Adaptive Boundary Element Methods Part 2: ABEM. Dirk Praetorius

Similar documents
Quasi-optimal convergence rates for adaptive boundary element methods with data approximation, Part II: Hyper-singular integral equation

Adaptive Boundary Element Methods Part 1: Newest Vertex Bisection. Dirk Praetorius

Axioms of Adaptivity (AoA) in Lecture 1 (sufficient for optimal convergence rates)

Rate optimal adaptive FEM with inexact solver for strongly monotone operators

Axioms of Adaptivity (AoA) in Lecture 3 (sufficient for optimal convergence rates)

Axioms of adaptivity. ASC Report No. 38/2013. C. Carstensen, M. Feischl, M. Page, D. Praetorius

Adaptive Finite Element Methods Lecture 1: A Posteriori Error Estimation

Convergence and optimality of an adaptive FEM for controlling L 2 errors

Axioms of Adaptivity

Preconditioned space-time boundary element methods for the heat equation

A posteriori error estimation for elliptic problems

Axioms of Adaptivity (AoA) in Lecture 2 (sufficient for optimal convergence rates)

Integral Representation Formula, Boundary Integral Operators and Calderón projection

INTRODUCTION TO FINITE ELEMENT METHODS

Fact Sheet Functional Analysis

HILBERT? What is HILBERT? Matlab Implementation of Adaptive 2D BEM. Dirk Praetorius. Features of HILBERT

Domain Decomposition Algorithms for an Indefinite Hypersingular Integral Equation in Three Dimensions

Scientific Computing WS 2018/2019. Lecture 15. Jürgen Fuhrmann Lecture 15 Slide 1

Sobolev Spaces. Chapter 10

Numerical Solutions to Partial Differential Equations

From the Boundary Element Domain Decomposition Methods to Local Trefftz Finite Element Methods on Polyhedral Meshes

R T (u H )v + (2.1) J S (u H )v v V, T (2.2) (2.3) H S J S (u H ) 2 L 2 (S). S T

From the Boundary Element DDM to local Trefftz Finite Element Methods on Polyhedral Meshes

Technische Universität Graz

Technische Universität Graz

Variational Formulations

Numerical Solutions to Partial Differential Equations

Scientific Computing WS 2017/2018. Lecture 18. Jürgen Fuhrmann Lecture 18 Slide 1

Finite Element Error Estimates in Non-Energy Norms for the Two-Dimensional Scalar Signorini Problem

LECTURE # 0 BASIC NOTATIONS AND CONCEPTS IN THE THEORY OF PARTIAL DIFFERENTIAL EQUATIONS (PDES)

Sobolev spaces, Trace theorems and Green s functions.

Space time finite and boundary element methods

A Posteriori Existence in Adaptive Computations

LECTURE 1: SOURCES OF ERRORS MATHEMATICAL TOOLS A PRIORI ERROR ESTIMATES. Sergey Korotov,

Applied/Numerical Analysis Qualifying Exam

A non-standard Finite Element Method based on boundary integral operators

The Mortar Boundary Element Method

1. Introduction. This paper is devoted to the numerical treatment of the hypersingular

Regularity for Poisson Equation

S chauder Theory. x 2. = log( x 1 + x 2 ) + 1 ( x 1 + x 2 ) 2. ( 5) x 1 + x 2 x 1 + x 2. 2 = 2 x 1. x 1 x 2. 1 x 1.

Outline of Fourier Series: Math 201B

Adaptive Finite Element Methods Lecture Notes Winter Term 2017/18. R. Verfürth. Fakultät für Mathematik, Ruhr-Universität Bochum

Basic Concepts of Adaptive Finite Element Methods for Elliptic Boundary Value Problems

Space-time sparse discretization of linear parabolic equations

Sobolev Spaces. Chapter Hölder spaces

On an Approximation Result for Piecewise Polynomial Functions. O. Karakashian

Maximum-norm a posteriori estimates for discontinuous Galerkin methods

Friedrich symmetric systems

c 2006 Society for Industrial and Applied Mathematics

Institut für Mathematik

Traces, extensions and co-normal derivatives for elliptic systems on Lipschitz domains

Institut de Recherche MAthématique de Rennes

Numerische Mathematik

When is the error in the h BEM for solving the Helmholtz equation bounded independently of k?

Isogeometric Analysis:

Adaptive FEM with coarse initial mesh guarantees optimal convergence rates for compactly perturbed elliptic problems

Controllability of the linear 1D wave equation with inner moving for

The Dirichlet s P rinciple. In this lecture we discuss an alternative formulation of the Dirichlet problem for the Laplace equation:

Some lecture notes for Math 6050E: PDEs, Fall 2016

Lecture Notes: African Institute of Mathematics Senegal, January Topic Title: A short introduction to numerical methods for elliptic PDEs

Finite Elements. Colin Cotter. February 22, Colin Cotter FEM

Laplace s Equation. Chapter Mean Value Formulas

Introduction to finite element exterior calculus

LECTURE 5 APPLICATIONS OF BDIE METHOD: ACOUSTIC SCATTERING BY INHOMOGENEOUS ANISOTROPIC OBSTACLES DAVID NATROSHVILI

ACM/CMS 107 Linear Analysis & Applications Fall 2017 Assignment 2: PDEs and Finite Element Methods Due: 7th November 2017

An optimal adaptive finite element method. Rob Stevenson Korteweg-de Vries Institute for Mathematics Faculty of Science University of Amsterdam

