Optimization Problems with Linear Chance Constraints Structure, Numerics and Applications. R. Henrion

Similar documents
Optimization Problems with Probabilistic Constraints

Lipschitz and differentiability properties of quasi-concave and singular normal distribution functions

A gradient formula for linear chance constraints under Gaussian distribution

Chance Constrained Problems

PROGRAMMING UNDER PROBABILISTIC CONSTRAINTS WITH A RANDOM TECHNOLOGY MATRIX

A CONVEXITY THEOREM IN PROGRAMMING UNDER PROBABILISTIC CONSTRAINTS

Chance constrained optimization - applications, properties and numerical issues

4. Convex optimization problems

Ambiguity in portfolio optimization

Sharp bounds on the VaR for sums of dependent risks

The Multivariate Normal Distribution. In this case according to our theorem

ORIGINS OF STOCHASTIC PROGRAMMING

Stability of optimization problems with stochastic dominance constraints

Part IB Optimisation

Semidefinite and Second Order Cone Programming Seminar Fall 2012 Project: Robust Optimization and its Application of Robust Portfolio Optimization

Convex optimization problems. Optimization problem in standard form

component risk analysis

A Representation of Excessive Functions as Expected Suprema

Reformulation of chance constrained problems using penalty functions

arxiv: v2 [math.ap] 23 Apr 2014

Robustness in Stochastic Programs with Risk Constraints

3.3 Easy ILP problems and totally unimodular matrices

MEAN VALUE METHODS IN ITERATION

Lecture 2: Linear Algebra Review

Stochastic Optimization for Operating Chemical Processes under Uncertainty

A Linear Complementarity Time-Stepping Scheme for Rigid Multibody Dynamics with Nonsmooth Shapes. Gary D. Hart University of Pittsburgh

EMPIRICAL ESTIMATES IN STOCHASTIC OPTIMIZATION VIA DISTRIBUTION TAILS

A Minimax Theorem with Applications to Machine Learning, Signal Processing, and Finance

Robust Process Control by Dynamic Stochastic Programming

Conditioning of linear-quadratic two-stage stochastic programming problems

2 Chance constrained programming

Author's personal copy

Multivariate Distributions

Lecture 9: Dantzig-Wolfe Decomposition

Thomas Knispel Leibniz Universität Hannover

Scenario generation in stochastic programming with application to energy systems

11. Equality constrained minimization

Airline Network Revenue Management by Multistage Stochastic Programming

Part II: Integral Splittable Congestion Games. Existence and Computation of Equilibria Integral Polymatroids

Dual Decomposition.

ST5215: Advanced Statistical Theory

Solving the MWT. Recall the ILP for the MWT. We can obtain a solution to the MWT problem by solving the following ILP:

OPERATIONS RESEARCH. Linear Programming Problem

Analysis and Linear Algebra. Lectures 1-3 on the mathematical tools that will be used in C103

Semidefinite Programming

Werner Romisch. Humboldt University Berlin. Abstract. Perturbations of convex chance constrained stochastic programs are considered the underlying

Mobile Robotics 1. A Compact Course on Linear Algebra. Giorgio Grisetti

Stochastic Programming: From statistical data to optimal decisions

Assignment 1 Math 5341 Linear Algebra Review. Give complete answers to each of the following questions. Show all of your work.

Sample Average Approximation Method. for Chance Constrained Programming: Theory and Applications

Deterministic Operations Research, ME 366Q and ORI 391 Chapter 2: Homework #2 Solutions

MVE165/MMG631 Linear and integer optimization with applications Lecture 5 Linear programming duality and sensitivity analysis

Information Dimension

Jitka Dupačová and scenario reduction

ALGORITHMS FOR MINIMIZING DIFFERENCES OF CONVEX FUNCTIONS AND APPLICATIONS

Discrete Optimization

Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function.

