Physics 207 Lecture 23

Similar documents
Physics 207 Lecture 23. Lecture 23

Physics 207 Lecture 21. Physics 207, Lecture 21, Nov. 12

Physics 101: Lecture 23 Temperature and Ideal Gas

Physics 101: Lecture 23 Temperature and Ideal Gas

Chapter 10. Thermal Physics

Physics 1501 Lecture 35

Chapter 17. Temperature. Dr. Armen Kocharian

What is Temperature?

Chapter 10. Thermal Physics. Thermodynamic Quantities: Volume V and Mass Density ρ Pressure P Temperature T: Zeroth Law of Thermodynamics

Chapters 17 &19 Temperature, Thermal Expansion and The Ideal Gas Law

Lecture 2: Zero law of thermodynamics

Thermodynamics. Atoms are in constant motion, which increases with temperature.

PROGRAM OF PHYSICS. Lecturer: Dr. DO Xuan Hoi Room A

Module 3 - Thermodynamics. Thermodynamics. Measuring Temperatures. Temperature and Thermal Equilibrium

Temperature, Thermal Expansion and the Gas Laws

General Physics I. Lecture 23: Basic Concepts of Thermodynamics

PHYSICS 220. Lecture 22. Textbook Sections Lecture 22 Purdue University, Physics 220 1

Dr.Salwa Alsaleh fac.ksu.edu.sa/salwams

Physics 231 Topic 12: Temperature, Thermal Expansion, and Ideal Gases Alex Brown Nov

11/22/2010. Mid term results. Thermal physics

Simpo PDF Merge and Split Unregistered Version -

Al-Saudia Virtual Academy Online tuiton Pakistan Online Tutor Pakistan. Heat

Chapter 10, Thermal Physics

Lecture PowerPoints. Chapter 13 Physics: Principles with Applications, 7 th edition Giancoli

Archimedes Principle

Physics 111. Lecture 35 (Walker: ) Thermal Physics I: Temperature Thermal Expansion. April 29, Temperature (T)

Thermal Energy. Thermal Energy is the TRANSFER of kinetic energy between two objects that are at different temperatures.

Temperature and Its Measurement

Some Vocabulary. Chapter 10. Zeroth Law of Thermodynamics. Thermometers

Module 3 - Thermodynamics. Thermodynamics. Measuring Temperatures. Temperature and Thermal Equilibrium

Moving Observer and Source. Demo 4C - 02 Doppler. Molecular Picture of Gas PHYSICS 220. Lecture 22. Combine: f o = f s (1-v o /v) / (1-v s /v)

HEAT HISTORY. D. Whitehall

TEMPERATURE. 8. Temperature and Heat 1

Week 1 Temperature, Heat and the First Law of Thermodynamics. (Ch. 19 of Serway&J.)

Temperature Thermal Expansion Ideal Gas Law Kinetic Theory Heat Heat Transfer Phase Changes Specific Heat Calorimetry

Agenda. Chapter 10, Problem 26. All matter is made of atoms. Atomic Structure 4/8/14. What is the structure of matter? Atomic Terminology

Chapter 13: Temperature, Kinetic Theory and Gas Laws

1. How much heat was needed to raise the bullet to its final temperature?

Chapter 14: Temperature and Heat

Heat and Temperature

Solids, Liquids, and Gases. Chapter 14

ConcepTest PowerPoints

10 TEMPERATURE, THERMAL EXPANSION, IDEAL GAS LAW, AND KINETIC THEORY OF GASES.

Physics 231 Lecture 29 Some slides relevant to Wed. Lecture. The notes for the lecture given by Dr. Nagy can be found at

Chapter Practice Test Grosser

Chapter 21: Temperature, Heat and Expansion

Temperature and Heat. Two systems of temperature. Temperature conversions. PHY heat - J. Hedberg

Lecture 13 Chapter 18 Temperature, Heat, and the First Law of Thermodynamics

Physical Science Chapter 5 Cont2. Temperature & Heat

Tells us the average translational kinetic energy of the particles

Chapter 17 Temperature & Kinetic Theory of Gases 1. Thermal Equilibrium and Temperature

Temperature Thermal Expansion Ideal Gas Law Kinetic Theory Heat Heat Transfer Phase Changes Specific Heat Calorimetry Heat Engines

A). Yes. B). No. Q15 Is it possible for a solid metal ball to float in mercury?

the energy of motion!