Green s Functions and Distributions

Math The Laplacian. 1 Green s Identities, Fundamental Solution

BIHARMONIC WAVE MAPS INTO SPHERES

A Multigrid Method for Two Dimensional Maxwell Interface Problems

Adaptive approximation of eigenproblems: multiple eigenvalues and clusters

CONVERGENCE THEORY. G. ALLAIRE CMAP, Ecole Polytechnique. 1. Maximum principle. 2. Oscillating test function. 3. Two-scale convergence

Finite-dimensional spaces. C n is the space of n-tuples x = (x 1,..., x n ) of complex numbers. It is a Hilbert space with the inner product

Lecture No 1 Introduction to Diffusion equations The heat equat

Projected Surface Finite Elements for Elliptic Equations

Recovery-Based A Posteriori Error Estimation

Sobolev spaces. May 18

Lecture on: Numerical sparse linear algebra and interpolation spaces. June 3, 2014

Finite Elements on Degenerate Meshes: Inverse-type Inequalities and Applications

A DELTA-REGULARIZATION FINITE ELEMENT METHOD FOR A DOUBLE CURL PROBLEM WITH DIVERGENCE-FREE CONSTRAINT

A Concise Course on Stochastic Partial Differential Equations

Weak Formulation of Elliptic BVP s

HARMONIC ANALYSIS. Date:

Partial Differential Equations and Sobolev Spaces MAT-INF4300 autumn Snorre H. Christiansen November 10, 2016

L. Levaggi A. Tabacco WAVELETS ON THE INTERVAL AND RELATED TOPICS

Sobolevology. 1. Definitions and Notation. When α = 1 this seminorm is the same as the Lipschitz constant of the function f. 2.

Lecture 8: Boundary Integral Equations

arxiv: v1 [math.na] 19 Nov 2018

Functional Analysis. Franck Sueur Metric spaces Definitions Completeness Compactness Separability...

Solution of Non-Homogeneous Dirichlet Problems with FEM

i=1 α i. Given an m-times continuously

THE STOKES SYSTEM R.E. SHOWALTER

Kernel Method: Data Analysis with Positive Definite Kernels

Local pointwise a posteriori gradient error bounds for the Stokes equations. Stig Larsson. Heraklion, September 19, 2011 Joint work with A.

Error analysis and fast solvers for high-frequency scattering problems

Applied Analysis (APPM 5440): Final exam 1:30pm 4:00pm, Dec. 14, Closed books.

On some weighted fractional porous media equations

Weak Convergence Methods for Energy Minimization

ELLIPTIC RECONSTRUCTION AND A POSTERIORI ERROR ESTIMATES FOR PARABOLIC PROBLEMS

weak Galerkin, finite element methods, interior estimates, second-order elliptic

Transcription:

CENTRAL School on Analysis and Numerics for PDEs November 09-12, 2015 Adaptive Boundary Element Methods Part 2: ABEM Dirk Praetorius TU Wien Institute for Analysis and Scientific Computing

Outline 1 Boundary Element Method 2 2D Example 3 Stability (A1) & Reduction (A2) 4 Discrete Reliability (A3) 5 Linear Convergence 6 Optimality 7 3D Examples http://www.asc.tuwien.ac.at/ praetorius/central02 praetorius.pdf Dirk Praetorius (TU Wien) 1 / 75

Boundary Element Method Dirk Praetorius (TU Wien)

Boundary Element Method Newton kernel G(z) := Fundamental solution 1 2π + 1 4π log z for d = 2 1 z for d = 3 note S 2 2 = 2π and S3 2 = 4π for unit sphere Sd 2 Rd j G(z) = 1 S d 2 z j z d jk G(z) = 1 δ jk z 2 d z j z k S2 d z d+2 = G(z) = 0 for z 0 polar coordinates = G L 2 loc (Rd ), j G L 1 loc (Rd ) Dirk Praetorius (TU Wien) 2 / 75

Boundary Element Method Representation formula Proposition (Representation formula) Ω R d bounded u C 2 (Ω) define f := u define φ := n u ˆ ˆ = u(x) = G(x y)f(y) dy + G(x y) φ(y) ds y Ωˆ Γ n(y) G(x y) u(y) ds y for all x Ω Γ proof by integration by parts for Ω ε := Ω\B ε (x) and then ε 0 v(y) := G(x y) C (Ω) = u ; v L 2 (Ω ε) + n u ; v L 2 (Γ ε) = v ; u L 2 (Ω ε) + n v ; u L 2 (Γ ε) if trace u Γ and normal derivative n u known on Γ = solution of u = f can be computed in Ω Dirk Praetorius (TU Wien) 3 / 75

Boundary Element Method ˆ Ṽ φ(x) := Γ Potential operators G(x y) φ(y) ds y G(z) = 0 = Ṽ φ(x) = 0 in Ω ˆ Ku(x) := Γ n(y) G(x y) u(y) ds y G(z) = 0 = Ku(x) = 0 in Ω ˆ Ñf(x) := Ω G(x y)f(y) dy single-layer potential double-layer potential Newton potential representation formula = u = Ñ( u) + Ṽ ( nu) K(u Γ ) in Ω Dirk Praetorius (TU Wien) 4 / 75

Boundary Element Method Double-layer potential representation formula u = Ñ( u) + Ṽ ( nu) K(u Γ ) for u = 1 = K1 = 1 in Ω, since u = 0 = n u same argument applied for Ω ε := Ω B ε (x) = K1 = 0 in R d \Ω Ku has a jump ˆ across Γ Ku(x) := n(y) G(x y) u(y) dy for x R d \Ω Γ note critical singularity order (d 1) of the integral kernel! ˆ Consider Ku(x) := C = K1 = 1/2 a.e. on Γ Γ n(y) G(x y) u(y) dy for x Γ can show (K 1/2)u = ( Ku) Γ a.e. on Γ Dirk Praetorius (TU Wien) 5 / 75

