Total Synthesis of Callipeltoside A. Denmark Group Meeting Aaron Bailey September 23, 2008

Similar documents
Synthetic Developments Towards the Preparation of Erythromycin and Erythronolide Derivatives

Total Synthesis of Oxazolomycin A

Comparative Synthesis of Ingenol. Tyler W. Wilson SED Group Meeting

Syntheses of Leucascandrolide A. Supergroup Meeting August 4 th, 2004 Yu Yuan

Hennoxazole A. Philip Williams Group Meeting December 12, OMe. OMe 1 6 O H

Total Syntheses of Minfiensine

SECTION 12. «POT-POURRI» in Organic Synthesis (2018)

CEM 852 Final Exam. May 6, 2010

Synthesis of Amphidinolide X and an Exploration of Key Reactions

James D. White. A very productive professor 64 students graduated from his lab 94 postdocs have worked in his lab. Education Experience

Reporter: Yue Ji. Date: 2016/12/26

Towards Maoecrystal V: A Comparison of Recent Strategies

CEM 852 Exam-2 April 11, 2015

Total Synthesis of Rapamycin

Massachusetts Institute of Technology Organic Chemistry 5.512

Large-Scale Synthesis of the Anti-Cancer Marine Natural Product (+)-Discodermolide

Approaches to the Synthesis. of Tetrahydropyrans. (and closely related heterocycles)

Total Synthesis of Peloruside A Through Kinetic Lactonization and Relay Ring-Closing Metathesis Cyclization Reactions

Total Synthesis of (+)-Sieboldine A J. Am. Chem. Soc. 2010, 132,

Total synthesis of Spongistatin

I. Liu Lab. Ka<e Boknevitz 1

Synthesis of Azadirachtin: A Long but Successful Journey

Enan$oselec$ve Total Synthesis of Amphidinolide F

A Concise Synthesis of ( )- Aplyviolene Facilitated by a Stragetegic Ter<ary Radical Conjugate Addi<on

Organic Tutorials 3 rd Year Michaelmas Transition Metals in Organic Synthesis: (General paper level) ! 1! Reading

Total Synthesis of ( )-Virginiamycin M2

Studies toward the Synthesis of Azadirachtin: Total Synthesis of a Fully Functionalized ABC Framework and Coupling with a Norbornene Domain

Chapter 5 Three and Four-Membered Ring Systems

Strategies for Stereocontrolled Synthesis

Synthesis of Resorcinylic Macrolides

Convergent Route to ent-kaurane Diterpenoids: Total Synthesis of Lungshengenin D and 1α6α- Diacetoxy-ent-kaura-9(11),16-dien- 12,15-dione

CEM 852 Final Exam. May 5, 2011

Highly Cytotoxic, Structure Similar Polyke>des CO 2 H

Total Syntheses of Nominine

Total Synthesis towards Maoecrystal V

Electrophilic Carbenes

A Tandem Semipinacol Rearrangement/Alkylation of a-epoxy Alcohols: An Efficient and Stereoselective Approach to Multifunctional 1,3-Diols

Total Synthesis of (+/-)-Goniomitine via a Formal Nitrile/Donor-Acceptor Cyclopropane [3 + 2] Cyclization

1.MsCl,Et 3 N CH 2 Cl 2,-10 C,97% 2.KOAc,H 2 O acetone, reflux, 82% 3.NaOH(1eq.) MeOH,-20 C,75% H H

An Analysis of the Total Syntheses of Aphidicolin

Synthesis of the Stenine Ring System from Pyrrole

Operating mechanisms: Useful articles:

Given that conditions for pyrazine formation have been established in prior

A Stereoselective Synthesis of (+)-Gonyautoxin 3

JOC: 1985 Year in Review

Total Synthesis of the Chartellines

A Highly Convergent and Biomimetic Total Synthesis of Portentol

Tips for taking exams in 852

VINBLASTINE. H MeO 2 C MeO. OAc. CO 2 Me. Me H

A New Strategy for Efficient Synthesis of Medium and Large Ring Lactones without High Dilution or Slow Addition

Literature Talk, Birte Schröder, , AK Gaich Group Seminar

The aldol reaction with metal enolates proceeds by a chair-like, pericyclic process: favored. disfavored. favored. disfavored