Conceptual Physics Fundamentals

8th Grade. Thermal Energy Study Guide.

Slide 1 / 67. Slide 2 / 67. 8th Grade. Thermal Energy Study Guide Slide 3 / 67. Thermal Energy. Study Guide.

17-6 The Gas Laws and Absolute Temperature

Phase Changes and Latent Heat

What does temperature have to do with energy? What three temperature scales are commonly used? What makes things feel hot or cold?

13.1 The Nature of Gases (refer to pg )

Thermodynamics Test Wednesday 12/20

Exercises Temperature (pages ) 1. Define temperature. 2. Explain how a common liquid thermometer works.

Thermal energy 7 TH GRADE SCIENCE

Physics 121, April 15, Temperature/Heat and the Ideal Gas Law.

First Law of Thermodynamics Second Law of Thermodynamics Mechanical Equivalent of Heat Zeroth Law of Thermodynamics Thermal Expansion of Solids

Temperature, Thermal Expansion, and Ideal Gas Law

Chapter 14 Heat and Temperature Notes

Chapter 16 Temperature and Heat

Unit 6. Unit Vocabulary: Distinguish between the three phases of matter by identifying their different

Lecture 22. Temperature and Heat

Chapter 10: Thermal Physics

3. EFFECTS OF HEAT. Thus, heat can be defined as a form of energy that gives the sensation of hotness or coldness

* Defining Temperature * Temperature is proportional to the kinetic energy of atoms and molecules. * Temperature * Internal energy

Physics 5D PRACTICE FINAL EXAM Fall 2013

THERMAL PROPERTIES OF MATTER

Gases. Measuring Temperature Fahrenheit ( o F): Exceptions to the Ideal Gas Law. Kinetic Molecular Theory

MATTER AND HEAT. Chapter 4 OUTLINE GOALS

Chapter 17 Temperature and heat

CHAPTER 17: Temperature, Thermal Expansion, and the Ideal Gas Law

Temperature and Thermometers. Temperature is a measure of how hot or cold something is. Most materials expand when heated.

Chapter Notes: Temperature, Energy and Thermal Properties of Materials Mr. Kiledjian

Ch 100: Fundamentals for Chemistry

Chapter 12. Temperature and Heat

1 Environment to be measured Gas Mercury. Mercury is added to or removed from flask 1 so that height in flask 2 is constant

Heat and Temperature

CHAPTER 16 A MACROSCOPIC DESCRIPTION OF MATTER

S15--AP Phys Q4--Heat-Thermo Ch13_14_15 PRACTICE

Thermodynamics. Temperature, Heat, Work Heat Engines

Simple machines. ( Fxd) input. = (Fxd) output

Lecture 24. Paths on the pv diagram

HEAT AND TEMPERATURE Vikasana-Bridge Course 2012

Kinetic Molecular Theory and Gas Law Honors Packet. Name: Period: Date: Requirements for honors credit: Read all notes in packet

PHYSICS 149: Lecture 26

This Week. 6/2/2015 Physics 214 Summer

5.60 Thermodynamics & Kinetics Spring 2008

Heat and temperature are related and often confused, but they are not the same.

