Hydrodynamic solitons in polariton superfluids

Similar documents
Quantum fluid phenomena with Microcavity Polaritons. Alberto Bramati

Vortices and superfluidity

Supplementary material

Supporting Online Material for

Part3:Superfluidity: k Flow via obstacles, Persistent Currents & Quantised Vortices. Marzena Szymanska

All-optical control of the quantum flow of a polariton superfluid

Driven-dissipative polariton quantum fluids in and out of equilibrium

Quantised Vortices in an Exciton- Polariton Condensate

The meaning of superfluidity for polariton condensates

Polariton laser in micropillar cavities

Quantum fluids of light under synthetic gauge fields

Polariton Condensation

Quantum coherence in semiconductor nanostructures. Jacqueline Bloch

Non-equilibrium quantum many-body physics with optical systems

Dynamical Condensation of ExcitonPolaritons

Microcavity Exciton-Polariton

SUPPLEMENTARY INFORMATION

Spectroscopy of a non-equilibrium Tonks-Girardeau gas of strongly interacting photons

Superfluidity of a 2D Bose gas (arxiv: v1)

Numerical observation of Hawking radiation from acoustic black holes in atomic Bose-Einstein condensates

Non-equilibrium Bose-Einstein condensation phenomena in microcavity polariton systems

Electrically Driven Polariton Devices

Macroscopic coherence between quantum condensates

Non-equilibrium Bose-Einstein condensation phenomena in microcavity polariton systems

Single-mode Polariton Laser in a Designable Microcavity

arxiv: v1 [cond-mat.mes-hall] 10 May 2012

All-optical polariton transistor

From laser cooling to BEC First experiments of superfluid hydrodynamics

Quantised Vortices in an Exciton-Polariton Fluid

Enhanced coherence between condensates formed resonantly at different times.

Confining ultracold atoms on a ring in reduced dimensions

This is a repository copy of All-optical polariton transistor. White Rose Research Online URL for this paper:

When superfluids are a drag

Chapter 1 Quantum Fluids of Exciton-Polaritons and Ultracold Atoms

Cold atoms. 1: Bose-Einstein Condensation. Emil Lundh. April 13, Department of Physics Umeå University

SUPPLEMENTARY INFORMATION

Numerical observation of Hawking radiation from acoustic black holes in atomic Bose-Einstein condensates

Probing microcavity polariton superfluidity through resonant Rayleigh scattering

5. Gross-Pitaevskii theory

Quantum superpositions and correlations in coupled atomic-molecular BECs

Some theory of polariton condensation and dynamics

Pairing Phases of Polaritons

Influence of hyperfine interaction on optical orientation in self-assembled InAs/GaAs quantum dots

PAPER 84 QUANTUM FLUIDS

Entangled Photon Generation via Biexciton in a Thin Film

ROTONS AND STRIPES IN SPIN-ORBIT COUPLED BECs

Microcavity polaritons are composite bosons, which are partly

A Mixture of Bose and Fermi Superfluids. C. Salomon

arxiv: v2 [cond-mat.mtrl-sci] 24 May 2012

University of Warwick institutional repository:

Interference between quantum gases

Light-Matter Correlations in Polariton Condensates

arxiv: v3 [cond-mat.mtrl-sci] 3 Dec 2007

Observation of bright polariton solitons in a semiconductor microcavity. Abstract

Drag force and superfluidity in the supersolid striped phase of a spin-orbit-coupled Bose gas

SUPPLEMENTARY INFORMATION

Supporting Online Material for

CHAPTER 1 INTRODUCTION 1.1 FROM ELECTRONICS TO OPTOELECTRONICS

Hong-Ou-Mandel effect with matter waves

Adiabatic trap deformation for preparing Quantum Hall states

Numerical experiments of Hawking radiation from acoustic black holes in atomic Bose Einstein condensates

From BEC to BCS. Molecular BECs and Fermionic Condensates of Cooper Pairs. Preseminar Extreme Matter Institute EMMI. and

David Snoke Department of Physics and Astronomy, University of Pittsburgh

Exciton-polariton condensates

Creation of stable dark and anti-dark solitons in polariton dyad

SYNTHETIC GAUGE FIELDS IN ULTRACOLD ATOMIC GASES

Fluids with dipolar coupling

Room temperature one-dimensional polariton condensate in a ZnO microwire

Build up of off-diagonal long-range order in microcavity exciton-polaritons across the parametric threshold

Manipulating Polariton Condensates on a Chip

Low dimensional quantum gases, rotation and vortices

Vortices in Bose-Einstein condensates. Ionut Danaila

Cold Metastable Neon Atoms Towards Degenerated Ne*- Ensembles

Deterministic Coherent Writing and Control of the Dark Exciton Spin using Short Single Optical Pulses