Synthesis of Substituted 1,4-Dienes by Direct Alkylation of Allylic Alcohols Kolundzic, F.; Micalizio, G. C. J. Am. Chem. Soc. 2007, 129,

Total Synthesis of the Proposed Structure of Briarellin J

A 1,3 Strain and the Anomeric Effect. Michael Shaghafi Chem. Topics Feb. 6, 2012

The Vetivane Sesquiterpenes

CHEM 330. Final Exam December 11, This a closed-notes, closed-book exam. The use of molecular models is allowed. This exam contains 12 pages

Intramolecular Huisgen-Type Cyclization of Platinum-Bound Pyrylium Ions with Alkenes and Subsequent Insertion into a Benzylic C-H Bond

Recent Total Syntheses! Published in Nature!

A Review of Total Synthesis of Spirotryprostatin A and B. Jinglong Chen Supergroup meeting Princeton University June

Approaches to the Synthesis of Macquarimicins and Cochleamycins

Total Synthesis of (-)-Mersicarpine

Literature Report 3. Rapid Syntheses of (+)-Limaspermidine and (+)-Kopsihainanine A. Date :

Ladderanes: Uses and Synthesis. Nicholas Anderson Denmark Group Meeting October 28, 2008

JOC Year-in-Review, 1984

Prof. Ang Li. Literature Seminar Kosuke Minagawa (D2)

Total Syntheses of Manzamine A.

Synthetic Efforts Toward Palau'amine

CHEM 203. Final Exam December 15, 2010 ANSWERS. This a closed-notes, closed-book exam. You may use your set of molecular models

Total Synthesis of ( )-Himandrine

A Modular Approach to Polyketide Building Blocks: Cycloadditions of Nitrile Oxides and Homoallylic Alcohols

Lecture Notes Chem 51C S. King. Chapter 20 Introduction to Carbonyl Chemistry; Organometallic Reagents; Oxidation & Reduction

Huang, C.; Gevorgyan, V. J. Am. Chem. Soc. 2009, 131, Daniel Tzvi Cohen Short Literature Feb. 23, MeO HO OH. COOH ( )-Plicatic Acid OH OH

Introduction to Synthesis: Design (CHE686) Spring 2015 Exam #1 3/6/15

Studies Toward the Total Synthesis of (±)-Noelaquinone

Organocopper Reagents

Shi Asymmetric Epoxidation

Massachusetts Institute of Technology Organic Chemistry Problem Set 1. Functional Group Transformations Study Guide

Available chemicals from the catalog (the starting sources of carbon compounds will continually decrease as we learn new reactions.

Application of Two Direct C(sp 3 )-H Functionalizations for the Total Synthesis of (+)-Lactacystin

H H H OH OH H OH H O 1 CH 2 OH

Total Synthesis of the Sesquiterpenoid Periconianone A Based on a Postulated Biogenesis

Nine-Step Enantioselective Total Synthesis of (+)-Minfiensine

Stereoselective Organic Synthesis

Additions to Metal-Alkene and -Alkyne Complexes

Progress toward the Total Synthesis of Pleurotin

Synthesis of Double Bonds

Chiral Brønsted Acid Catalysis

11-Step Enantioselective Synthesis of ( )-Lomaiviticin Aglycon

Protecting Groups. Tactical Considerations

Chiral Diol Promoted Boronates Addi3on Reac3ons. Lu Yan Morken Group Boston College

The Amphidinolide T-Series

Enantioselective Synthesis of (+)-Cephalostatin 1

Short Literature Presentation 10/4/2010 Erika A. Crane

Literature Report. A 11-Steps Total Synthesis of Magellanine through a Gold(І)-Catalyzed Dehydro Diels-Alder Reaction

Midterm Exam #1 /280 CHEM 6352 Fall 2011

2.222 Practice Problems 2003

Mild Cobalt-Catalyzed Hydrocyanation of Olefins with Tosyl Cyanide

TMSCl imidazole DMF. Ph Ph OTMS. Michael reaction. Michael reaction Ph R 3. epoxidation O R

CEM 852 Exam LDA, THF, 0 C, 15 min; then

Transcription:

Total Synthesis of Callipeltoside A Denmark Group eting Aaron Bailey September 23, 2008