Boundary Element Method Newton potential ˆ Ñf(x) := Ω G(x y)f(y) dy = G f is convolution f Cc (Ω) = Ñ C (R d ) with f = Ñ( f) = (Ñf) f = Ñ( f) follows from representation formula Ñ( f) = (Ñf) follows from convolution + integration by parts therefore: G is called fundamental solution of Dirk Praetorius (TU Wien) 6 / 75

Boundary Element Method Sobolev spaces 1/3 each f L 2 (Ω) defines linear continuous function on H 1 (Ω) f(v) f ; v L 2 (Ω) are these all linear continuous functionals on H 1 (Ω)? essentially yes! Lemma (idea of Gelfand triple) X, Y real Hilbert spaces with continuous inclusion X Y Riesz mapping J Y : Y Y, J Y y := y ; Y = J Y L(Y, X ) with J Y (Y ) X dense X = H 1 (Ω), Y = L 2 (Ω) extended L 2 scalar product becomes duality bracket Dirk Praetorius (TU Wien) 7 / 75

Boundary Element Method Sobolev spaces 2/3 Lemma (idea of Gelfand triple) X, Y real Hilbert spaces with continuous inclusion X Y Riesz mapping J Y : Y Y, J Y y := y ; Y = J Y L(Y, X ) with J Y (Y ) X dense Proof. x X, y Y = y ; x Y y Y x Y y Y x X = y ; Y X y Y = J Y L(Y, X ) J Y (Y ) X dense V := J 1 X J Y (Y ) X dense X = V V = goal: V = {0} x V = 0 = x ; J 1 X J Y x X = (J Y x)(x) = x ; x Y = x 2 Y Dirk Praetorius (TU Wien) 8 / 75

Boundary Element Method Sobolev spaces 3/3 H 1/2 (Γ) := { v L 2 (Γ) : v 2 H 1/2 (Γ) = v 2 L 2 (Γ) + v 2 H 1/2 (Γ) < } v 2 H 1/2 (Γ) :=ˆ Γ ˆ Γ v(x) v(y) 2 x y d ds y ds y Sobolev-Slobodeckij seminorm fact: H 1/2 (Γ) = { u Γ : u H 1 (Ω) } is trace space of H 1 (Ω) H 1/2 (Γ) is dual space of H 1/2 (Γ) w.r.t. L 2 (Γ)-scalar product since H 1/2 (Γ) L 2 (Γ) continuous Dirk Praetorius (TU Wien) 9 / 75

Boundary Element Method Single-layer potential & double-layer potential Theorem (single-layer potential) Ṽ L(H 1/2 (Γ), H 1 (Ω)) s.t. Ṽ φ = 0 for all φ H 1/2 (Γ) V φ := (Ṽ φ) Γ = V L(H 1/2 (Γ), H 1/2 (Γ)) (K + 1/2)φ := n (Ṽ φ) = K L(H 1/2 (Γ), H 1/2 (Γ)) Theorem (double-layer potential) K L(H 1/2 (Γ), H 1 (Ω)) s.t. Kv = 0 for all v H 1/2 (Γ) (K 1/2)v := ( Kv) Γ = K L(H 1/2 (Γ), H 1/2 (Γ)) W := n ( Kv) = W L(H 1/2 (Γ), H 1/2 (Γ)) Dirk Praetorius (TU Wien) 10 / 75

Boundary Element Method Single-layer integral operator Theorem (single-layer integral operator) V L(H 1/2 (Γ), H 1/2 (Γ)) is symmetric ˆ ˆ φ ; V ψ L 2 (Γ) = φ(x)g(x y)ψ(y) ds y ds x = ψ ; V φ L 2 (Γ) and elliptic (for diam(ω) < 1 in 2D) Γ Γ φ ; V φ L 2 (Γ) φ 2 H 1/2 (Γ) in particular, isomorphism Idea for ellipticity. u := Ṽ φ satisfies [ nu] := n u n extu = φ n u 2 H 1/2 (Γ) u 2 L 2 (Ω) = nu ; u Γ ext n u 2 H 1/2 (Γ) u 2 = L 2 (R d \Ω) extu ; u Γ = φ 2 H 1/2 (Γ) [ nu] ; u L 2 (Γ) = φ ; V φ L 2 (Γ) n Dirk Praetorius (TU Wien) 11 / 75

Boundary Element Method Weakly-singular integral equation solve u = 0 in Ω with u = g on Γ representation formula u = Ṽ ( nu) Kg in Ω trace g = V ( n u) (K 1/2)g on Γ = weakly-singular integral equation V φ = (K + 1/2)g on Γ has unique solution φ = n u discretization of weakly-singular IE = approximation φ Φ l = approximation u U l := Ṽ Φ l Kg Dirk Praetorius (TU Wien) 12 / 75

Boundary Element Method Comments BEM requires fundamental solution essentially requires homogeneous forces, e.g., u = 0 BEM leads to dense matrices BEM allows for higher convergence rates BEM only requires surface discretization BEM can treat unbounded domains Steinbach: Teubner, 2003 (German), 2008 (English) Sauter, Schwab: Teubner, 2004 (German), Springer 2011 (English) Dirk Praetorius (TU Wien) 13 / 75

Boundary Element Method What is HILBERT? Hilbert Is a Lovely Boundary Element Research Tool Matlab library for h-adaptive Galerkin BEM lowest-order elements for 2D Laplacian P 0 for normal derivatives S 1 for traces research code for FWF project P21732 overview on current state of the art starting point for further investigations http://www.asc.tuwien.ac.at/abem/hilbert/ Dirk Praetorius (TU Wien) 14 / 75