Effects of polariton squeezing on the emission of an atom embedded in a microcavity

1 Superfluidity and Bose Einstein Condensate

Last Lecture. Overview and Introduction. 1. Basic optics and spectroscopy. 2. Lasers. 3. Ultrafast lasers and nonlinear optics

Electromagnetically Induced Transparency (EIT) via Spin Coherences in Semiconductor

Design and realization of exotic quantum phases in atomic gases

Lecture 4: Superfluidity

Superfluidity in bosonic systems

Superfluidity and Superconductivity

We can then linearize the Heisenberg equation for in the small quantity obtaining a set of linear coupled equations for and :

Roton Mode in Dipolar Bose-Einstein Condensates

SUPERFLUIDTY IN ULTRACOLD ATOMIC GASES

A Mixture of Bose and Fermi Superfluids. C. Salomon

Parametric polariton amplification in semiconductor microcavities

Fluids of light with driven-dissipative vs. unitary quantum dynamics thermalization, quantum quenches, evaporation & co.

Nucleation of solitary wave complexes in two-component mixture Bose-Einstein condensates

Supplementary Figure 1: Reflectance at low detuning. Reflectance as a function of the pump power for a pump-polariton detuning of 0.10meV.

Fermi polaron-polaritons in MoSe 2

Raman-Induced Oscillation Between an Atomic and Molecular Gas

Workshop on Topics in Quantum Turbulence March Experiments on Bose Condensates

Imaging quantum turbulence in 3 He-B: Do spectral properties of Andreev reflection reveal properties of turbulence?

DECAY OF PERTURBATIONS IN A QUANTUM- DOT-OPTICAL MICROCAVITY MODEL

Polaritons in some interacting exciton systems

Elements of Quantum Optics

A study of the BEC-BCS crossover region with Lithium 6

Quantum Computing with neutral atoms and artificial ions

Lecture 1. 2D quantum gases: the static case. Low dimension quantum physics. Physics in Flatland. The 2D Bose gas:

Transcription:

Hydrodynamic solitons in polariton superfluids Laboratoire Kastler Brossel (Paris) A. Amo * V.G. Sala,, R. Hivet, C. Adrados,, F. Pisanello, G. Lemenager,, J. Lefrère re, E. Giacobino, A. Bramati Laboratoire MPQ (Paris) S. Pigeon, C. Ciuti NNL, Instituto Nanoscienze (Lecce) D. Sanvitto INO-CNR BEC (Trento) I. Carusotto EPFL (Lausanne) R. Houdré * now at

Outline Polaritons in semiconductor microcavities Superfluidity in polaritons Observation of oblique dark solitons

Semiconductor microcavities GaAs Top DBR Quantum Wells Bottom DBR Polaritons θ k in-plane Emission energy (ev) Angleθ(º) -2-2 ~ 5meV Upper polariton k in-plane (µm - ) Photon Exciton Lower polariton -2 2

Semiconductor microcavities GaAs Top DBR Quantum Wells Bottom DBR θ k in-plane Emission energy (ev) Angleθ(º) -2-2 ~ 5meV Upper polariton Photon Exciton Lower polariton Polaritons Composite bosons Properties -2 2 k in-plane (µm - ) Excitonic component strong interactions (non-linearities χ 3 ) Photonic component low mass ( -5 m e ) Short lifetime (~ps) out of equilibrium

Polariton condensation Excitation -2-2 Atomic BEC Polariton condensate m/m e 4-5 T c < µk >3 K λ T at T c µm - µm Emission energy (ev) Lower polariton Polariton density -2 2 k in-plane (µm - ) T = 5 K CdTe k y k x Kasprzak et al. Nature, 443, 49 (26)

Polariton condensation Angleθ(º) -2-2 Atomic BEC Polariton condensate m/m e 4-5 T c < µk >3 K λ T at T c µm - µm Emission energy (ev) Propagating condensate Lower polariton Polariton density -2 2 k in-plane (µm - ) T = 5 K CdTe k y k x Kasprzak et al. Nature, 443, 49 (26)

Boson quantum fluids Coherent propagation t =28ps t =7ps Vortex and half vortex t =48ps Superfluidity 5 µm Amo et al., Nature 457, 295 (29) Lagoudakis et al., Nature Phys. 4, 76 (28), and Science 326, 974 (29) Nardin et al., arxiv:.846v3 Krizhanovskii et al., PRL 4, 2642 (2) Roumpos et al., Nature Phys. 7, 29 (2) This talk 2 µm Energy (ev) Persistent currents Hydrodynamics: solitons Wertz et al., Nature Phys. 6, 86 (2) Long-range order phases Sanvitto et al., Nature Phys. 6, 527 (2) This talk D BEC arrays Real space Momentum space Lai et al., Nature 45, 529 (27) Cerda-Méndez et al., PRL 5, 642 (2)

