Global Existence for Rate-Independent Gradient Plasticity

Similar documents
Existence theory for finite-strain crystal plasticity with gradient regularization

COMPUTATIONAL MODELING OF SHAPE MEMORY MATERIALS

Weierstraß-Institut für Angewandte Analysis und Stochastik. im Forschungsverbund Berlin e.v. Preprint ISSN

Nonlinear Theory of Elasticity. Dr.-Ing. Martin Ruess

An O(n) invariant rank 1 convex function that is not polyconvex

Effective Theories and Minimal Energy Configurations for Heterogeneous Multilayers

The Finite Element Method II

Fracture models for elasto-plastic materials as limits of gradient damage models coupled with plasticity: the antiplane case

Constitutive models: Incremental plasticity Drücker s postulate

On the energy release rate in finite strain elasticity

On the Numerical Modelling of Orthotropic Large Strain Elastoplasticity

Continuum Mechanics and Theory of Materials

Comparison of Models for Finite Plasticity

Heterogeneous Elasto-plasticity

Quasistatic Nonlinear Viscoelasticity and Gradient Flows

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

Existence of minimizers for the pure displacement problem in nonlinear elasticity

Weak Convergence Methods for Energy Minimization

On some nonlinear parabolic equation involving variable exponents

Linear Cosserat elasticity, conformal curvature and bounded stiffness

The Finite Element Method for the Analysis of Non-Linear and Dynamic Systems. Prof. Dr. Eleni Chatzi Lecture ST1-19 November, 2015

Locally Lipschitzian Guiding Function Method for ODEs.

On the characterization of drilling rotation in the 6 parameter resultant shell theory

A Product Property of Sobolev Spaces with Application to Elliptic Estimates

Relaxation methods and finite element schemes for the equations of visco-elastodynamics. Chiara Simeoni

Lehrstuhl B für Mechanik Technische Universität München D Garching Germany

MHA042 - Material mechanics: Duggafrågor

On Friedrichs inequality, Helmholtz decomposition, vector potentials, and the div-curl lemma. Ben Schweizer 1

Variational inequalities for set-valued vector fields on Riemannian manifolds

ANALYSIS OF LENNARD-JONES INTERACTIONS IN 2D

Weierstraß-Institut. für Angewandte Analysis und Stochastik. Leibniz-Institut im Forschungsverbund Berlin e. V. Preprint ISSN

Continuum mechanics V. Constitutive equations. 1. Constitutive equation: definition and basic axioms

Nonlinear elasticity and gels

Local strong convexity and local Lipschitz continuity of the gradient of convex functions

ELASTOPLASTICITY THEORY by V. A. Lubarda

Models for dynamic fracture based on Griffith s criterion

Course No: (1 st version: for graduate students) Course Name: Continuum Mechanics Offered by: Chyanbin Hwu

On the Rank 1 Convexity of Stored Energy Functions of Physically Linear Stress-Strain Relations

A Recursive Trust-Region Method for Non-Convex Constrained Minimization

Universität des Saarlandes. Fachrichtung 6.1 Mathematik

Priority Programme Optimal Control of Static Contact in Finite Strain Elasticity

Stress of a spatially uniform dislocation density field

CONVERGENCE THEORY. G. ALLAIRE CMAP, Ecole Polytechnique. 1. Maximum principle. 2. Oscillating test function. 3. Two-scale convergence

MODELING OF CONCRETE MATERIALS AND STRUCTURES. Kaspar Willam. Uniaxial Model: Strain-Driven Format of Elastoplasticity

BIHARMONIC WAVE MAPS INTO SPHERES

On variational updates for non-associative kinematic hardening of Armstrong-Frederick-type

A Geometric Interpretation of Newtonian Impacts with Global Dissipation Index

ON THE FOLIATION OF SPACE-TIME BY CONSTANT MEAN CURVATURE HYPERSURFACES

An Introduction to Variational Inequalities

Calderón-Zygmund inequality on noncompact Riem. manifolds

Some Aspects of a Discontinuous Galerkin Formulation for Gradient Plasticity at Finite Strains

Archimedes Center for Modeling, Analysis & Computation. Singular solutions in elastodynamics

CS 468. Differential Geometry for Computer Science. Lecture 17 Surface Deformation

b i (µ, x, s) ei ϕ(x) µ s (dx) ds (2) i=1

Quasiconvexity at edges and corners and the nucleation of austenite in martensite

