeitet von Fedor Mitschke

Empirical Mean and Variance!

EE 225D LECTURE ON DIGITAL FILTERS. University of California Berkeley

Just solve this: macroscopic Maxwell s equations

Wave Phenomena Physics 15c

An O (n log n)-algorithm for Solving a Special Class of Linear Programs* w. Bein, Albuquerque, P. Brucker, Osnabrtick

Turbomachinery Flow Physics and Dynamic Performance

Modelling of tree height growth

Review: From problem to parallel algorithm

Module 3. Convolution. Aim

Electromagnetism. Christopher R Prior. ASTeC Intense Beams Group Rutherford Appleton Laboratory

Analysis II. Bearbeitet von Herbert Amann, Joachim Escher

EECE 301 Signals & Systems Prof. Mark Fowler

On Boundary Value Problems in Circle Packing

Discrete Fourier transform (DFT)

! Review: Discrete Fourier Transform (DFT) ! DFT Properties. " Duality. " Circular Shift. ! Circular Convolution. ! Fast Convolution Methods

Algebra. Übungsblatt 10 (Lösungen)

Seismic Wave Propagation and Scattering in the Heterogeneous Earth : Second Edition

Transcription:

umerical Methods of lectromagnetic Field Theory II (FT II) umerische Methoden der lektromagnetischen Feldtheorie II (FT II) / 7th Lecture / 7. Vorlesung Dr.-Ing. René Marklein marklein@uni-kassel.de http://www.tet.e-technik.uni-kassel.de http://www.uni-kassel.de/fb6/tet/marklein/index.html Universität Kassel Fachbereich lektrotechnik / Informatik (FB 6) Fachgebiet Theoretische lektrotechnik (FG TT) Wilhelmshöher Allee 7 Büro: Raum 23 / 25 D-342 Kassel University of Kassel Dept. lectrical ngineering / Computer Science (FB 6) lectromagnetic Field Theory (FG TT) Wilhelmshöher Allee 7 Office: Room 23 / 25 D-342 Kassel Dr. R. Marklein - FT II - SS 23

CG Method Conjugate Gradient Method References / KG-Methode Konjugierte Gradientenmethode Jonathan Richard Shewchuk: An Introduction to the Conjugate Gradient Method Without the Agonizing Pain, p., August 994. Dr. R. Marklein - FT II - SS 23 2 2

Penetrable Scatterer: Data quation and Lippmann-Schwinger quation 2-D TM Case/ Penetrable Streuer: Datengleichung und Lippmann-Schwinger Gleichung 2D-TM-Fall O r sc εε r, µ µ r n sc S sc = V sc ε ε ( r), µ µ r r z (, r ω) ( r, ω) z V sc r k G r r r r r sc 2 2 z (, ω) = (, ω) χ( ) (, )d r ' S z ω sc { z } = [ G][ χ ]{ z} [ G] π () j ka J ( ka)h ( k rm rn ) m n 2 Gmn = π () + j ka H ( ka) m = n 2 Dr. R. Marklein - FT II - SS 23 3 3

P Scatterer: Discretization of the Domain Integral quation Richmond Method / P-Streuer: Diskretisierung der Bereichsintegralgleichung Richmod-Methode x εε r, µ µ r S sc 2 O r r sc z (, r ω) εε ( r ), µµ, χ( r ) z r r ( r, ω) 2 x r r k G r r r r r sc 2 2 z (, ω) = (, ω) χ( ) (, )d ' S z ω sc sc { } [ ] { χ } = G = z z x y [ G] π () j ka J ( ka) H ( k rm rn ) m n n, m =, 2,, = x G 2 mn = π () + j ka H ( ka) m = n n, m =, 2,, = x 2 y y Dr. R. Marklein - FT II - SS 23 4 4

