Skyrmions in quasi-2d chiral magnets

Similar documents
Stability of skyrmion lattices and symmetries of Dzyaloshinskii-Moriya magnets. Alexey A. Kovalev Utkan Güngördü Rabindra Nepal

What so special about LaAlO3/SrTiO3 interface? Magnetism, Superconductivity and their coexistence at the interface

Spin-transfer torques and emergent electrodynamics in magnetic Skyrmion crystals

Magnetic skyrmions. See also talks online by Tokura, Tchernyshyov. Institute for Theoretical Physics Utrecht University

Skyrmion Dynamics and Topological Transport Phenomena

Skyrmion Dynamics in Thin Films of Chiral Magnets

SIGNATURES OF SPIN-ORBIT DRIVEN ELECTRONIC TRANSPORT IN TRANSITION- METAL-OXIDE INTERFACES

Skyrmion à la carte. Bertrand Dupé. Skyrmion à la carte Bertrand Dupé. Institute of Physics, Johannes Gutenberg University of Mainz, Germany

Nanoscale magnetic imaging with single spins in diamond

Skyrmions and Anomalous Hall Effect in a Dzyaloshinskii-Moriya Magnet

Rashba spin-orbit coupling in the oxide 2D structures: The KTaO 3 (001) Surface

Antiferromagnetic Textures

Vortex States in a Non-Abelian Magnetic Field

Spinon magnetic resonance. Oleg Starykh, University of Utah

CHIRAL SYMMETRY BREAKING IN MOLECULES AND SOLIDS

Cover Page. The handle holds various files of this Leiden University dissertation.

Magnonics in skyrmion-hosting chiral magnetic materials

Mesoscopic Spintronics

Nanoxide electronics

Determination of the Interfacial Dzyaloshinskii-Moriya Interaction (idmi) in the Inversion Symmetry Broken Systems

Skyrmions in magnetic materials Download slides from:

Skyrmions à la carte

Kouki Nakata. University of Basel. KN, S. K. Kim (UCLA), J. Klinovaja, D. Loss (2017) arxiv:

Neutron scattering from Skyrmions in helimagnets. Jonas Kindervater

Quantum Phases in Bose-Hubbard Models with Spin-orbit Interactions

Multiferroic skyrmions

Manipulation of interface-induced Skyrmions studied with STM

Shuichi Murakami Department of Physics, Tokyo Institute of Technology

A. de Saint-Exupéry (1943)

Nanoxide electronics

Topological Insulators

Room temperature chiral magnetic skyrmions in ultrathin Pt/Co/MgO nanostructures

Proximity-induced magnetization dynamics, interaction effects, and phase transitions on a topological surface

Nucleation, stabilization and manipulation of magnetic skyrmions

Competing Ferroic Orders The magnetoelectric effect

Loop current order in optical lattices

100 Tesla multishot. 60 Tesla long pulse. Los Alamos branch of the Magnet Lab Pulsed magnetic fields

Topological insulators and the quantum anomalous Hall state. David Vanderbilt Rutgers University

Ferromagnetism and Anomalous Hall Effect in Graphene

Thermal Hall effect of magnons

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER

Quantum Spin Liquids and Majorana Metals

Titanium d xy ferromagnetism at the LaAlO 3 /SrTiO 3 interface

Electrostatic charging and redox effects in oxide heterostructures

Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets. In collaboration with: Olexei Motrunich & Jason Alicea

Symmetry breaking in spin spirals and skyrmions by in-plane and canted magnetic fields

Gauge Concepts in Theoretical Applied Physics

arxiv: v2 [cond-mat.mes-hall] 1 May 2015

Chiral Bobbers and Skyrmions in Epitaxial FeGe/Si(111) Films

SUPPLEMENTARY INFORMATION

Topological Insulators

Topological Kondo Insulators!