Gas Laws. Gas Properties. Gas Properties. Gas Properties Gases and the Kinetic Molecular Theory Pressure Gas Laws

Unit 11: Temperature and heat

Revision Guide for Chapter 13

Transcription:

Thermodynamics A practical science initially concerned with economics, industry, real life problems. DYNAMICS -- Concerned with the concepts of energy transfers between a system and its environment and the resulting temperature variations Concerns itself with the physical and chemical transformations of matter in all of its forms: solid, liquid, and gas Concerns the processes that violate conservation of mechanical energy -- friction -- via the conversion between thermal and mechanical energy. Physics 207, Lecture 25, Nov. 29 Agenda: Chapter 19, Temperature Heat Thermal Expansion Temperature and Zeroth Law of Thermodynamics Temperature scales Kinetic Theory of Gases (Ch. 22) Question: What has more internal energy, a 10 kg bar of glowing red hot iron (at ~800 C) or a 100 kg person (at 37 C)? Which can effect a larger heat transfer? Assignments: Problem Set 9 due Tuesday, Dec. 5, 11:59 PM Monday, Chapter 20 (Heat & the First Law of Thermodynamics) Physics 207: Lecture 25, Pg 1 Physics 207: Lecture 25, Pg 2 Temperature Temperature: A standardized measure of the motion of the individual atoms and molecules in a gas, liquid, or solid. related to average kinetic energy of constituents High temperature: The constituents are moving around energetically In a gas at high temperature the individual gas molecules are moving about independently at high speeds. In a solid at high temperature the individual atoms of the solid are vibrating energetically in place. The converse is true for a "cold" object. In a gas at low temperature the individual gas molecules are moving about sluggishly. There is an absolute zero temperature at which the classical motions of atoms and molecules practically stop. Quantum zero point energy cannot be removed (Planck s constant is not zero.) Heat Solids, liquids or gases have internal energy Kinetic energy from random motion of molecules translation, rotation, vibration At equilibrium, it is related to temperature Heat: Transfer of energy from one object to another as a result of their different temperatures Thermal contact: energy can flow between objects T 1 > T 2 1 2 Physics 207: Lecture 25, Pg 3 Physics 207: Lecture 25, Pg 4 Zeroth Law of Thermodynamics Thermal equilibrium is established when objects in thermal contact cease heat transfer They are said to be at the same temperature T 1 = T 2 1 2 What to do with heat and how do we assess it? Conversion of energy from one form to another often involves heat. Example: A power plant burns coal (chemical energy) and heat is used to produces steam (boiling water at high pressure) which turns a steam turbine generator. This provides point electricity which must be transferred to its use location. There is also waste heat. In a best case scenario only about 35-40% of the original chemical energy is utilized. If objects A and B are separately in thermal equilibrium with a third object C, then objects A and B are in thermal equilibrium with each other. A C B Temperature allows to discern the direction of energy transfer Physics 207: Lecture 25, Pg 5 Physics 207: Lecture 25, Pg 6 Page 1