The umerical Solution of a Linear Matrix quation Requires the Storage of the Full Matrix in the Computer Main Memory. This is the Main Bottleneck in the Solution of a Large Set of Linear quations. / Die numerische Lösung einer linearen Matrixgleichung erfordert die Speicherung der vollen -Matrix im Hauptspeicher des Computers. Dies stellt den wesentlichsten Flaschenhals bei der numerischen Lösung von großen linearen Gleichungssystemen dar. CG-FFT Conjugate Gradient Fast Fourier Transform / KG-SFT Konjugierte Gradienten Schnelle Fourier-Transformation Dr. R. Marklein - FT II - SS 23 5 5

Two-Dimensional Convolution Integral / Zweidimensionales Faltungsintegral r k G r r r r r sc 2 2 z (, ω) = (, ω) χ( ) (, )d r ' S z ω sc 2 2 z (, r ω) = G( r r, ω) k χ( r ) ( r, )dr r ' S z ω = ( r, ω ) = J( r, ω ) G r ' S 2 ( r, ω ) = ( r r, ω ) J( r, ω )d r 2-D Convolution Integral in Cartesian Coordinates / 2D-Faltungsintegral in Kartesische Koordinaten ( x, y, ω) = G( x x, y y, ω)j( x, y, ω)dx dy x = y = -D Convolution Integral in Cartesian Coordinates / D-Faltungsintegral in Kartesischen Koordinaten ( x, ω) = Gx ( x, ω)j( x, ω)dx x = Dr. R. Marklein - FT II - SS 23 6 6

Infinite -D Convolution Integral in Cartesian Coordinates / Unendliches D-Faltungsintegral in Kartesischen Koordinaten G( x, ω) J e ( x, ω) ( x, ω) = Gx ( x, ω)j( x, ω)dx x = x x Finite -D Convolution Integral in Cartesian Coordinates / ndliches D-Faltungsintegral in Kartesischen Koordinaten G( x, ω) J e ( x, ω) x max ( x, ω) = Gx ( x, ω)j( x, ω)dx x = x min x x min x = x = max x Discrete Convolution / Diskrete Faltung G( x, ω ) J e ( x, ω ) = x G J m =,, 2,..., m m n n x Dr. R. Marklein - FT II - SS 23 7 7

Discrete Convolution / Diskrete Faltung = x G J m =,, 2,..., m m n n Discrete Convolution in Matrix Form / { } = x[ G] { J} Diskrete Faltung in Matrixform xample: = M = 4 / Beispiel: = M = 4 m = : m = : m = 2: m = 3: 4 = 3 m= m n n = x [ J J J J ] = xg [ J + G J + G J + G J ] = = 2= 2 2 3= 3 3 4 = 3 G m= m n n J = xg + G + G + G = x G J 2 2 3 3 [ J J J J ] = x[ G J + G J + G J + G J ] = xg + G + G + G = x 4 = 3 m= 2 m n = = 2= 2 3= 2 3 2 2 3 [ J J J J ] = xg [ J + GJ + G J + G J ] 4 = 3 G m= 3 m n n J 2 = 2 2 = 2 2= 2 2 3= 3 J n = xg + G + G + G = x G 2 2 2 3 [ J J J J ] = x[ G J + G J + G J + G J ] = xg + G + G + G 3 = 3 3 = 2 3 2= 2 3 3= 3 3 2 2 3 Dr. R. Marklein - FT II - SS 23 8 8

Discrete Convolution / Diskrete Faltung = x G J m =,, 2,..., m m n n xample: = M = 4 / Beispiel: = M = 4 Discrete Convolution in Matrix Form / Diskrete Faltung in Matrixform G J + G J + G J + G J = x G J + G J + G J + G J = x G J + G J + G J + G J = x G J + G J + G J + G J = x 2 2 2 2 2 2 3 2 2 3 2 G G G 2 G J G G G G 2 J G2 G G G3 J2 = 2 x G G G G J 2 3 = x [ G]{ J} { } Dr. R. Marklein - FT II - SS 23 9 9