High resolution ion beam analysis. Torgny Gustafsson

Controlling Kondo like Scattering at the SrTiO 3 based Interfaces

Origin of the 2DEG at the LAO/STO Interface

Magnetoresistance of 2D and 3D Electron Gas in LaAlO 3 /SrTiO 3. Heterostructures: Influence of Magnetic Ordering, Interface Scattering and

Dirac fermions in condensed matters

Skyrmions in symmetric bilayers

Heusler compounds: Tunable materials with non trivial topologies. Claudia Felser

Chris G. Van de Walle

Deconfined Quantum Critical Points

Supplementary Figure 1 Representative sample of DW spin textures in a

Basics of topological insulator

Quantum anomalous Hall states on decorated magnetic surfaces

Γ M. Multiple Dirac cones and spontaneous QAH state in transition metal trichalcogenides. Yusuke Sugita

Dirac-Fermion-Induced Parity Mixing in Superconducting Topological Insulators. Nagoya University Masatoshi Sato

C. C. Tsuei IBM T.J. Watson Research Center Yorktown Heights, NY 10598

MatSci 224 Magnetism and Magnetic. November 5, 2003

Magnetism in Condensed Matter

Quantum magnetism and the theory of strongly correlated electrons

Magnetoresistance due to Broken C 4 Symmetry in Cubic B20 Chiral Magnets

Physics in Quasi-2D Materials for Spintronics Applications

Spin dynamics in Bi 2 Se 3 /ferromagnet heterostructures

High-Temperature Superconductors: Playgrounds for Broken Symmetries

Spinon spin resonance Electron spin resonance of spinon gas

Spectroscopy of correlated electrons in nickelates and titanates

Chiral Majorana fermion from quantum anomalous Hall plateau transition

Spinon magnetic resonance. Oleg Starykh, University of Utah

SUPPLEMENTARY INFORMATION

Rashba vs Kohn-Luttinger: evolution of p-wave superconductivity in magnetized two-dimensional Fermi gas subject to spin-orbit interaction

Tunable Room Temp. Skyrmions in Ir/Fe/Co/Pt Multilayers

Effects of spin-orbit coupling on the BKT transition and the vortexantivortex structure in 2D Fermi Gases

The Quantum Spin Hall Effect

Hidden Interfaces and High-Temperature Magnetism in Intrinsic Topological Insulator - Ferromagnetic Insulator Heterostructures

Emergent topological phenomena in antiferromagnets with noncoplanar spins

Breaking the spin waves: spinons in!!!cs2cucl4 and elsewhere

arxiv: v1 [cond-mat.mes-hall] 25 Nov 2013

Topological insulator (TI)

Surface Majorana Fermions in Topological Superconductors. ISSP, Univ. of Tokyo. Nagoya University Masatoshi Sato

A New look at the Pseudogap Phase in the Cuprates.

Unusual ordered phases of magnetized frustrated antiferromagnets

Luigi Paolasini

Spin Superfluidity and Graphene in a Strong Magnetic Field

What is a topological insulator? Ming-Che Chang Dept of Physics, NTNU

Origin of Metallic States at Heterointerface between Band Insulators LaAlO 3 and SrTiO 3

ARPES experiments on 3D topological insulators. Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016

Metal-insulator transitions

LCI -birthplace of liquid crystal display. May, protests. Fashion school is in top-3 in USA. Clinical Psychology program is Top-5 in USA

arxiv: v1 [cond-mat.mtrl-sci] 2 May 2011

Spintronics KITP, UCSB. Interfacial spin-orbit coupling and chirality. Hyun-Woo Lee (POSTECH, KOREA)

Transcription:

MRSEC 1 Skyrmions in quasi-2d chiral magnets Mohit Randeria Ohio State University kitp ucsb August 2015

2 James Rowland Sumilan Banerjee (now at Weizmann) Onur Erten (now at Rutgers) * Banerjee, Erten & MR, Nature Physics 9, 626 (2013) MRSEC * Banerjee, Rowland, Erten & MR, Phys. Rev. X 4, 031045 (2014) * Rowland, Banerjee & MR (in preparation, 2015)

Outline: o Introduction * Skyrmions * Materials * Properties o How to stabilize skyrmion phases? * Role of Dresselhaus vs. Rashba SOC * Role of magnetic anisotropy o Conclusions 3

o Skyrmions topological solitons in field theory o Skyrmions in magnetism theory Stabilized by DM interac8on & H field o Skyrmions in magnetism experiments (~ 2006 onwards) C. Pfleiderer (Munich), Y. Tokura (Tokyo) 4

Chiral Magnets o Ferromagnetic Exchange J S i S j o Chiral DM interaction (Dzyaloshinskii-Moriya) D (S i S j ) Material constraints for DM: 1. Broken Inversion Symmetry à direction of D 2. Spin-orbit coupling (SOC) à magnitude of D