Callipeltoside A First isolated from Lithistid sponge in 1996 Exhibits moderate cytotoxicity against human bronchopulmonary non-smallcell lung carcinoma Extensive NMR experiments were used to assign the relative stereochemical relationships in macrolactone and sugar regions N Callipetoside A

Synthetic Rationale nly able to isolate from sponge in small quantities (~35 mg total studied since first isolation) Relative stereochemistry of cyclopropyl moiety unclear from NMR experiments SAR studies from diastereomers Four total syntheses reported to date: Evans (02), Trost (02), Patterson (03), Panek (04)

Common Retrons N R Same disconnects proposed in each total synthesis: orner-wadsworth Emmons lefination, and glycosylation to append the sugar X N Each total synthesis demonstrates a unique method of preparing each structure utilizing a variety of different known synthetic transformations

Evans total synthesis Retrosynthetic Analysis for macrolactone a a Ireland-aisen P P 2 P P 3 P R 3 Si N R 3 Si P Bn 5 Ph P P P P 4 Ph

Synthesis of Macrolactone Ph N Bn Cy 2 B, EtN 2-78 to -20 ºC 78 % d.r.= 95:5 N Ph 6 Ph 4 NB(Ac) 3, Ac CN, 0 ºC 98 % N Ph 7 d.r.= >95:5 Ph 1. () 2 C 2, PPTS, acetone, rt. 2. LiSEt, TF, -5 ºC to 0 ºC 3. DIBAL-, Toluene, - 78 ºC 9, BF 3. Et 2, toluene 66 % Ph -78 ºC 86 % 10 d.r.= >95:5 Ph Chan s diene utilized to synthesize 10, under Felkin control 9= TMS TMS

Ireland-aisen Rearrangement 10 Ph 1. TBSTf, 2,6-lutidine C 2 2, -78 ºC 2. PPTS,, rt 67 % TBS Ph 1. Tf, DTBMP, C 2 2, rt 2. 3, C 2 2,, -78 ºC, then 2 S, rt, TBS 12 BrMg TF, -78 ºC 79 % 67 % TBS 11 d.r.= >95:5 1. Li,, TF, 2, rt 2. Cs 2 C 3, allyl bromide, DMF, rt 3. DMBC 2 C, DCC, C 2 2, 0 ºC 69 % TBS DMB 13 LiMDS, TMS. Et 2 N, TF -100 ºC to rt 61 % TBS DMB 14 d.r.= >95:5

Completion of Macrolactone TBS DMB 14 d.r.= >95:5 1. EtS, BP, Et 3 N, C 2 2 0 ºC to rt 2. DDQ,, rt 3. Pd(PPh 3 ) 4, C 2, Et 3 N TF, rt 30 % TBS 15 SEt 1. 2,4,6-3 C 6 2 C, ipr 2 NEt TF, rt then DMAP, toluene 2. PPTS,, rt. 59 % 16 SEt 20 steps to obtain desired macrolactone Abundance of functional group manipulations

Second Synthesis of Macrolactone P P P P P a TMS TMS 9 N Bn 5 P 18 P First route required many functional group manipulations Revised route eliminates requirement of protecting group manipulations

Second Synthesis of Macrolactone TMS Et PMB 1. 21 (5 mol %) Ch 2 2, -78 ºC 2. (aq), TF, rt 99 % Et e.e.= 97 % E:Z= >50:1 PMB 22 1. TBS, imid. DMF, rt 2. LiAl 4, Et 2, 0 ºC to rt 3. S. 3 Py, Et 3 N, DMS, Ch 2 2, 0 ºC 75 % 2 TBS 24 PMB 21= Ph N N Cu N 2 2 Ph SbF 6 Initial reactions conditions provided low yields and poor olefin selectivity (27 % yield, 80 % ee, 11:1 E/Z rapid addition) ptimal reaction conditions were achieved by the slow addition of both reagents.