Geometry of generating function and Lagrangian spectral invariants

MATH 51H Section 4. October 16, Recall what it means for a function between metric spaces to be continuous:

2.073 Notes on finite-deformation theory of isotropic elastic-viscoplastic solids

Deforming conformal metrics with negative Bakry-Émery Ricci Tensor on manifolds with boundary

Spaces with Ricci curvature bounded from below

C 1,α h-principle for von Kármán constraints

Thermodynamically-Consistent Phase Field Models of Fracture: Variational Principles and Multi-Field FE Implementations

IMES - Center of Mechanics ETH Zentrum, Tannenstrasse 3 CH-8092 Zürich, Switzerland

Lorentzian elasticity arxiv:

Phase-field systems with nonlinear coupling and dynamic boundary conditions

Chapter 5 Structural Elements: The truss & beam elements

Recent developments in elliptic partial differential equations of Monge Ampère type

An introduction to Mathematical Theory of Control

MECHANICS OF MATERIALS. EQUATIONS AND THEOREMS

(2) 2. (3) 2 Using equation (3), the material time derivative of the Green-Lagrange strain tensor can be obtained as: 1 = + + +

Stability of Thick Spherical Shells

On the p-laplacian and p-fluids

LECTURE 15: COMPLETENESS AND CONVEXITY

PROBLEM OF CRACK UNDER QUASIBRITTLE FRACTURE V.A. KOVTUNENKO

Measurement of deformation. Measurement of elastic force. Constitutive law. Finite element method

Homogenization in an optimal design problem with quadratic weakly discontinuous objective functional

Recent Trends in Differential Inclusions

Alternative numerical method in continuum mechanics COMPUTATIONAL MULTISCALE. University of Liège Aerospace & Mechanical Engineering

Optimal global rates of convergence for interpolation problems with random design

Tom Winandy, Remco I. Leine

Computational Inelasticity FHLN05. Assignment A non-linear elasto-plastic problem

A Ginzburg-Landau Type Problem for Nematics with Highly Anisotropic Elastic Term

Gradient Schemes for an Obstacle Problem

Mathematical Modeling. of Large Elastic-Plastic Deformations

Intro to Soil Mechanics: the what, why & how. José E. Andrade, Caltech

Kramers formula for chemical reactions in the context of Wasserstein gradient flows. Michael Herrmann. Mathematical Institute, University of Oxford

Bifurcation Analysis in Geomechanics

Remarks on Invariant Modelling in Finite Strain Gradient Plasticity

MILNOR SEMINAR: DIFFERENTIAL FORMS AND CHERN CLASSES

ABHELSINKI UNIVERSITY OF TECHNOLOGY

AN EFFECTIVE METRIC ON C(H, K) WITH NORMAL STRUCTURE. Mona Nabiei (Received 23 June, 2015)

PREPRINT 2010:25. Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method ERIK BURMAN PETER HANSBO

Engineering Sciences 241 Advanced Elasticity, Spring Distributed Thursday 8 February.

Basic Principles of Weak Galerkin Finite Element Methods for PDEs

The small ball property in Banach spaces (quantitative results)

Applied Analysis (APPM 5440): Final exam 1:30pm 4:00pm, Dec. 14, Closed books.

On the biharmonic energy with Monge-Ampère constraints

4 Constitutive Theory

Regularity of Minimizers in Nonlinear Elasticity the Case of a One-Well Problem in Nonlinear Elasticity

Mathematical Background

Transcription:

Global Existence for Rate-Independent Gradient Plasticity Alexander Mielke Weierstraß-Institut für Angewandte Analysis und Stochastik, Berlin Institut für Mathematik, Humboldt-Universität zu Berlin www.wias-berlin.de/people/mielke/ CRM De Giorgi, Pisa, 17 November 2007 Rate-Independence, Homogenization and Multiscaling Joint work with Andreas Mainik with credits to Stefan Müller and Gilles Francfort

1. Introduction Overview 1. Introduction 2. Finite-strain elastoplasticity 3. Energetic solutions for rate-independent systems 4. Existence results 5. Time-dependent boundary data A. Mielke Pisa, 17 Nov. 2007, Rate-Indep., Homogenization and Multiscaling 2/24