Chiral Magnets à Spin textures o Ferromagnetic Exchange J S i S j J cos J 2 o DM interaction (Dzyaloshinskii-Moriya) D (S i S j ) ' D sin ' D E( ) =J 2 /2 E = D J D Length scale E Spontaneous spin textures like Spirals or Skyrmions J D a Energy scale D 2 /J a

7 Skyrmion: Topological spin texture in magnetization M(r) =M bm(r) Skyrmion Crystal (SkX) Winding Number on unit sphere in spin-space Q = 1 4 Z d 2 r bm (@ x bm @ y bm) =0, ±1, ±2,... Topological Invariant

Chiral Magnetic Materials with broken bulk inversion symmetry o Non-centrosymmetric Crystals P 2 1 3 B20 structure Metals: MnSi, Fe 1- x Co x Si, FeGe, Insulators: Cu 2 OSeO 3 Experiments: Pfleiderer; Tokura Theory: Bogdanov; Nagaosa; Rosch

Spin textures in chiral magnets 9 Skyrmion crystal (SkX) probed in q-space and in r-space FeCoSi Lorentz TEM MnSi MnSi SANS X. Z. Yu et al., Nature 465, 901 (2010) Fe 0.5 Co 0.5 Si Bauer et al, 200Å

Skyrmions are more stable in thin films 10 FeGe Tc = 278K Seki, et. al., Science 336, 198 (2012) Bulk Thin Film decreasing thickness à Mul8ferroic: Seki et. Al. PRBB 86, 060403 (2012) Z. Yu et. al., Nature Mat 10, 106 (2011)

Unusual Properties of Skyrmion phases Review: Nagaosa & Tokura, Nature Nano 8, 899 (2013) * Skyrmions in metallic magnets o Emergent electromagnetism o Topological Hall effect o Non-Fermi liquid phase Conduction electrons moving in Skyrmion texture acquire Berry phase à Effective E & B fields For a 10 nm Skyrmion Effective B ~ 100 T(!) 11 T 3/2 Ritz et al, Nature 497, 231 (2013)

Potential for novel applications in memory and logic à Low pinning compared to domain walls J C ~ 10 6 A / m 2 vs. J C ~ 10 11 A / m 2 Skyrmions Domain walls Jonietz, et al., Science 330, 1648 (2010) Yu, et al., Nature Comm. 3, 988 (2012) à Reading & writing single Skyrmions Romming et al., Science 341, 636 (2013) * Proposals for Memories: Skyrmion slide cell magnetic tunnel junction (MTJ) memory Skyrmion race-track memory Rahman et al, JAP 111, 07C907 (2012) Reading & Writing Koshiabe et al (Tokura- Nagaosa), arxiv:1501.07650 (2015)

Chiral Magnetic Materials with broken surface inversion symmetry o Thin films of non-centrosymmetric crystals -- both bulk & surface inversion broken in general o 3d Magnetic monolayer on 5d metals with large SOC -- nano-skyrmions from competing exchange Experiments: Weisendanger Theory: Blugel o Bulk materials with broken z à -z mirror symmetry -- examples with magnetism? o Oxide interfaces: e.g. LAO/STO -- tantalizing hints of magnetism

A quick introduction to oxide interfaces 14 Emergent phenomena at the interface leads to properties totally different from either bulk material AlO 2 - LaO + AlO 2 - LaO + TiO 2 SrO TiO 2 SrO Ohtomo & Hwang, Nature (2004) LaAlO 3 (LAO) E g = 5.6 ev Interface SrTiO 3 (STO) E g = 3.2 ev Superconductivity Magnetism Caviglia et al, Nature (2008) T c (n) Li et al, Nat. Phys (2008) M(H)

Where do the electrons come from? AlO 2 - LaO + AlO 2 - LaO + TiO 2 SrO E V Polar Catastrophe à Electronic reconstruction 15

Where do the electrons come from? AlO - 2 LaO + AlO - 2 LaO + E V 0.5 e - TiO 2 SrO Polar Catastrophe à 0.5 e/ti à n 2D ~ 3.3 x 10 14 cm -2 + additional carriers from Oxygen vacancies 16

LAO/STO Interface Polar catastrophe AlO 2-2DEG Thiel et al, Science (2006) Hall à n 17 0.5 e - /Ti LaO + AlO 2 - LaO + TiO 2 SrO TiO 2 SrO Ohtomo & Hwang, Nature (2004) LaAlO 3 Interface SrTiO 3 Polar Catastrophe = n 2D ~ 3.3 x 10 14 cm -2 + additional electrons from O-vacancies Hall à mobile carriers n 2D = 2x10 13 cm -2 ~ 10% of polar catastrophe Where are the missing electrons?