Stereochemical Complications in Aldol Reaction TBS 24 PMB N Bn 5 Cy 2 B, EtN 2 Et 2, 0 ºC N Bn d.r.= 1.2:1 TBS PMB TBS PMB ent-24 N Bn 5 Cy 2 B, EtN 2 Et 2, 0 ºC TBS N PMB Bn d.r.= 12:1 Using the enantiomer of 24 leads to 10 fold improvement in diastereoselectivity. Different conditions tested determined effects of remote directing groups. -silyl group necessary, but PMB protecting group not required

Completion of Macrolactone TBS PMB ent-24 N Bn 5 1. Cy 2 B, EtN 2, 0 ºC 2. 4 NB(Ac) 3, CN, Ac, 0 ºC 3. N(C 2 C 2 ) 2, EtAc, rt 27 TBS PMB 86 % d.r.= 12:1 1. N()., AI 3, C 2 2, 0 ºC to rt 2. 2 C() 2, PPTS, acetone, rt 3. LA, Et 2, rt 72 % 28 TBS PMB 9, BF 3. Et 2, toluene, -90 ºC 88 % 29 d.r= >20:1 TBS PMB TBSTf, 2,6-lutidene C 2 2, -78 ºC 88 % TBS 30 TBS TBS PMB 31 TBS PMB

Mitsunobu to the Rescue 30 or 31 1. PPTS,, rt 2. Tf, DTBP, C 2 2, rt then PPTS, 57 % TBS TBS PMB 1. TBAF, TF, rt 2. Ms, Et 3 N, DMAP, C 2 2, 0 ºC 3. Li, 2, TF, rt 70 % TBS Ms 34 PMB Cs 2 C 3, 18-crown-6 Toluene, 110 º!C 67 % TBS PMB Modified Mitsunobu conditions afforded desired stereochemistry No isolation of product 35 when starting from alcohol derivative of 34 35

Evans Total Synthesis Retrosynthetic analysis for callipeltose sugar b N N 2 R R CbzN Synthetic challenges: installation of stereocenters Enolate chemistry can be used to obtain high diastereoselectivity

Callipeltose from D-Threonine N 2 1. Na, Cbz, CN, 2 2. I, K 2 C 3, DMF 3. Ts, 2 C() 2, acetone 93 % CbzN 1. iprmg, N. TF 2. MgBr, TF 64 % CbzN 36 Et Et LDA, TF, -78 ºC CbzN 38a 2:1 Et CbzN 38b btained poor d.r. due to formation of undesired enolate Unfortunately, the selectivity could not be improved upon by using alternative bases

Formation of Desired Diastereomer CbzN LDA, TF, -50 ºC CbzN 89 % d.r.= 15:1 Ac 71 % NCbz By utilizing a cyclic ester as the starting material the desired product was obtained in good yield and high selectivity

Completion of the Sugar Ring NCbz 1. 3. BF 4, DTBMP, C 2 2, rt 2. DIBAL-, C 2 2, Ac 2 DMAP, pyridine 76 % Ac NCbz 1. Na, TF 2. DBU, 3 CCN 51 % N N C 3 43 1. BF 3. Et 2, PhS, C 2 2 2. Na, TF 79 % N TBSTf, 2,6-lutidine NTBS PhS C 2 2 92 % PhS 45 Synthesized two different sugar moieties to test in the glycosylation step

Evans Total Synthesis Retrosynthetic Analysis of Side Chain P Michaelis-Arbuzov Coupling reaction M Br Br Corey-Fuchs C Needed to prepare both enantiomers to determine absolute stereochemistry of cyclopropane moiety

Synthesis of Side Chain From D-Mannitol KI 4, KC 3 TF/ 2, rt Cr 2, C 3 TF 70 ºC < 40 % E:Z= 87:13 54 53, K 2 C 3, 94 % 53= P N 2 1. Sia 2 B, TF -15 ºC to 0 ºC 2. Cu 2, 2, MPT, TF 0-70 ºC 70 % E:Z= > 20:1 Takai olefination provided low yields and moderate selectivity Modifying conditions based on Masuda s work the desired product was formed in high yield and selectivity

Synthesis of Side Chain Enantiomer KI 4, KC 3 TF/ 2, rt 53, K 2 C 3,, rt 77 % ent 51 1. Sia 2 B, TF -15 ºC to 0 ºC 2. Cu 2, 2, MPT TF 0-70 ºC 70 % E:Z= > 20:1 53= P N 2 ent 54