Boundary Element Method Example: Point Errors 10 0 10 2 N 2/3 estimators and point error in Ω 10 4 10 6 10 8 10 10 10 12 10 14 η D,l (unif., nodal) err Ω,l (unif., nodal) η D,l (unif., L 2 -projection) err Ω,l (unif., L 2 -projection) η D,l (adap., nodal) err Ω,l (adap., nodal) η D,l (adap., L 2 -projection) err Ω,l (adap., L 2 -projection) N 3 N 2 N 3/2 N 4/3 10 0 10 1 10 2 10 3 10 4 10 5 number N = #E l of boundary elements Dirk Praetorius (TU Wien) 15 / 75

Boundary Element Method Features of HILBERT C implementation of integral operators via MEX interface V (P 0 Γ P0 Γ ) K(S 1 Γ P0 Γ ) W (S 1 Γ S1 Γ ) N(P 0 Ω P0 Γ ) remaining codes in Matlab fully vectorized different error estimators (h-h/2, 2-Level, residual, Faermann) different marking strategies local mesh-refinement (1D bisection, 2D NVB) demo files and adaptive algorithms for weakly-singular integral equation hypersingular integral equation symmetric integral formulation of mixed BVP with/without volume force Dirk Praetorius (TU Wien) 16 / 75

2D Example Dirk Praetorius (TU Wien)

2D Example 2D model problem weakly-singular integral equation V u(x) := 1 ˆ log x y u(y) dy = f(x) 2π Γ Ω with Ω R 2 bounded and Lipschitz Variational formulation Find solution u H := H 1/2 (Γ) of Γ for x Γ u, v := V u ; v L 2 (Γ) = f ; v L 2 (Γ) for all v H, is scalar product induced norm v := v, v 1/2 v H 1/2 (Γ) Dirk Praetorius (TU Wien) 17 / 75

2D Example Galerkin BEM T l partition of Γ into affine line segments local mesh-width h l L (Γ), h l T := diam(t ) for T T l X l := P p (T l ) discrete subspace of H = H 1/2 (Γ) Galerkin formulation Find solution U l X l of U l, V l = f ; V l L 2 (Γ) for all V l X l Dirk Praetorius (TU Wien) 18 / 75

2D Example Weighted-residual error estimator Poincaré inequality w H 1 (Γ) with w P 0 (T l ) = w L 2 (Γ) h l w L 2 (Γ) w := f V U l P p (T l ) P 0 (T l ) Reliability (Carstensen, Stephan 95, 96, & Maischak 01) u U l f V U l H 1/2 (Γ) h1/2 l (f V U l ) L 2 (Γ) =: η l proof (later!) requires regularity of T l for localization 2D: uniformly bounded local mesh-ratio 3D: uniform γ-shape regularity Dirk Praetorius (TU Wien) 19 / 75

2D Example Adaptive algorithm initial mesh T 0 adaptivity parameter 0 < θ 1 For all l = 0, 1, 2,..., iterate 1 compute discrete solution U l for mesh T l 2 compute refinement indicators η l (T ) for all T T l 3 find (essentially minimal) set M l T l s.t. θ η l (T ) 2 η l (T ) 2 T T l T M l 4 refine (at least) marked elements T M l to obtain T l+1 Dirk Praetorius (TU Wien) 20 / 75

2D Example 1D example 1D boundary piece Γ = ( 1, 1) {0} u(x, y) = 2x/ 1 x 2 solution to f(x, y) = x singularities at ±(1, 0) Dirk Praetorius (TU Wien) 21 / 75

2D Example Solve on coarse mesh T 0 Dirk Praetorius (TU Wien) 22 / 75

2D Example Compute residual on T 0 η 0 (T ) = diam(t ) 1/2 (f V U 0 ) L 2 (T ) 1 η 0 (T ) 2 η 0 (T ) 2 4 T T 0 T M 0 Dirk Praetorius (TU Wien) 23 / 75

2D Example Mark elements M 0 T 0 for refinement η 0 (T ) = diam(t ) 1/2 (f V U 0 ) L 2 (T ) 1 η 0 (T ) 2 η 0 (T ) 2 4 T T 0 T M 0 Dirk Praetorius (TU Wien) 24 / 75

2D Example Solve on mesh T 1 Dirk Praetorius (TU Wien) 25 / 75

2D Example Compute residual on T 1 η 1 (T ) = diam(t ) 1/2 (f V U 1 ) L 2 (T ) 1 η 1 (T ) 2 η 1 (T ) 2 4 T T 1 T M 1 Dirk Praetorius (TU Wien) 26 / 75

2D Example Mark elements M 1 T 1 for refinement η 1 (T ) = diam(t ) 1/2 (f V U 1 ) L 2 (T ) 1 η 1 (T ) 2 η 1 (T ) 2 4 T T 1 T M 1 Dirk Praetorius (TU Wien) 27 / 75

2D Example Solve on mesh T 2 etc. Dirk Praetorius (TU Wien) 28 / 75

2D Example ABEM results in... 10 1 10 0 O(N 1/2 ) uniform adaptive 10 1 error estimator 10 2 10 3 10 4 O(N 3/2 ) 10 5 10 6 10 0 10 1 10 2 10 3 10 4 number of elements Dirk Praetorius (TU Wien) 29 / 75

2D Example Questions? can we prove convergence for adaptive mesh-refinement? can we prove linear convergence η 2 l+n C qn η 2 l? constant C > 0 reflects pre-asymptotic convergence rates can we prove optimal convergence rates? at least asymptotically does the problem fit into the axioms framework? Dirk Praetorius (TU Wien) 30 / 75