1. Introduction Finite-strain relates to geometric nonlinearities multiplicative decomposition ϕ = F = F elast F plast plastic yielding gives nonsmoothness partially hysteretic behavior in loading cycling ϕ ϕ(ω) Ω ϕ(x) x 000000000000 111111111111 000000000000 111111111111 000000000000 111111111111 0000000 1111111 000000000 111111111 000000000 111111111 0000000000 1111111111 0000 1111 00 11 000 111 000 111 00 11 Develop sufficient conditions for existence such as strong hardening gradient regularization to understand the mechanisms for failure localization, shearbands microstructure formation A. Mielke Pisa, 17 Nov. 2007, Rate-Indep., Homogenization and Multiscaling 3/24

1. Introduction Finite-strain relates to geometric nonlinearities invariance under rigid-body transformations (frame indifference) C = F T F symmetric Cauchy strain tensor no self-penetration, i.e., det F > 0 multiplicative decomposition F = F elast P or F elast = ϕ P 1 F GL + (d) := { A R d d det A > 0 } and P SL(d) := { A R d d det A = 1 } Use (sub) Riemannian and Finslerian geometry on the Lie groups GL + (d), SL(d),... Nonsmoothness is treated by a weak solution concept: energetic solutions do not need derivatives A. Mielke Pisa, 17 Nov. 2007, Rate-Indep., Homogenization and Multiscaling 4/24

1. Introduction Literature Ortiz et al 1999,..., Miehe et al 2002,... M/Theil/Levitas 1999, NoDEA 2001/04, ARMA 2002 Carstensen/Hackl/M [PRSL 2002] Non-convex potentials and microstructure in finite-strain plasticity M. [CMT 2003] Energetic formulation of multiplicative elastoplasticity M. [SIMA 2004] Existence of minimizers in incremental elastoplasticity Francfort/M. [JRAM 2006] Existence results for rate-independent material models. (based on Dal Maso et al) M/Müller [ZAMM 2006] Lower semicontinuity and existence of minimizers for a functional in elastoplasticity Mainik/M. 2007 Global existence for rate-independent strain-gradient plasticity at finite strains. In preparation. A. Mielke Pisa, 17 Nov. 2007, Rate-Indep., Homogenization and Multiscaling 5/24

2. Finite-strain elastoplasticity Overview 1. Introduction 2. Finite-strain elastoplasticity 3. Energetic solutions for rate-independent systems 4. Existence results 5. Time-dependent boundary data A. Mielke Pisa, 17 Nov. 2007, Rate-Indep., Homogenization and Multiscaling 6/24

2. Finite-strain elastoplasticity Ω x ϕ F= ϕ P=F plast F elast ϕ(ω) ϕ(x) P plastic tensor p hardening variables Multiplicative decomposition ϕ = F = F elast F plast P = F plast SL(d), F elast = ϕ P 1 For elastic properties only F elast matters. Plastic invariance (except for hardening) R(P, p, Ṗ, ṗ) = R(ṖP 1, p, ṗ) Energy-storage functional E(t, ϕ, P, p) = Ω W ( ϕp 1 ) + H(P, p) + U(P, p, P, p) }{{}}{{}}{{} elastic energy hardening regularization dx l(t),ϕ Elastic equilibrium: 0 = D ϕ E(t,ϕ, P, p) Plastic flow law: 0 ṖR(P, p, Ṗ, ṗ) + D PE(t,ϕ, P, p) 0 ṗr(p, p, Ṗ, ṗ) + D pe(t,ϕ, P, p) A. Mielke Pisa, 17 Nov. 2007, Rate-Indep., Homogenization and Multiscaling 7/24

2. Finite-strain elastoplasticity Rayleigh s dissipation potential R(P, p, Ṗ, ṗ) Rate independence R(P, p,γṗ,γṗ) = γ1 R(P, p, Ṗ, ṗ) for γ 0. (sub) Riemannian/Finslerian metric on SL(d) R m. To avoid rates we introduce a dissipation distance { 1 D(P 0, p 0, P 1, p 1 ) = min 0 R( P, p, P, p)ds ( P, p)(0))=(p 0, p 0 ), } ( P, p)(1))=(p 1, p 1 ), ( P, p) C 1 ([0, 1]; SL(d) R m ) Triangle inequality D(P 0, p 0, P 2, p 2 ) D(P 0, p 0, P 1, p 1 ) + D(P 1, p 1, P 2, p 2 ) No symmetry, in general D(P 0, p 0, P 1, p 1 ) D(P 1, p 1, P 0, p 0 ) Plastic invariance D(P 0 P, p 0, P 1 P, p 1 ) = D(P 0, p 0, P 1, p 1 ) for all P SL(d) A. Mielke Pisa, 17 Nov. 2007, Rate-Indep., Homogenization and Multiscaling 8/24