If the polar catastrophe does occur in LAO/STO, where are the electrons not seen in transport? Answers -- not certain -- seem to be sample & probe dependent However, many experiments indicate large density of Localized electrons that behave like local moments 18 Scanning SQUID M Bert et al. Nature Phys. (2011) * Inhomogeneous; M=0 * Isolated micron-size patches of in-plane FM * Susceptometry: local moments ~ 0.5 e/ti H 2T Torque Magnetometry Li et al, Nature Phys (2011) * M 0.3-0.4µ B /Ti * Exchange scale ~ 100K * No hysteresis Spectroscopy: Ti d 1 states XPS Sing et al, PRL (2009) XMCD ~ 0.1 e/ti Lee et al, Nature Mat. (2013) MFM: Room Temp FM Bi et al, Nature Comm. (2014)

LAO/STO summary 19 * 2D interface * Broken inversion z à -z * Rashba spin-orbit coupling tunable by gate voltage [Expt: Caviglia et al., PRL (2010)] *Many experiments see evidence for magnetism * Disorder & inhomogeneity H soc = soc bz (k ) * sample-to-sample variations & many open questions! If there is magnetism at oxide interfaces, then we have all the ingredients for Spirals & Skyrmions.

Outline: 20 o Introduction * Skyrmions * Materials * Properties o How to stabilize skyrmion phases? * Role of Dresselhaus vs. Rashba SOC * Role of magnetic anisotropy o Conclusions

Form of the DM Interaction Symmetry à direction of DM vector o broken bulk inversion à Dresselhaus SOC D ij (S i S j ) Form of DM terms in continuum Ginzburg-Landau Theory à bd D ij = br ij D D bm (r bm) o broken surface inversion à Rashba SOC à bd R ij = bz br ij D R bm [(bz r) bm] 21

Continuum field theory F [ bm(r)] = J 2 r bm 2 FM exchange D D D R bm (r bm) bm [(bz r) bm] DM -- Dresselhaus DM -- Rashba + Am 2 z Anisotropy Hm z Field Minimize F subject to the constraint bm(r) 2 = 1 à Optimal bm(r)

Magnetic Anisotropy + Am 2 z A > 0 Easy-plane A < 0 Easy-axis Sources of Anisotropy: Single-ion + Dipolar + + Rashba SOC Broken z-inversion à Rashba SOC * Symmetry allows an easy-plane Compass-Kitaev term X A c (S y i Sy i+ˆx + Sx i Si+ŷ) x i * Easy-plane anisotropy with same microscopic origin as DM Ignored in literature A c O 2 soc D O( soc ) However, both A c and D impact energy at the same order à Cannot ignore A c! A c D 2 /J E E( )

Microscopic Interlude I: Rashba SOC + Double exchange H 0 = t X c i c X j i.ˆd ij c i c j +h.c. H int = <ij>, J H 2 X c i c i S i i <ij>, with ˆd ij = ẑ ˆr ij 24 To derive effective H, consider two-site problem: H 0 = t X (c i [ei#. ˆd ij ] c j +h.c.) t = p t 2 + 2 tan # = /t SU(2) Gauge Transformation ec i =[e i(#/2). ˆd ij ] c i etc. In the rotated basis H 0 = et X ec i ec j <ij>, H int = X J H es i es i i

Microscopic Interlude II: Rashba SOC + Double exchange H 0 = et X <ij>, ec i ec j H int = This is the standard Anderson-Hasegawa problem -- in the transformed variables H DE = J F X <ij> X J H es i es i i J H!1 Classical S 0 is h i 1/2 1+S i R(2#ˆd ij )S j With J F et Expand square root to get three terms: FM exchange Rashba-DM Compass Anisotropy J = J F cos 2# D R = J F sin 2# A c = J F (1 cos 2#) A c J/D 2 =1/2 t 25