2D Example Optimal rates in adaptive BEM Tsogtorel: Numer. Math. (2013) general integral kernels smooth boundaries lowest-order BEM Feischl, Karkulik, Melenk, Praetorius: SINUM (2013) weakly-singular integral equation for 2D / 3D Laplace polygonal boundaries lowest-order BEM Feischl, Führer, Karkulik, Melenk, Praetorius: Calcolo (2014) Feischl, Führer, Karkulik, Melenk, Praetorius: ETNA (2015) weakly-singular / hyper-singular IE for 2D / 3D Laplace polygonal boundaries fixed-order BEM with approximation of RHS Dirk Praetorius (TU Wien) 31 / 75

2D Example Main results on rate optimality 1 linear convergence η l+n C q n η l for 0 < θ 1 arbitrary with 0 < q = q(θ) < 1, C = C(θ) > 0 2 optimal convergence η l (#T l #T 0 ) s for 0 < θ 1 sufficiently small for each possible s > 0 3 optimality constrained by estimator and isotropic refinement! ok for 2D suboptimal in 3D w.r.t. error! Dirk Praetorius (TU Wien) 32 / 75

2D Example Road map Reduction (A2) Estimator reduction Discrete reliability (A3) Stability (A1) Reliability Optimality of Dörfler marking Linear convergence of η l Quasi-orthogonality (A4) Discrete reliability (A3) Optimal convergence of η l Closure Overlay Efficiency Optimal convergence of U l Dirk Praetorius (TU Wien) 33 / 75

Stability (A1) & Reduction (A2) Dirk Praetorius (TU Wien)

Stability (A1) & Reduction (A2) Model problem weakly-singular integral equation V u = f in 2D/3D u H := H 1/2 (Γ) u, v := V u ; v L 2 = f ; v L 2 for all v H =, 1/2 H 1/2 (Γ) T regular and γ-shape regular triangulation 2D: partition into affine line segments, local mesh ratio γ 3D: partition into affine surface triangles, no hanging nodes max T T U P p (T ) =: X unique solution of diam(t ) 2 γ T U, V = f ; V L 2 for all V P p (T ) Dirk Praetorius (TU Wien) 34 / 75

Stability (A1) & Reduction (A2) Residual error estimator for model problem Reliability and efficiency u U OK η??? u U + osc ( η = η (T ) 2 T T ) 1/2 η (T ) 2 = T 1/(d 1) (f V U ) 2 L 2 (T ) h T := T 1/(d 1) diam(t ) reliability 2D: [Carstensen, Stephan 95, 96] reliability 3D: [Carstensen, Maischak, Stephan 01] efficiency 2D: [Carstensen 96], [Aurada, Feischl, et al. 13] only direct BEM & closed boundaries & smooth data Dirk Praetorius (TU Wien) 35 / 75

Stability (A1) & Reduction (A2) Local inverse estimate for non-local operators Theorem (Feischl, Karkulik, Melenk, P. 13; Tsogtorel 13) h 1/2 V W L 2 (Γ) C inv W H 1/2 (Γ) for all W P p (T ) C inv = C inv (Γ, p, γ) sketch of proof later (lecture 3) is classical inv.est. for non-classical space V P p (T ) Ψ LHS = h 1/2 Ψ L 2 weighted H 1 -seminorm (stronger) RHS Ψ H 1/2 (Γ) (weaker norm) lowest-order case W P 0 (T l ) Feischl, Karkulik, Melenk, P. 13 Tsogtorel 13 for smooth boundary, but general kernels Dirk Praetorius (TU Wien) 36 / 75

Stability (A1) & Reduction (A2) Local inverse estimate: uniform meshes aim to prove: h 1/2 V W L 2 (Γ) W for all W P 0 (T ) stability V : L 2 (Γ) H 1 (Γ) provides h 1/2 V w L 2 (Γ) h 1/2 V w H 1 (Γ) h 1/2 w L 2 (Γ) = h 1/2 w L 2 (Γ) local inverse estimate of Graham, Hackbusch, Sauter 05 h 1/2 W L 2 (Γ) W H 1/2 (Γ) W Dirk Praetorius (TU Wien) 37 / 75

Stability (A1) & Reduction (A2) Axiom (A1): Stability on non-refined elements (A1) Stability on non-refined elements, T nvb(t l ) ( ) 1/2 ( η (T ) 2 ) 1/2 η l (T ) 2 U U l T T l T T T l T Verification for BEM model problem: η (T ) 2 = T 1/(d 1) (f V U ) 2 L 2 (T ) η (T ) 2 = h 1/2 (f V U ) 2 L 2 ( (T l T )) T T l T inverse triangle inequality + novel inverse estimate LHS h 1/2 (f V U ) h 1/2 (f V U ) L 2 ( (T l T )) h 1/2 V (U l U ) L 2 (Γ) U l U H 1/2 (Γ) l Dirk Praetorius (TU Wien) 38 / 75

Stability (A1) & Reduction (A2) Axiom (A2): Reduction on refined elements (A2) Reduction on refined elements, T nvb(t l ) η (T ) 2 q red η l (T ) 2 + C red U U l 2 T T \T l T T l \T Verification for BEM model problem: η (T ) 2 = T 1/(d 1) (f V U ) 2 L 2 (T ) (T \T l ) = (T l \T ) T 1 2 T for T T T T l triangle inequality + Young ineq. + novel inverse estimate q red 2 1/(d 1) Dirk Praetorius (TU Wien) 39 / 75