Superfluidity: Landau criterion Interacting Bosonic condensate linearised spectrum of excitations E c s k

Superfluidity: Landau criterion Interacting Bosonic condensate linearised spectrum of excitations SUPERFLUID E c s k Galilean boost v f < c s c s -v f E c s +v f k FLOW

Superfluidity: Landau criterion Interacting Bosonic condensate linearised spectrum of excitations SUPERFLUID E c s k Galilean boost v f < c s c s -v f E c s +v f k FLOW ČERENKOV REGIME E c s Galilean boost Elastic scattering E c s +v f FLOW k v f > c s c s -v f k C. Ciuti and I. Carusotto PRL 242, 2224 (25)

Superfluidity in atomic condensates Linearised spectrum of excitations Steinhauer et al., PRL 88, 247 (22) c s g ψ = ħ m 2 Critical velocity Supersonic Cerenkov shockvawes expanding BEC potential v f =3c s v f =.5c s v f =.8c s FLOW v f =.3c s time Onofrio et al. PRL 85, 2228 (2) Raman et al., PRL 83, 252 (999) Carusotto et al. PRL 97, 2643 (26)

Superfluidity in polaritons Emission angle (degrees) -2-2 Resonant excitation of the polariton mode Control of velocity, density and frequency of the fluid Energy (ev).483.482.48 (d) Far field CCD -2-2 k y (µm - ) Near field CCD Transmission experiment in a InGaAs/GaAs/AlAs microcavity (2/24 pairs) k z k Excitation laser k θ Y X Microcavity sample

Superfluid regime low momentum Elastic scattering.5 v f < c s E - E p. Pump c s 2 REAL SPACE 3 µm - k y (µm - ) g ψ = ħ Linear regime m FLOW MOMENTUM Nature Physics 5, 85 (29) -. -.5..5 k x (µm - ) Polariton density

Superfluid regime Polariton-polariton interactions low momentum v f < c s c s g ψ = ħ m 2 REAL SPACE E - E p Elastic scattering.5. 3 µm Pump - k y (µm - ) Linear regime FLOW E - E p Collapse of the ring.5. Pump - k y (µm - ) Superfluid MOMENTUM Nature Physics 5, 85 (29) -. -.5..5 k x (µm - ) -. -.5..5 k x (µm - ) Polariton density.5. -.5 -. -.5..5. k x (µm - ) k y (µm - )

low momentum v f < c s Superfluid regime Theory (non-equilibrium Gross-Pitaevskii) 2 P / P P P i tψ ( x, t) = D iγ / 2 + V ψ ( x, t) ψ ( x, t) + FPe e normal mode coupling decay pol-pol interaction ( x x ) 2 σ i( k x ω t) CW Pump (finite spot) c s 2 g ψ = ħ Linear regime Superfluid m REAL SPACE MOMENTUM 3 µm FLOW..5. -.5 Nature Physics 5, 85 (29) -. -.5..5 k x (µm - ) -. -.5..5 k x (µm - ) Polariton density -. -.5..5. k x (µm - )

Nature Physics 5, 85 (29) Polariton density Čerenkov regime 2 P / P P P i tψ ( x, t) = D iγ / 2 + V ψ ( x, t) ψ ( x, t) + FPe e ( x x ) 2 σ i( k x ω t) high momentum v f > c s Landau condition c s g ψ = ħ m 2 EXPERIMENT E - E p.5. Elastic scattering 4 µm - k y (µm - ) FLOW.5. - THEORY Pump Linear regime E - E p Linear wavefronts available states k y (µm - ) Čerenkov 4 µm

Nature Physics 5, 85 (29) Polariton density Čerenkov regime 2 P / P P P i tψ ( x, t) = D iγ / 2 + V ψ ( x, t) ψ ( x, t) + FPe e ( x x ) 2 σ i( k x ω t) high momentum v f > c s Landau condition c s g ψ = ħ m 2 EXPERIMENT E - E p.5. Elastic scattering 4 µm Pump - k y (µm - ) Linear regime FLOW E - E p.5. θ c sin = 2 v s f 5 c = 8. m / s s Linear wavefronts available states - k y (µm - ) Čerenkov Supersonic atomic BEC THEORY Carusotto et al. PRL 97, 2643 (26) 4 µm

E c s +v f Local speed of sound large barriers c s -v f k

Local speed of sound c s -v f E c s +v f k v f = v large barriers Landau critical speed v <,c cs [Frisch et al., PRL 69, 644 (992): v. 4c ] =,c s Velocity gradient ħ v f,t,t m ( r ) = φ ( r ) v f = 2 v Hydrodynamic effects: Quantized vortices Solitons v f = v