2. Finite-strain elastoplasticity D(P 0 P, p 0, P 1 P, p 1 ) = D(P 0, p 0, P 1, p 1 ) for all P SL(d) Plastic invariance implies D(P 0, p 0, P 1, p 1 ) = D(I, p 0, P 1 P 1 0, p 1) D(I, p 0, P, p 1 ) log P nonconvex, bad coercivity von Mises plasticity: isotropic hardening p [0, ) { A R(P, p, Ṗ, ṗ) = (p)ṗ if ṖP 1 vm ṗ, else, with ξ vm = ( α ξ+ξ T 2 + β ξ ξ T 2) 1/2 β = 0: D(I, p 0, P, p 1 ) = A(p 1 ) A(p 0 ) for p 1 p 0 α 2 β > 0: No formula is known! Under what conditions is P D(I, p 0, P, p 1 ) polyconvex? log(p T P) vm A. Mielke Pisa, 17 Nov. 2007, Rate-Indep., Homogenization and Multiscaling 9/24

3. Energetic solutions for rate-independent systems Overview 1. Introduction 2. Finite-strain elastoplasticity 3. Energetic solutions for rate-independent systems 4. Existence results 5. Time-dependent boundary data A. Mielke Pisa, 17 Nov. 2007, Rate-Indep., Homogenization and Multiscaling 10/24

3. Energetic solutions for rate-independent systems Admissible deformations Γ Dir Ω F = {ϕ W 1,q ϕ (Ω; R d ) ϕ = ϕ Dir on Γ Dir } (for the moment, we assume time-independent Dirichlet data) Set of internal states z = (P, p) Z = {(P,p) W 1,r P(Ω;R d ) W 1,r p (Ω;R m ) P SL(d) a.e. in Ω } Energy-storage functional (as above) E : [0, T] F Z R := R { } (t,ϕ, z) Ω W ( ϕp 1 ) + H(z) + U(z, z)dx l(t),ϕ Dissipation distance on Z: D : Z Z [0, ] (z 0, z 1 ) = (P 0, p 0, P 1, p 1 ) Ω D(P 0(x), p 0 (x), P 1 (x), p 1 (x))dx. A. Mielke Pisa, 17 Nov. 2007, Rate-Indep., Homogenization and Multiscaling 11/24

3. Energetic solutions for rate-independent systems Definition [M/Theil 99, M. 03]: (ϕ, z) : [0, T] F Z is called an energetic solution associated with E and D, if for all t [0, T] the stability condition (S) and the energy balance (E) hold: (S) ( ϕ, z) F Z: E(t,ϕ(t), z(t)) E(t, ϕ, z) + D(z(t), z) (E) E(t,ϕ(t), z(t)) + Diss D (z,[0, t]) = E(0,ϕ(0), z(0)) + t 0 τ E(τ,ϕ(τ), z(τ)) dτ }{{} power ext. forces Any sufficiently smooth energetic solution solves Elastic equilibrium: 0 = D ϕ E(t,ϕ, z) Plastic flow law: 0 żr(z, ż) + D z E(t,ϕ, z) However, in general energetic solutions have jumps w.r.t. to time. A. Mielke Pisa, 17 Nov. 2007, Rate-Indep., Homogenization and Multiscaling 12/24

4. Existence results Overview 1. Introduction 2. Finite-strain elastoplasticity 3. Energetic solutions for rate-independent systems 4. Existence results 5. Time-dependent boundary data A. Mielke Pisa, 17 Nov. 2007, Rate-Indep., Homogenization and Multiscaling 13/24

4. Existence results Main assumptions on E and D: E(t, ϕ, P, p) Ω W( ϕp 1 )+H(P, p)+u(p, p, P, p)dx l(t), ϕ D(P 0, p 0, P 1, p 1 ) = Ω D(P 0, p 0, P 1, p 1 )dx (A1) Lower semicontinuity: W : R d d R is polyconvex and lsc H : SL(d) R m R is lsc U continuous and U(P, p,, ) is convex D : (SL(d) R m ) (SL(d) R m ) [0, ] lsc (A2) Coercivity: W (F el ) c F el q F C H(P, p) + D(I, p, P, p) c ( P q P+ P 1 q P+ p r ) p C U(P, p, P, p) c ( P r P+ p r ) p C A. Mielke Pisa, 17 Nov. 2007, Rate-Indep., Homogenization and Multiscaling 14/24