Discrete Convolution in Matrix Form / Diskrete Faltung in Matrixform G G G 2 G J G G G G 2 J G2 G G G3 J2 = 2 x G G G G J 2 3 = x [ G]{ J} { } The Matrix [G] is a Matrix and is a General Toeplitz Matrix / Die Matrix [G] ist eine -Matrix und ist eine allgemeine Toeplitz-Matrix All Different lements of the Matrix [G] are given by the 2 ntries of the st Row and st Column / Alle unterschiedlichen lemente der Matrix [G] sind durch die 2 inträge der. Zeile und. Splate gegeben G,, G, G, G, G, G,, G 2 2 lements / 2 lemente Dr. R. Marklein - FT II - SS 23

Discrete Convolution in Matrix Form / Diskrete Faltung in Matrixform G G G G J 2 G G G G 2 J G2 G G G3 J2 = 2 x G G G G J 2 3 = x [ G]{ J} { } The Sequenz of the lements of the Matrix [G] are Periodic after lements / Die Sequenz der lemente der Matrix [G] sind periodisch nach lementen Gn = Gn n =,, 2,..., Then, the Discrete Convolution is a Circular Discrete Convolution of the Length 2 and the Matrix [G] is a Circular Matrix. Otherwise the Discrete Convolution is a Linear Discrete Convolution. / Dann ist die diskrete Faltung eine zirkulare diskrete Faltung der Länge 2 und die Matrix [G] ist eine zirkulierende Matrix. Anderenfalls ist die diskrete Faltung eine lineare diskrete Faltung. Dr. R. Marklein - FT II - SS 23

G G G 2 G J G G G G 2 J G2 G G G3 J2 = 2 x G G G G J 2 3 G = G n =,, 2,..., n n Periodic / Periodisch G G2 G G G G 2 G G G G2 G G G G 2 G2 G G G2 G G G3 = J x G2 G G J G G2 G G G 2 G 3 G 2 2 J 2 J 2 2 Dr. R. Marklein - FT II - SS 23 2 2

G G2 G G G G 2 G G G G2 G G G G 2 G2 G G G2 G G G3 = J x G2 G G J G G2 G G G 2 G 3 G 2 2 J 2 J J J J2 G G G 2 G G G2 G G G G G2 G G G 2 J G2 G G G3 G2 G G = x G2 G G G G 2 G 3 G G G2 G 2 2 Dr. R. Marklein - FT II - SS 23 Periodic / Periodisch 2 2 2 2 3 3

Discrete Convolution / Diskrete Faltung = x G J m =,, 2,..., m m n n Comment: very Linear Discrete Convolution of the Length can be formulated in a Circular Discrete Convolution of the Length 2 by xpanding the Sequence G to a Periodic Sequence of the Length 2. And the Sequence J will be Filled with Zeros up to a Length of 2 : Zero Padding / Anmerkung: Jede lineare diskrete Faltung der Länge kann in eine zirkulierende diskrete Faltung der Länge 2 gebracht werden. Dazu wird die Sequenz G in eine periodische Sequenz der Länge 2 umgewandelt. Und die Sequenz J wird mit ullen aufgefüllt: ullen-auffüllung { J} J J J2 J = 2 Original Sequence / Originalsequenz Zero Padding / ullen-auffüllung Dr. R. Marklein - FT II - SS 23 4 4

m m n n 2 ( ) = x G J m =,, 2,..., O The Fast Fourier Transform (FFT) is an fficient Way of Implementation the Discrete Fourier Transform (DFT) / Die schnelle Fourier-Transformation (SFT) ist ein effizienter Weg der Implementierung der diskreten Fourier-Transformation (DFT) k k = j2 π nk / G = G e n =,, 2,..., n j2 π nk / Gk = Gn e k =,, 2,..., is a Power of / p 2 = 2, p =,,2,3, ist eine Potenz von { G } = FFT { G} G = FFT G { } { } { } = x { G} { J} n =,, 2,..., FFT FFT FFT { } { G} { J} { },, 2,..., ( log ) = xfft FFT FFT n = O Dr. R. Marklein - FT II - SS 23 5 5

nd of 7th Lecture / nde der 7. Vorlesung Dr. R. Marklein - FT II - SS 23 6 6