Stability (A1) & Reduction (A2) Estimator reduction Stability (A1) + reduction (A2) = estimator reduction 0 < θ 1 0 < q est < 1 C est > 0 l N 0 : η 2 l+1 q est η 2 l + C est U l+1 U l 2 sketch: Young inequality + (A1) + (A2) variable parameter δ > 0 sufficiently small q est = (1 + δ) θ(1 + δ q red ) 1 θ(1 q red ) C est = C 2 stab (1 + δ 1 ) + C red Dirk Praetorius (TU Wien) 40 / 75

Stability (A1) & Reduction (A2) Road map Reduction (A2) Estimator reduction Discrete reliability (A3) Stability (A1) Reliability Optimality of Dörfler marking Linear convergence of η l Quasi-orthogonality (A4) Discrete reliability (A3) Optimal convergence of η l Closure Overlay Efficiency Optimal convergence of U l Dirk Praetorius (TU Wien) 41 / 75

Discrete Reliability (A3) Dirk Praetorius (TU Wien)

Discrete Reliability (A3) Necessity of discrete reliability Suppose BEM model problem Let T nvb(t l+1 ) = U U l 2 u U l 2 Suppose knowledge that η l is reliable + Dörfler marking = u U l 2 η 2 l θ 1 T M l η l (T ) 2 marked elements are refined, i.e., M l T l \T l+1 T l \T = obtain discrete reliability U U l 2 η l (T ) 2 T T l \T Dirk Praetorius (TU Wien) 42 / 75

Discrete Reliability (A3) Axiom (A3): Discrete reliability (A3) Discrete reliability, T nvb(t l ) exists R l T l with T l \T R l #R l #(T l \T ) U U l 2 Crel 2 η l (T ) 2 T R l introduced by Stevenson 07 proof refines usual reliability proof by choice of clever test fct R l = T l \T for FEM R l = patch(t l \T ) for BEM Dirk Praetorius (TU Wien) 43 / 75

Discrete Reliability (A3) Patch S T l set of elements patch(s) γ-shape regularity = #S #patch(s) Dirk Praetorius (TU Wien) 44 / 75

Discrete Reliability (A3) Discrete reliability = reliability 1/2 Uniform refinement yields convergence T l nvb(t 0 ) ε > 0 T nvb(t l ) : u U ε Verification for BEM model problem: Céa lemma + L 2 -projection + density of smooth fcts u U u U H 1/2 (Γ) u Π v H 1/2 (Γ) u v H 1/2 (Γ) + v Π v H 1/2 (Γ) ε + h 1/2 v L 2 (Γ) ε Dirk Praetorius (TU Wien) 45 / 75

Discrete Reliability (A3) Discrete reliability = reliability 2/2 triangle inequality for T nvb(t l ) u U l u U + U U l u U + C rel η l approximation property ε > 0 T nvb(t l ) : u U ε = u U l C rel η l Dirk Praetorius (TU Wien) 46 / 75

Discrete Reliability (A3) Proof of discrete reliability 1/5 W = U U l { P l W P 0 W on T T l T (T l ), P l W = 0 on T T l \T R l := { z N l : z (T l \T ) } 1 use Galerkin orthogonality W 2 = V U V U l ; W = ϕ z (f V U l ) ; (1 P l )W z R l (1 P l )W = 0 on T T l T z R l ϕ z = 1 on T T l \T Dirk Praetorius (TU Wien) 47 / 75

Discrete Reliability (A3) Proof of discrete reliability 2/5 W = U U l { P l W P 0 W on T T l T (T l ), P l W = 0 on T T l \T R l := { z N l : z (T l \T ) } 1 W 2 = ϕ z (f V U l ) ; W P l W z R l sum ; W sum H 1/2 (Γ) W H 1/2 (Γ) sum H 1/2 (Γ) W sum ; P l W h 1/2 l sum L 2 (Γ) h 1/2 l P l W L 2 (Γ) h 1/2 l P l W L2 (Γ) = h 1/2 P l W L2 (Γ) h 1/2 W L2 (Γ) W 2 Obtain W 2 sum 2 H 1/2 (Γ) + h 1/2 l sum 2 L 2 (Γ) Dirk Praetorius (TU Wien) 48 / 75

Discrete Reliability (A3) Proof of discrete reliability 3/5 R l := { z N l : z (T l \T ) } sum = z R l ϕ z (f V U l ) 2 U U l 2 sum 2 H 1/2 (Γ) + h 1/2 l sum 2 L 2 (Γ) 3 elementwise Poincaré inequality, since f V U l P 0 (T l ) h 1/2 l sum 2 L 2 (Γ) diam(t ) 1 sum 2 L 2 (T ) T T l diam(t ) 1 f V U l 2 L 2 (T ) T R l T R l T R l diam(t ) (f V U l ) 2 L 2 (T ) η l (T ) 2 Dirk Praetorius (TU Wien) 49 / 75

Discrete Reliability (A3) Proof of discrete reliability 4/5 R l := { z N l : z (T l \T ) } sum = z R l ϕ z (f V U l ) 2 U U l 2 sum 2 H 1/2 (Γ) + h 1/2 l sum 2 L 2 (Γ) 3 h 1/2 l sum 2 L 2 (Γ) η l (T ) 2 T R l 4 coloring argument as in Carstensen, Maischak, Stephan 01 sum 2 H 1/2 (Γ) z R l ϕ z (f V U l ) 2 H 1/2 (Γ) 5 interpolation + Poincaré estimate + scaling arguments ϕ z (f V U l ) 2 H 1/2 (Γ) ϕ z(f V U l ) L 2 (Γ) ϕ z (f V U l ) H 1 (Γ) h 1/2 l (f V U l ) 2 L 2 (supp(ϕ z)) Dirk Praetorius (TU Wien) 50 / 75