4. Existence results Proposition. Let (A1) and (A2) hold with d q P + 1 q F < 1 and r p, r P > 1. Define q ϕ via 1 q ϕ = 1 q P + 1 q F and assume q ϕ > d and l C 1( [0, T],(W 1,q ϕ (Ω; R d )) ). Consider F W 1,q ϕ (Ω; R d ) and Z ( W 1,r P(Ω; R d d ) L q P(Ω; SL(d)) ) W 1,r p (Ω; R m ) equipped with the weak topologies, respectively. Then, D is weakly lower semicontinuous on Z Z E(t, ) has weakly compact sublevels in [0, T] F Z ( coercivity and lower semicontinuity) Lower semicontinuity ϕ k ϕ in L q ϕ and P k P in L q P = minors converge: M s ( ϕ k P 1 k ) M s( ϕp 1 ) in L q s A. Mielke Pisa, 17 Nov. 2007, Rate-Indep., Homogenization and Multiscaling 15/24

4. Existence results Existence via the Incremental Minimization Problem (IP): Partitions 0 = t0 N < tn 1 < < tn K N 1 < tn K N = T (ϕ N k, zn k ) Arg Min{ E(tk N, ϕ, z) + D(zN k 1, z) ϕ F, z Z }. Piecewise constant interpolants (ϕ N, z N ) : [0, T] F Z. Limit passage needs the Joint Recovery Condition If (ϕ n, z n ) stable at t n, (t n,ϕ n, z n ) (t,ϕ, z), E(t n,ϕ n, z n ) C and ( ϕ, ẑ) F Z, then there exists ( ϕ n, ẑ n ) such that lim sup E(t n, ϕ n, ẑ n ) + D(z n, ẑ n ) E(t n,ϕ n, z n ) n E(t, ϕ, ẑ) + D(z, ẑ) E(t,ϕ, z) Easy to satisfy, if D is weakly continuous: ẑ n = ẑ A. Mielke Pisa, 17 Nov. 2007, Rate-Indep., Homogenization and Multiscaling 16/24

4. Existence results Existence Result [Mainik/M. 07] Assume (A1), (A2) and that either (i) or (ii) holds: (i) D : (SL(d) R m ) (SL(d) R m ) [0, ) is continuous and D(P 0, p 0, P 1, z 1 ) C ( P 0 q P+ P 1 q P+ p 0 r p + p 1 r p ) (ii) r P, r p > d and for each (P 0, p 0 ) the set {(P 1, p 1 ) D(P 0, p 0, P 1, p 1 ) < } has nonempty interior. Then, for each stable initial state (ϕ 0, z 0 ) with D(I, p, z 0 ) < there exists an energetic solution (ϕ, z) : [0, T] F Z. Case (i) applies for kinematic hardening (no p needed) Case (ii) is needed for isotropic hardening, i.e., p R: H(P, p) = exp(κp), D(I, p 0, P, p 1 ) = { p1 p 0 for p 1 p 0 log(p T P) else A. Mielke Pisa, 17 Nov. 2007, Rate-Indep., Homogenization and Multiscaling 17/24

5. Time-dependent boundary data Overview 1. Introduction 2. Finite-strain elastoplasticity 3. Energetic solutions for rate-independent systems 4. Existence results 5. Time-dependent boundary data A. Mielke Pisa, 17 Nov. 2007, Rate-Indep., Homogenization and Multiscaling 18/24

5. Time-dependent boundary data Essential idea in Francfort/M. 2006 using Francfort, Dal Maso, Toader 2005 and Ball 2002 Dirchlet data ϕ(t, x) = ϕ Dir (t, x) for (t, x) [0, T] Γ Dir. Usual additive ansatz: ϕ(t, ) = ϕ Dir (t, ) + ψ(t, ) with ψ(t) F = {ψ W 1,q ϕ (Ω; R d ) ψ ΓDir = 0 } E(t,ψ, z) = E(t,ϕ Dir (t)+ψ, z) Power of external loading (now including power of ϕ Dir ) t E(t,ψ, z) = Ω F W (( ϕ Dir (t)+ ψ)p 1 ): ( ϕ }{{} Dir P 1) }{{} 1 st Piola-Kirchhoff tensor.t L q (Ω) dx l(t),ψ In general we cannot expect T L q (Ω), not even L 1 (Ω) A. Mielke Pisa, 17 Nov. 2007, Rate-Indep., Homogenization and Multiscaling 19/24