Nucleation of topological excitations Atomic condensates (Gross-Pitaevskii theory) Total drag From vortex shedding Vortex emission induces a drag even at subsonic speed /c s High vortex shedding frequency Vortex street soliton Flow Flow Winiecki et al., J. Phys. B: At. Mol. Opt. Phys. 33, 469 (2) El et al., PRL 97, 845 (26)

Hydrodynamic solitons in polaritons Polaritons (theory) v c s vortex solitons Pigeon et al., PRB 83, 4453 (2)

Hydrodynamic solitons in polaritons Polaritons (theory) v c s vortex solitons 2π phase Phase jump, depth, width and speed are correlated 2 2 2 s ξ vs 2 n w cs φ n cos = = = 2 The deeper, the slower (and bigger phase jump) Pigeon et al., PRB 83, 4453 (2)

Hydrodynamic solitons in polaritons Polaritons (theory) Phase must be free to evolve Resonant pump out of the nucleation region v c s vortex solitons Phase jump, depth, width and speed are correlated 2 2 2 s ξ vs 2 n w cs φ n cos = = = 2 The deeper, the slower (and bigger phase jump) Pigeon et al., PRB 83, 4453 (2)

Excitation spot (d) Far field CCD Near field CCD k z k Excitation laser k θ Y X Microcavity sample

Excitation spot

Soliton nucleation v f =.79 µm/ps k=.34 µm - subsonic Superfluidity Excitation density supersonic Real space emission µm Flow Interference with a coherent reference beam - Visibility of fringes (degree of coherence at τ=) Science 332, 67 (2) µm

Soliton nucleation v f =.79 µm/ps k=.34 µm - subsonic Superfluidity Excitation density Vortex ejection supersonic Real space emission µm Flow Interference with a coherent reference beam - Visibility of fringes (degree of coherence at τ=) Science 332, 67 (2) µm Vortex streets

Soliton nucleation v f =.79 µm/ps k=.34 µm - subsonic Superfluidity Excitation density Vortex ejection Solitons supersonic Real space emission µm Flow Interference with a coherent reference beam - Visibility of fringes (degree of coherence at τ=) Science 332, 67 (2) µm

Soliton nucleation v f =.79 µm/ps k=.34 µm - subsonic Superfluidity Excitation density Vortex ejection Solitons supersonic Real space emission µm Flow Interference with a coherent reference beam - Visibility of fringes (degree of coherence at τ=) Science 332, 67 (2) µm

Soliton nucleation

Soliton nucleation v f =.7 µm/ps k=.73 µm - -2 2-2 2 High speed: no need of mask y (µm) 2 2 4 Flow 4 y = 4 µm Polariton density (arb. units) n y = 26 µm y = 36 µm n s -2 2 x x (µm) (µm)

Soliton nucleation v f =.7 µm/ps k=.73 µm - -2 2-2 2 y (µm) 2 2 n s φ cos = 2 n 2 4 Flow 4 y = 4 µm Polariton density (arb. units) n y = 26 µm y = 36 µm n s Polariton density (arb. units) φ 2 Relative phase π x (µm) -2 2 x x (µm) (µm)

Soliton nucleation v f =.7 µm/ps k=.73 µm - -2 2-2 2 y (µm) 2 2 n s φ cos = 2 n 2 4 Flow 4 Polariton density (arb. units) y = 4 µm n y = 26 µm y = 36 µm n s soliton relative depth (n d /n) phase jump (rad)..5. π π 2-2 2 x x (µm) (µm) 5 3 45 6 y (distance from the defect; µm)

Soliton nucleation v f =.7 µm/ps k=.73 µm - -2 2-2 2 y (µm) 2 2 n s φ cos = 2 n 2 4 Flow 4 Polariton density (arb. units) y = 4 µm n y = 26 µm y = 36 µm n s soliton relative depth (n d /n) phase jump (rad)..5. π π 2 Science 332, 67 (2) -2 2 x x (µm) (µm) 5 3 45 6 y (distance from the defect; µm)

Hydrodynamic soliton multiplets

Hydrodynamic soliton multiplets k =.2 µm - 2 µm Flow

Hydrodynamic soliton multiplets k =.2 µm - k =. µm - 2 µm Flow

Hydrodynamic soliton multiplets k =.2 µm - k =. µm - Atomic condensates (GPE theory) 2 µm Flow El et al., PRL 97, 845 (26)

Summary Observation of superfluidity of polaritons superfluid supersonic A.A., J. Lefrère et al., Nature Phys. 5, 85 (29) Transition from the superfluid to vortex ejection and solitons Superfluidity Vortex ejection Solitons Oblique dark soliton multiplets A.A., S. Pigeon et al., Science 332, 67 A.A., S. Pigeon et al., Science 332, 67 (2)