Discrete Reliability (A3) Proof of discrete reliability 5/5 R l := { z N l : z (T l \T ) } sum = z R l ϕ z (f V U l ) 2 U U l 2 sum 2 H 1/2 (Γ) + h 1/2 l sum 2 L 2 (Γ) 3 h 1/2 l sum 2 L 2 (Γ) η l (T ) 2 T R l 4 sum 2 H 1/2 (Γ) z R l ϕ z (f V U l ) 2 H 1/2 (Γ) 5 ϕ z (f V U l ) 2 H 1/2 (Γ) h1/2 l (f V U l ) L 2 2 (supp(ϕ z)) = U U l 2 sum 2 H 1/2 (Γ) + h 1/2 l sum 2 L 2 (Γ) η l (T ) 2 T R l Dirk Praetorius (TU Wien) 51 / 75

Discrete Reliability (A3) Road map Reduction (A2) Estimator reduction Discrete reliability (A3) Stability (A1) Reliability Optimality of Dörfler marking Linear convergence of η l Quasi-orthogonality (A4) Discrete reliability (A3) Optimal convergence of η l Closure Overlay Efficiency Optimal convergence of U l Dirk Praetorius (TU Wien) 52 / 75

Linear Convergence Dirk Praetorius (TU Wien)

Linear Convergence Slow convergence? Current state 1 (A1) + (A2) = η 2 l+1 q estη 2 l + C est U l+1 U l 2 2 Céa lemma U l U as l 3 estimator reduction principle = η l 0 4 reliability = u U l η l 0 in particular, u = U question: Can convergence of η l 0 be slow? U l+1 U l 2 0 could be slow? goal: η 2 l+n qn η 2 l Dirk Praetorius (TU Wien) 53 / 75

Linear Convergence Slow convergence? No! 10 1 10 0 O(N 1/2 ) uniform adaptive 10 1 error estimator 10 2 10 3 10 4 O(N 3/2 ) 10 5 10 6 10 0 10 1 10 2 10 3 10 4 number of elements Dirk Praetorius (TU Wien) 54 / 75

Linear Convergence Axiom (A4): Quasi-orthogonality (A4) Quasi-orthogonality, for some small ε > 0 and all l, N N ( Uk+1 U k 2 εηk 2 ) Corth (ε) ηl 2 k=l Verification for model problem Galerkin orthogonality + symmetry = Pythagoras theorem u U k+1 2 + U k+1 U k 2 = u U k 2 telescoping series = quasi-orth. with C orth (ε) = Crel 2, ε = 0 N N U k+1 U k 2 ( = u Uk 2 u U k+1 2) u U l 2 k=l k=l Dirk Praetorius (TU Wien) 55 / 75

Linear Convergence Linear convergence = Quasi-Orthogonality Proposition (Carstensen, Feischl, Page, P. 14) reliability u U l η l linear convergence η l+n C lin qlin n η l = quasi-orthogonality (A4) with ε = 0, C orth (ε) = C orth (0) > 0 N i.e.: U k+1 U k 2 ηl 2 for all l, N k=l sketch: triangle inequality + reliability + linear convergence N N+1 = U k+1 U k 2 u U k 2 ηk 2 ηl 2 k=l k=l k=l Dirk Praetorius (TU Wien) 56 / 75

Linear Convergence Linear convergence = General Quasi-Orthogonality Proposition (Carstensen, Feischl, Page, P. 14) reliability u U l η l estimator reduction for 0 < θ 1, e.g., stab. (A1) + red. (A2) quasi-orthogonality (A4) = linear convergence η l+n C lin q n lin η l sketch: est. reduction + reliability + quasi-orth. (A4) = ηk 2 η2 l k=l+1 is equivalent to linear convergence Dirk Praetorius (TU Wien) 57 / 75

Linear Convergence Contraction axioms (A1) (A4) = linear convergence η 2 l+n qn η 2 l for symmetric problems, slightly stronger result available Theorem (Feischl, Karkulik, Melenk, P. 13) l = φ Φ l 2 + γη 2 l η2 l with 0 < γ < 1 sufficiently small = Exists 0 < κ = κ(θ) < 1 s.t. l+1 κ l hence lim l η l = 0 = lim l φ Φ l Cascon, Kreuzer, Nochetto, Siebert: SINUM (2008) (concept of proof) Dirk Praetorius (TU Wien) 58 / 75

Linear Convergence Proof of contraction theorem 1 Pythagoras φ Φ l+1 2 = φ Φ l 2 Φ l+1 Φ l 2 2 estimator reduction η 2 l+1 q η2 l + C Φ l+1 Φ l 2 3 reliability φ Φ l 2 C 2 rel η2 l use small parameters 0 < γ, ε < 1 to see φ Φ l+1 2 + γη 2 l+1 φ Φ l 2 + γq η 2 l obtain: l+1 κ l 0 < κ < 1 l = φ Φ l 2 + γηl 2 (1 εγ) φ Φ l 2 + γ(q + εc 2 rel )η2 l κ ( φ Φ l 2 + γη 2 l ) Dirk Praetorius (TU Wien) 59 / 75

Linear Convergence Road map Reduction (A2) Estimator reduction Discrete reliability (A3) Stability (A1) Reliability Optimality of Dörfler marking Linear convergence of η l Quasi-orthogonality (A4) Discrete reliability (A3) Optimal convergence of η l Closure Overlay Efficiency Optimal convergence of U l Dirk Praetorius (TU Wien) 60 / 75

Optimality Dirk Praetorius (TU Wien)