5. Time-dependent boundary data Way out? Matrices are elements of Lie groups: Multiply!! Extend ϕ Dir to all of R d, namely g Dir C 2 ([0, T] R d ; R d ) such that g Dir,( g Dir ) 1 L ([0, T] R d ; R d d ) ϕ(t, x) = g Dir (t,ψ(t, x)) with ψ(t) F = {ψ W 1,q ϕ (Ω; R d ) ψ ΓDir = id ΓDir } Chain rule replaces linearity: x ϕ(t, x) = y g Dir (t,ψ(t, x)) x ψ(t, x) Ẽ(t,ψ, z) = E(t, g Dir (t, ) ψ, z) Power of external loading t Ẽ(t,ψ, z) = Ω F W ( g Dir (t,ψ) ψp 1 ): ( ġ Dir (t,ψ) ψp 1) dx A. Mielke Pisa, 17 Nov. 2007, Rate-Indep., Homogenization and Multiscaling 20/24

5. Time-dependent boundary data t Ẽ(t,ψ, z) = = Ω Ω F W ( g }{{ Dir ψ P 1 ): ( ġ }}{{} Dir ψp 1) dx }{{} G F H F W (GFP 1 )(GFP 1 ) T : ( HFP 1 (GFP 1 ) 1) }{{}}{{} Kirchhoff K(GFP 1 ) V:=HG 1 dx V L ([0, T] Ω; R d d ) independently of ψ : [0, T] F Multiplicative stress control (Baumann,Phillips,Owen 91, Ball 02) Kirchhoff tensor K(F) := F W (F)F T c 0, c 1 F GL + (d) + (R d ) : K(F) c 1 ( W (F)+c0 ) A. Mielke Pisa, 17 Nov. 2007, Rate-Indep., Homogenization and Multiscaling 21/24

5. Time-dependent boundary data Multiplicative stress control is compatible with finite-strain polyconvexity: W (F) = α F q + β (det F) γ T(F) = αq F q 2 F K = TF T = αq F q 2 FF T βγ (det F) γ+1 cof F (not bounded by W ) βγ (det F) γ I Hence, K(F) maxα,β dw (F). (as (cof F) F T = (det F)I) Corollary: There exist c0 E, ce 1 such that t Ẽ(t,ψ, z) c1 E (Ẽ(t,ψ, ) z) + c E 0 whenever the right-hande side is finite. Provides useful a priori energetic estimates needs of course sufficient hardening Alber s group: Self-controling property A. Mielke Pisa, 17 Nov. 2007, Rate-Indep., Homogenization and Multiscaling 22/24

Conclusion Using full regularization and strong coercivity the existence of energetic solutions can be shown for many plasticity models. Future tasks: Study formation of microstructure for vanishing regularization: U(z, z) = ε z r with ε 0 Study failure via localization for vanishing strong coercivity H(P, p) = p 2 + ε exp(κ p ) for ε 0 deformation gradients ϕ ε behaves badly, but energy densities and stresses have suitable limits (cf. [Bouchitté/M/Roubíček 07]) Replace global minimization by local minimization in (IP) viscous approximations A. Mielke Pisa, 17 Nov. 2007, Rate-Indep., Homogenization and Multiscaling 23/24

Thank you for your attention! Papers available under http://www.wias-berlin.de/people/mielke C. Carstensen, K. Hackl, and A. Mielke. Non-convex potentials and microstructures in finite-strain plasticity. Proc. Royal Soc. London, Ser. A, 458: 299-317, 2002. A. Mielke. Existence of minimizers in incremental elasto-plasticity with finite strains. SIAM J. Math. Analysis, 36: 384-404, 2004. A. Mielke and S. Müller. Lower semicontinuity and existence of minimizers for a functional in elastoplasticity. Z. angew. Math. Mech., 86: 233-250, 2006. E. Gürses, A. Mainik, C. Miehe, and A. Mielke. Analytical and numerical methods for finite-strain elastoplasticity. In Helmig/Mielke/Wohlmuth (eds), Multifield problems in Fluid and Solid Mechanics. Springer 2006, pp. 491-529 (WIAS preprint 1127). A. Mainik, A. Mielke. Global existence for rate-independent gradient plasticity at finite strain. December 2007. A. Mielke Pisa, 17 Nov. 2007, Rate-Indep., Homogenization and Multiscaling 24/24