Three main scales Farenheit Celcius 212 Temperature scales 100 Kelvin 373.15 Water boils Modern Definition of Kelvin Scale The temperature of the triple point on the Kelvin scale is 273.16 K Therefore, the current definition of the Kelvin is defined as 1/273.16 of the temperature of the triple point of water -459.67 32 0 273.15-273.15 T F = 9 5 T C + 32o F T C = T 273.15K 0 T C = 5 ( 9 T F 32 o F) T = T C + 273.15 K Water freezes Absolute Zero The triple point of water occurs at 0.01 o C and 4.58 mm (0.06 atm) of Hg Physics 207: Lecture 25, Pg 7 Physics 207: Lecture 25, Pg 8 Some interesting facts In 1724, Gabriel Fahrenheit made thermometers using mercury. The zero point of his scale is attained by mixing equal parts of water, ice, and salt. A second point was obtained when pure water froze (originally set at 30 o F), and a third (set at 96 F) when placing the thermometer in the mouth of a healthy man. On that scale, water boiled at 212. Later, Fahrenheit moved the freezing point of water to 32 (so that the scale had 180 increments). In 1745, Carolus Linnaeus of psula, Sweden, described a scale in which the freezing point of water was zero, and the boiling point 100, making it a centigrade (one hundred steps) scale. Anders Celsius (1701-1744) used the reverse scale in which 100 represented the freezing point and zero the boiling point of water, still, of course, with 100 degrees between the two defining points. 10 8 10 7 10 6 10 5 10 4 10 3 100 10 1 0.1 T (K) Hydrogen bomb Sun s interior Solar corona Sun s surface Copper melts Water freezes Liquid nitrogen Liquid hydrogen Liquid helium Lowest T ~ 10-9 K Thermometers: Devices to measure temperature Make use of physical properties that change with temperature Many physical properties can be used volume of a liquid length of a solid pressure of a gas held at constant volume volume of a gas held at constant pressure electric resistance of a conductor color of a very hot object Physics 207: Lecture 25, Pg 9 Physics 207: Lecture 25, Pg 10 In most liquids or solids, when temperature rises molecules have more kinetic energy they are moving faster, on the average consequently, things tend to expand (works for a gas) amount of expansion L depends on change in temperature T original length L 0 L 0 L coefficient of thermal expansion L 0 + L = L 0 + α L 0 T L = α L 0 T (linear expansion) V = β V 0 T (volume expansion) V α 3β V + V SHM and quadratic potentials SHM will occur whenever the potential is quadratic. For small oscillations this will be true: For example, the potential between H atoms in an H 2 molecule looks something like this: The well is not truly quadratic but anharmonic. x K E -A 0 A x Physics 207: Lecture 25, Pg 11 Physics 207: Lecture 25, Pg 12 Page 2

α Physics 207 Lecture 23 Lecture 25, Exercise 1 As you heat a block of aluminum from 0 C to 100 C, its density (A) increases (B) decreases (C) stays the same Solution Here β is positive Volume increases Density decreases T = 0 C T = 100 C Lecture 25, Example 2 An aluminum plate (α=24 10-6 ) has a circular hole cut in it. A copper ball (solid sphere, α=17 10-6 ) has exactly the same diameter as the hole when both are at room temperature, and hence can just barely be pushed through it. If both the plate and the ball are now heated up to a few hundred degrees Celsius, how will the ball and the hole fit? (A) ball won t fit (B) fits more easily (C) same as before M, V 0 ρ 0 = M / V 0 M, V 100 ρ 100 = M / V 100 < ρ 0 Physics 207: Lecture 25, Pg 13 Physics 207: Lecture 25, Pg 14 Lecture 25, Example 3 A glass jar (α = 3x10-6 K -1 ) has a metal lid (α = 16x10-6 K -1 ) which is stuck. If you heat them by placing them in hot water, the lid will be (A) Easier to open (B) Harder to open (C) Same Lecture 25, Exercise 4 Thermal Expansion On a cold winter day with T = -10 C, the Eiffel Tower is 300 m tall. How tall is it on a hot summer day when T = 40 C? The Eiffel Tower is made from steel with a thermal expansion coefficient =11 x 10-6 / C Recall: L/L = α T (A) 300.001 m (B) 300.16 m (C) 316 m (D) 420 m Physics 207: Lecture 25, Pg 15 Physics 207: Lecture 25, Pg 16 2003 Brooks/Cole, a division of Thomson Learning, Inc. Thomson Learning is a trademark used herein under license. 2003 Brooks/Cole, a division of Thomson Learning, Inc. Thomson Learning is a trademark used herein under license. The relationship between the linear coefficient of thermal expansion and the melting temperature in metals at 25 C. High er melting point metals tend to expand to a lesser degree. Physics 207: Lecture 25, Pg 17 The linear coefficient of thermal expansion of iron changes abruptly at temperatures where an allotropic transformation occurs. (b) The expansion of Invar is very low due to the magnetic properties of the material at low temperatures. Physics 207: Lecture 25, Pg 18 Page 3