Supermodular ordering of Poisson arrays

Real-Time Optimization (RTO)

A note on scenario reduction for two-stage stochastic programs

3 Development of the Simplex Method Constructing Basic Solution Optimality Conditions The Simplex Method...

Generalized Convexity in Economics

Multivariable Calculus

Section Notes 9. Midterm 2 Review. Applied Math / Engineering Sciences 121. Week of December 3, 2018

Technische Universität München, Zentrum Mathematik Lehrstuhl für Angewandte Geometrie und Diskrete Mathematik. Combinatorial Optimization (MA 4502)

Distributionally Robust Discrete Optimization with Entropic Value-at-Risk

Complexity of two and multi-stage stochastic programming problems

Stochastic Subgradient Methods

Chapter 2: Preliminaries and elements of convex analysis

Scenario estimation and generation

Introduction and Math Preliminaries

SOME REMARKS ON KRASNOSELSKII S FIXED POINT THEOREM

RISK AND RELIABILITY IN OPTIMIZATION UNDER UNCERTAINTY

R u t c o r Research R e p o r t. Application of the Solution of the Univariate Discrete Moment Problem for the Multivariate Case. Gergely Mádi-Nagy a

Econ 2148, spring 2019 Statistical decision theory

Silvia Vogel. Random Approximations in Multiobjective Optimization. Ilmenau University of Technology Weimarer Strae Ilmenau Germany

SOME HISTORY OF STOCHASTIC PROGRAMMING

Outer limits of subdifferentials for min-max type functions

1 Integer Decomposition Property

Asymptotics of minimax stochastic programs

Linear and Integer Programming - ideas

A direct formulation for sparse PCA using semidefinite programming

Seminars on Mathematics for Economics and Finance Topic 5: Optimization Kuhn-Tucker conditions for problems with inequality constraints 1

Linear programs, convex polyhedra, extreme points

Chapter 1: Linear Programming

PARTIAL REGULARITY OF BRENIER SOLUTIONS OF THE MONGE-AMPÈRE EQUATION

NUMERICAL METHODS FOR PROBABILISTIC CONSTRAINED OPTIMIZATION PROBLEM WHERE RANDOM VARIABLES HAVE DEGENERATE CONTINUOUS DISTRIBUTION.

Covariograms of convex bodies in the plane: A remark on Nagel s theorem

LINEAR INTERVAL INEQUALITIES

Dependence. MFM Practitioner Module: Risk & Asset Allocation. John Dodson. September 11, Dependence. John Dodson. Outline.

SHADOWING AND INVERSE SHADOWING IN SET-VALUED DYNAMICAL SYSTEMS. HYPERBOLIC CASE. Sergei Yu. Pilyugin Janosch Rieger. 1.

Linear Programming Methods

Multicommodity Flows and Column Generation

n! (k 1)!(n k)! = F (X) U(0, 1). (x, y) = n(n 1) ( F (y) F (x) ) n 2

Lecture notes on statistical decision theory Econ 2110, fall 2013

Multi-dimensional Stochastic Singular Control Via Dynkin Game and Dirichlet Form

Introduction to Mobile Robotics Compact Course on Linear Algebra. Wolfram Burgard, Cyrill Stachniss, Maren Bennewitz, Diego Tipaldi, Luciano Spinello

A direct formulation for sparse PCA using semidefinite programming

NON-STANDARD PARTIAL INTEGRATION: IMPLICATIONS TO MAXWELL AND KORN INEQUALITIES OR HOW ONE CANNOT APPLY THE CLOSED GRAPH THEOREM!

Chapter 4: Interpolation and Approximation. October 28, 2005

Transcription:

Optimization Problems with Linear Chance Constraints Structure, Numerics and Applications R. Henrion Weierstraß-Institut Berlin Introduction with Examples Structure (convexity, differentiability, existence of solutions) Numerics (singular normal distributions) 75. Sitzung der GOR Arbeitsgruppe Praxis der Mathematischen Optimierung Optimization under Uncertainty Bad Honnef, October 20-21, 2005

Chance Constraints system of stochastic inequalities g x, 0 random parameter (meteorological data, product demands, prices, return rate) 'here-and-now'- decisions: x deterministic reformulations: a) expected-value constraint: Egx, 0 or g x, E 0 b) worst-case constraint: g x, 0 c) chance-constraint: P g x, 0 p p0,1