Optimality Dörfler marking θ η l (T) 2 η l (T) 2 T T l T M l goal: determine M l T l with minimal cardinality = requires sorting η l (T 1 ) η l (T N ) O(N log N) sufficient: M l T l has essentially minimal cardinality i.e., #M l C # M l if M l has minimal cardinality idea: sorting with binning [Stevenson 07] O(N) 1 exclude all T T l with η l (T ) 2 < θ η 2 l /N with N := #T l the remaining elements will satisfy the Dörfler marking 2 determine M := max T Tl η l (T ) 2 3 determine minimal K N 0 with 2 (K+1) M < θ η 2 l /N 4 fill k = 0,..., K bins with all 2 (k+1) M < η l (T ) 2 2 k M 5 successively take elts from (unsorted) bins until M l is OK = #M l 2 # M l Dirk Praetorius (TU Wien) 61 / 75

Optimality Dörfler marking = (linear) convergence shown: stability (A1) + reduction (A2) + Dörfler marking = estimator reduction estimator reduction + reliability (A3) + quasi-orth. (A4) = linear convergence ηl+n 2 qn lin η2 l i.e.: Dörfler marking sufficient for (linear) convergence question: Dörfler marking also necessary? Dirk Praetorius (TU Wien) 62 / 75

Optimality Dörfler marking = convergence so far: Dörfler = linear convergence η 2 l+n qn lin η2 l Stab. (A1) + Rel. (A3) = Optimality of Dörfler Marking Exists 0 < θ < 1 and 0 < q < 1 s.t. for all T = nvb(t l ) with η 2 q η 2 l and all 0 < θ < θ and R l from discrete reliability (A3) holds Dörfler marking θ η l (T ) 2 η l (T ) 2 T T l T R l linear convergence = Dörfler marking holds every fixed number n of steps independently of how elements are actually marked! Dirk Praetorius (TU Wien) 63 / 75

Optimality Optimal convergence rates A s = { (u, f) : u, f As = sup ((N + 1) s min η ) < } N N 0 T T N Theorem (Carstensen, Feischl, Page, P. 14) optimal mesh-refinement M l T l has (essentially) minimal cardinality 0 < θ < θ sufficiently small = (u, f) A s η l (#T l #T 0 ) s Carstensen, Feischl, Page, Praetorius: CAMWA (2014) Dirk Praetorius (TU Wien) 64 / 75

Optimality Sketch of proof 1/2 1 exists T nvb(t l ) s.t. #T #T l η 1/s l η 2 q η 2 l 2 optimality of Dörfler marking = R l T l \T satisfies Dörfler marking 3 M l has (essentially) minimal cardinality = #M l #R l #(T l \T ) #T #T l η 1/s l l N 0 4 overlay estimate l 1 l 1 = #T l #T 0 #M j j=0 j=0 η 1/s j Dirk Praetorius (TU Wien) 65 / 75

Optimality Sketch of proof 2/2 l 1 4 obtained: #T l #T 0 j=0 η 1/s j 5 linear convergence η j+n q n η j & geometric series = η l q l j η j = l 1 j=0 η 1/s j ( l 1 j=0 q (l j)/s) η 1/s l η 1/s l 6 combining this, we obtain = #T l #T 0 η 1/s l = η l (#T l #T 0 ) s for all s > 0 with u, f As < Dirk Praetorius (TU Wien) 66 / 75

Optimality Road map Reduction (A2) Estimator reduction Discrete reliability (A3) Stability (A1) Reliability Optimality of Dörfler marking Linear convergence of η l Quasi-orthogonality (A4) Discrete reliability (A3) Optimal convergence of η l Closure Overlay Efficiency Optimal convergence of U l Dirk Praetorius (TU Wien) 67 / 75

3D Examples Dirk Praetorius (TU Wien)

3D Examples L-shaped screen solve V u = 1 on Γ with lowest-order BEM p = 0 Dirk Praetorius (TU Wien) 68 / 75

3D Examples L-shaped screen: errors and estimators 10 0 10 1 1/1 1/2 10 2 10 3 10 4 η 2 l unif. u U l 2 unif. η 2 l adap. u U l 2 adap. 10 1 10 2 10 3 10 4 10 5 number of elements Dirk Praetorius (TU Wien) 69 / 75 1 1/1

Adaptive Boundary Element Methods 3D Examples L-shaped screen: adaptive meshes Dirk Praetorius (TU Wien) 70 / 75

3D Examples L-shaped screen: estimator competition 10 0 10 1 10 2 10 3 10 4 η 2 l adap. u U l 2 η l -adap µ 2 l adap. u U l 2 µ l -adap 10 1 10 2 10 3 10 4 10 5 number of elements Dirk Praetorius (TU Wien) 71 / 75

3D Examples L-shaped screen: estimator competition 10 0 10 1 10 2 10 3 10 4 µ 2 l adap. u U l 2 µ l -adap η 2 l adap. u U l 2 η l -adap 10 1 10 2 10 3 10 4 10 5 10 6 10 7 computational time Dirk Praetorius (TU Wien) 72 / 75

3D Examples Fichera s cube solve V u = 1 on Γ with lowest-order BEM p = 0 Dirk Praetorius (TU Wien) 73 / 75

3D Examples Fichera s cube: errors and estimators 10 1 1/1 10 2 2/3 1 10 3 10 4 η 2 l unif. u U l 2 unif. η 2 l adap. u U l 2 adap. 1/1 10 2 10 3 10 4 10 5 number of elements Dirk Praetorius (TU Wien) 74 / 75

Adaptive Boundary Element Methods 3D Examples Fichera s cube: adaptive meshes Dirk Praetorius (TU Wien) 75 / 75

Thanks for listening! Dirk Praetorius TU Wien Institute for Analysis and Scientific Computing dirk.praetorius@tuwien.ac.at http://www.asc.tuwien.ac.at/ praetorius Dirk Praetorius (TU Wien)