Thermal Expansion and Teeth Thermal Expansion and Teeth Coefficients of linear expansion: Enamel: 11.4 x 10-6 C Dentin: 8.3 x 10-6 C If you quickly switch from eating/drinking something hot to something cold, the brittle enamel will contract more than the dentin, and develop small cracks called crazes. Physics 207: Lecture 25, Pg 19 Physics 207: Lecture 25, Pg 20 Crazing: Applications of Thermal Expansion Bimetallic Strip matching is important in choosing materials for fillings. Thermostats se a bimetallic strip Two metals expand differently Since they have different coefficients of expansion Physics 207: Lecture 25, Pg 21 Physics 207: Lecture 25, Pg 22 Most liquids increase in volume with increasing T water is special density increases from 0 to 4 o C! ice is less dense than liquid water at 4 o C: hence it floats water at the bottom of a pond is the denser, i.e. at 4 o C Special system: Water ρ(kg/m 3 ) 1000.00 999.95 999.90 999.85 999.80 999.75 999.70 999.65 999.60 999.55 Water has its maximum density at 4 degrees. Reason: Alignment of water molecules 0 2 4 6 8 10 Density T ( o C) Lecture 25, Exercise 5 Not being a great athlete, and having lots of money to spend, Gill Bates decides to keep the lake in his back yard at the exact temperature which will maximize the buoyant force on him when he swims. Which of the following would be the best choice? (A) 0 o C (B) 4 o C (D) 32 o C (D) 100 o C (E) 212 o C Physics 207: Lecture 25, Pg 23 Physics 207: Lecture 25, Pg 24 Page 4

Ideal gas: Macroscopic description Consider a gas in a container of volume V, at pressure P, and at temperature T Equation of state Links these quantities Generally very complicated: but not for ideal gas Equation of state for an ideal gas Collection of atoms/molecules moving randomly No long-range forces Their size (volume) is negligible PV = nrt In SI units, R =8.315 J / mol K R is called the universal gas constant n = m/m : number of moles Number of moles: n = m/m Boltzmann s constant One mole contains N A =6.022 X 10 23 particles : Avogadro s number = number of carbon atoms in 12 g of carbon In terms of the total number of particles N PV = nrt = (N/N A ) RT PV = N k B T k B = R/N A = 1.38 X 10-23 J/K m=mass M=mass of one mole k B is called the Boltzmann s constant P, V, and T are the thermodynamics variables Physics 207: Lecture 25, Pg 25 Physics 207: Lecture 25, Pg 26 pv = nrt What is the volume of 1 mol of gas at STP? T = 0 C = 273 K p = 1 atm = 1.01 x 10 5 Pa V n The Ideal Gas Law = = RT P 8.31 J / = 0.0224 ( mol K ) 1.01 x10 m 3 5 273 K Pa = 22.4 l Example A spray can containing a propellant gas at twice atmospheric pressure (202 kpa) and having a volume of 125.00 cm 3 is at 22 o C. It is then tossed into an open fire. When the temperature of the gas in the can reaches 195 o C, what is the pressure inside the can? Assume any change in the volume of the can is negligible. Steps 1. Convert to Kelvin 2. se P/T = nr/v = constant 3. Solve for final pressure Physics 207: Lecture 25, Pg 27 Physics 207: Lecture 25, Pg 28 Lecture 25, Recap Agenda: Chapter 19, Temperature Heat Thermal Expansion Temperature and Zeroth Law of Thermodynamics Temperature scales Kinetic Theory of Gases (Ch. 22) Question: What has more internal energy, a 10 kg bar of glowing red hot iron (at ~800 C) or a 100 kg person (at 37 C)? Assignments: Problem Set 9 due Tuesday, Dec. 5, 11:59 PM Monday, Chapter 20 (Heat & the First Law of Thermodynamics) Physics 207: Lecture 25, Pg 29 Page 5