Portfolio-Optimization (1) Distribute capital K among n assets with random return. simplest model: maximize expected return! x i capital put on asset i, i return rate for asset i random vector, assumption: N, normally distributed linear optimization problem: 0.5 0.5 Example: 1.2,1.3, 0.5 0.5 n max,x i1 x i K, x i 0 Distribution of Return probability of loss: 33.4% expected value

random return:, x Portfolio-Optimization (2) probability of surplus: optimization problem with chance constraints: max,x i1 n x i K, x i 0, P,x K p P, xk p0,1 expected return p=0.9 p=0.8 p=0.7 probability of surplus

A Problem from Chemical Engineering R.H., P. Li, A. Möller, M. Wendt, G. Wozny (Comp.&Math. Appl. 2003) Distillation (Methanole-Water) Modeled by large DAE-System continuous (stochastic) inflow level constraints (as chance constraints)

Optimal Control feed rate F heating Q reflux R p = 0.90/0.99 8 selected state variables in 20 trays of column

Simulated Inflow Profiles Application of optimal feed rate to 100 simulated inflow profiles (Gaussian Process) p = 0.99 optimal feed rate supposing the expected inflow profile Optimal value (OV) of the objective versus safety level (p) OV p

Stochastic Reservoir Constraints 1,..., n x x 1,..., x n l 0 F discretized stochastic inflow to reservoir discretized control of feed extraction from reservoir initial filling level of reservoir upper filling level allowed for reservoir Stochastic reservoir constraints: i l 0 j x j j1 j1 fillinglevelattimei i F i1,...,n Chance Constraints: P L x p regular, triangular

Capacity Expansion in Stochastic Networks Graph with stochastic load in the nodes and with capacities x in the arcs 1 x 1 1 x 1 2 x 2 x 1 + 3 2 x 2 2 1 2 x 3 Chance Constraint Model: P Ax p A not surjective! number of inequalities larger than dimension of random vector

3 Basic Types of Chance Constraints (CC) CC with stochastic coefficient matrix: P xa p (e.g., portfolio optimization, mixture problems) CC with separated randomness: P Ax p a) regular case: A surjective (e.g., stochastic reservoir-constraints) b) singular case: A not surjective occurs when number of inequalities exceeds dimension of random vector (e.g., networks with stochastic demand, robotics: collision avoidance with random obstacles)

Structural Properties of CCs with Stochastic Coefficient Matrix R.H. (SPEPS 2005) Theorem: (Van de Panne/Popp, Kataoka, 1963) Let N,, positive definite. Then, M: x n Px, p is convex for p0.5. Extended Model: M p : x n Pqx, p

An extended convexity result M p : x n Pqx, p Theorem: Let have an ellipticallysymmetric distribution with density and parameters, positive definite.. Under each! of the following assumptions: 1. q is affinelinear or 2. q i 0, convex, i 0, i,j 0 it holds that M p is convex for alle and all p0.5.

Exact domains of convexity, nontriviality and compactness M p : x n Pqx, p, N,, positive definite : 10.5 Theorem: Let q be affine linear a n d regular. Then, domain of convexity domain of nontriviality 0.5 0.5 0.5 p 0.5 0.5 0.5 p domain of compactness 0.5 0.5 0.5

Existence of Solutions to Problems with Stochastic Coefficient Matrix Optimization problem: P min f xp q xa p p0,1 Theorem: f lower semicontinuous i N i, i, i rows of, i positive definite a 0 q homeomorphism e.g., q xx P has a solution for p min i i 1 i 1

Singular Normal Distributions and Quasiconcave Measures CC with separated randomness: P Ax p P Ax p F x p with : A distribution function of Special case: normal distribution: N, N A, A A T regular regular case: A surjective A A T regular singular case: A not surjective A A T singular F is a singular normal distribution

Lipschitz continuity of quasiconcave Measures R.H., W. Römisch (Ann. Oper. Res. 2005) Theorem: Let have a quasiconcave distribution (e.g., regular or singular normal, uniform, Pareto, Dirchlet, lognormal, Gamma etc.). Then, the distribution function of is (Lipschitz) continuous iff Var i 0 i. Example: Singular normal distribution with covariance matrix of rank 1 C 1 0 0 0 C 1 1 1 1