Microscopic Interlude: summary 26 Rashba SOC à significant easy-plane anisotropy For a wide variety of exchange mechanisms in both metals & insulators with Rashba SOC A c J /D 2 =1/2 ( soc t) Exchange = J Rashba DM = D R compass anisotropy = A c for pair-wise exchange mechanisms Banerjee, Rowland Erten & MR, PRX 4, 031045 (2014) * AFM Superexchange + SOC Moriya, PR (1960); Shekhtman et al, PRL (1992) * RKKY + SOC Imamura et al, PRB (2004) * Double exchange + SOC Banerjee, Erten & MR, Nature Phys. (2013) * Bosons + SOC Cole, Zhang, Paramekan8 & Trivedi, PRL (2012)

T=0 Phase Diagram as function of *Anisotropy AJ/D 2 * Field HJ/D 2 * Rashba/Dresselhaus Minimize continuum Energy functional F * Variational calculations -- analytical * Numerical minimization -- conjugate gradient * Classical analysis

Broken Bulk Inversion: Dresselhaus SOC 28 Wilson, Butenko, Bogdanov & Monchesky, PRB 89, 094411 (2014).

Stability of Spiral & Skyrmion crystal enhanced with Rashba HJ/D 2 D Dresselhaus limit D R =0 Increasing Rashba à D R =0.3D D D R =0.5D D HJ/D D 2 HJ/D D 2 AJ/D 2 D Circular cone: Spiral: Skyrmion: m(z) m(x) m(x, y) AJ/D 2 D à gains energy only from à D = q D 2 D + D2 R AJ/D 2 D D D 29

Analysis of Spiral & Skyrmion Phases where Define: D D = D sin D R = D cos @ z 0 m(x, y) 30 Rewrite the sum of two DM terms in a simple form via change of variables m! n n = Rẑ ( /2 ) m D D m (r m) D R m [(bz r) m] = D n (r n) q With D = DD 2 + D2 R and = tan 1 DD D R = helicity

Evolution from Dresselhaus à Rashba = /2 Dresselhaus limit Vortex-like / Bloch Rashba limit =0 = /4 Rashba = Dresselhaus Hedgehog / Neel 31

Phase Diagram For Rashba Limit Elliptic Cone Tilted FM Elliptic Cone 32

Phase Diagram For Rashba Limit Elliptic Cone Tilted FM 33 H=0, A>0 results consistent with Li, Liu, & Balents [PRL 112, 067202 (2014)], who focus on T>0

Evolution of spin-texture in Rashba limit with A at fixed H A=0.0, H=0.7 circular skyrmions Spin texture Topological charge density χ = 1 4 bm (@ x bm @ y bm) Z d 2 r = 1 unit cell

Evolution of spin-texture in Rashba limit with A at fixed H A=0.0, H=0.7 circular skyrmions A=0.6, H=0.7 A=1.1. H=0.7 Topological charge density Spin texture χ

Evolution of spin-texture in Rashba limit with A at fixed H A=1.1, H=0.7 A=1.4, H=0.7 Topological charge density Spin texture χ

Evolution of spin-texture in Rashba limit with A at fixed H A=1.1 A=1.4 Cannot use Homotopy group 2 (S 2 )=Z Use Chern Number for maps from 2-Torus à 2-Sphere Spin texture χ à Each unit cell Q = -1 Topological charge density

Outline: o Introduction * What is a Skyrmion? * Skyrmion materials & properties o How to stabilize skyrmion phases? * Role of Dresselhaus vs. Rashba SOC * Role of magnetic anisotropy o Conclusions 38

Importance of * Broken surface inversion * Rashba SOC * easy-plane anisotropy à Predict enhanced stability of Skyrmions Rashba limit Summary 39 Dresselhaus limit Rashba = Dresselhaus * Nature Physics 9, 626 (2013) * Phys. Rev. X 4, 031045 (2014) * In preparation (2015)

Could not discuss this for lack of 8me Related Work in Cold Atoms: Bose Hubbard Model with Rashba SOC FM + Rashba DM + Compass Anisotropy Arbitrary D/J References: Cole, Zhang,Paramekan8, & Trivedi PRL 109, 085302 (2012) See also: Radic, Di Ciolo, Sun & Galitski, PRL (2012)