Reduction of singular normal distribution functions to regular ones J. Bukszar, R.H., M. Hujter, T. Szantai (SPEPS 2004) N,, AA T, M xuaux, I u,xi a i, ux i singular Cholesky-decomposition induced polyhedron active index set at u I M x I u M x: I u,xi family of all active index sets x is called nondegenerate, if rank a i ii I I I M x Theorem: If x nondegenerate F x 1 I I M x 1 I F I x I I N I, A I A I T regular singular normal distribution sum of regular normal distributions

If F I Gradient Formula and Algorithm x nondegenerate F x 1 I I M x 1 I F I x I smooth regular normal distribution function x nondegenerate I M x locally constant Corollary: If x nondegenerate F x I I M x 1 I1 F I x I Algorithm: 1. Determine all corners of M x Fukuda, Scdd 2. Compute I Mx as family of subsets of corner index sets 3. Calculate the F by formula from regular normal distributions F I Genz, Szantai 4. Calculate gradients by reduction t o functional values

Numerical Tests Dim: 5 x 10 Prob.: 0.982894 Error: 0.000001 Poly: 1.00 Szantai: 1599.89 Deak: 24579.00 MC: 1715262.63 Genz: 2236403.28 Dim: 5 x 15 Prob.: 0.942901 Error: 0.000002 Poly: 1.00 Deak: 16200.45 Szantai: 105322.83 MC: 720219.79 Genz: 1422991.07 Dim: 5 x 20 Prob.: 0.947281 Error: 0.000002 Poly: 1.00 Deak: 7594.09 Szantai: 27126.86 MC: 360681.66 Genz: 614578.55 Dim: 5 x 25 Prob.: 0.954225 Error: 0.000002 Poly: 1.00 Szantai: 597.93 Deak: 960.76 MC: 48868.45 Genz: 58847.63 Dim: 10 x 20 Prob.: 0.974131 Error: 0.000001 Poly: 1.00 Szantai: 174.41 Deak: 217.08 MC: 1888.59 Genz: 3852.22 Dim: 10 x 25 Prob.: 0.977193 Error: 0.000001 Poly: 1.00 Szantai: 16.08 Deak: 67.87 MC: 601.72 Genz: 1583.00 Dim: 15 x 20 Prob.: 0.940839 Error: 0.000003 Poly: 1.00 Szantai: 2.79 Deak: 4.37 MC: 16.68 Genz: 21.22 Dim: 15 x 25 Prob.: 0.987551 Error: 0.000003 Szantai: 1.00 Deak: 55.42 MC: 204.00 Genz: 373.16 Poly: not available

Stabilität in Problemen mit separiertem Zufall R.H., W. Römisch (Math. Prog. 2004) gegebenes Optimierungsproblem: P min f xx X, F Ax p Verteilung von oft unbekannt. Approximation durch z.b. auf der Basis historischer Daten. Stabilität von Lösungen und Optimalwerten in (P) bei kleinen Störungen? Maß für Störung (Kolmogorov-Abstand): d K, sup z nf z F z Lösungsmengenabbildung: argmin f xx X,F Ax p Optimalwertfunktion: inf f xx X,F Ax p Originalproblem

Qualitative und quantitative Stabilität P min f xx X,F Ax p f konvex, X konvexundabgeschlossen, log F konvex Theorem: für viele multivariate Verteilungen erfüllt (Prekopa) Lösungsmenge von (P) nichtleer und beschränkt x X: F Ax p Slaterpunkt 1. ist oberhalbstetig i n 2. Ld K, lokal Falls zusätzlich: f linearquadratisch, X Polyeder, log F stark konvex 3. d H, Ld K, 12 lokal

Exponentielle Schranken für empirische Approximationen Ausgangsproblem: min f xx X,F Ax p Sei N eine Folge unabhängiger Zufallsvektoren. N Empirische Approximation: N : N 1 i1 i Dvoretzky-Kiefer-Wolfowitz Ungleichung: P d K N,C 1 expc 2 2 N Unter den Voraussetzungen des qualitativen Stabilitätsresultates folgt: 1 0 x N N : Pdx N, N 1. 2 0, 0 : P N 2C 1 expc 2 N 2 L 2 Unter den Voraussetzungen des quantitativen Stabilitätsresultates folgt: 3 0, 0 : Pd H N, 2C 1 expc 2 N 4 L 4