Competion of Side Chain C 2 I 2, ZnEt 2 CF 3 C 1. Dowex resin,, rt 2. Pb(Ac) 4, K 2 C 3, C 2 2, rt Br or ent 54 82 % d.r.= > 50:1 3. PPh 3, CBr 4, C 2 2 77 % Br () 2 P () 2 P 59 1. CBr 4, PPh 3, C 2 2, -40 ºC 2. P() 3, 100 ºC 75 % 56, Pd 2 dba 3, P(p-C 6 4 ) 3 ipr 2 NEt DBU, toluene, 100 ºC 80 % 57, Pd(PPh 3 ) 4, TlEt, TF/ 2,rt 93 % Br ent- 59 56= SnBu 3 57= B() 2 Shen s modified Stille conditions could not be applied to the dibromo-olelfin. Instead the coupling reaction was carried out prior to elimination to provide the enyne in good yield

Fragment Assembly TBS TBAF, TF 99 % PMB 35 PMB 45 43 or 44 NIS, Tf, DTBMP 95 % NTBS decomposition Thioether appendage on sugar able to react without decomposition of SM Both anomers can be utilized to provide the desired product Relative stereochemistry determined by NESY 62 PMB N 45= 43= 44= PhS NTBS N C 3 PhS N

Fragment Completion NTBS NTBS PMB 1. DDQ, C 2 2,, 2 2. S 3. Py, Et 3 N DMS, C 2 2 0 ºC to rt 1. 59 (ent 59) LiMDS, - 78 ºC to rt 2. I 2, C 2 2, rt d.r.= 11:1 N NTBS TBAF, Ac, TF, rt 50 % N 1 b 1 a Accomplished in 25 linear steps and a 4 % overall yield. NMR data confirms cyclopropyl moiety too remote for determination ptical rotation confirms natural product to have relative configuration matching that of 1 a

Trost s Total Synthesis Retrosynthetic Analysis from macrolactone 3 3 Ketalization/Aldol 30 PMP asymmetric allylic alkylation P TRC Ru catalyzed Alder-ene TBS 13 16 TRC

Preparation of Macrolactone 1. MgBr 7 1. TBDMS, imid. C 2 2, rt, 2 h 2. N., i-prmg TF, - 20 º C, 15 min 98 % N 9 TF, 0 ºC 2 h TBS 2. 2-methyl (S)-CBS-oxazaborolidine B. 3 S 2, TF, -30 ºC, 1 h d.r.= 10:1, 99 % 11 TBS I, Ag 2 Et 2, rt, 4 h 92 % 13 TBS Reduction required 2.0 equivalents of 2-methyl (S)-CBS-oxazaborolidine for moderate selectivity

Synthesis of Macrolactone-Alder-Ene Reaction 13 TBS R CpRu(C 3 CN) 3 PF 6 acetone, rt TBS R Entry R Mol % Ru Time Yield A 10 2 h 62 % B TRC 5 0.5 h 85 % Product obtained exclusively as linear chain ne of few examples of ruthenium catalyzed Alder-ene reaction to give exclusively linear products Selectivity attributed to coordination of propargylic methyl ether in ruthenacycle and inductive effect of homoallylic oxygen

Proposed chanism of Alder-ene Reaction Trost, B. M., et. al. J. Am. Chem. Soc. 2002, 124, 10396

Asymmetric Allylic Alkylation (AAA) TBS Pd 2 dba 3. CCL 3 p-thoxy phenol nbu 4 N, C 2 2 TBS PMP TRC 19, rt 12 h > 99 %, 2º/1º= 3/1 24 pposite stereocenter observed from expected configuration Selectivity arises from Pd ability to switch from η 1 to η 3 which allows syn to anti interconversion Chloride ion helps facilitate equilibrium by coordinating to Pd

chanism of AAA Trost, B. M., et. al. J. Am. Chem. Soc. 2002, 124, 10396

Aplication of AAA to Macrolactone TBS Pd 2 dba 3. CCL 3 p-thoxy phenol nbu 4 N, C 2 2 TBS PMP 1. TBAF, TF, rt, 12 h TRC ent- 19, rt 12 h > 99 %, d.r.=20:1 28 2. Dess-Martin periodinane NaC 3, Ch 2 2, 0 ºC, 5 h 81 % 30 PMP 1. tert-butylthiopropionate, LDA, TF, -108 ºC 2. TBDMSTf, 2,6-lutidine, C 2 2 0 ºC, 2 h 3. DIBAL-, toluene -78 ºC 56 % d.r.=5:1 TBS PMP 33 TMS BF 3. Et 2, C 2 2-78 ºC 94 % TBS TMS TBSTf, 2,6-di-tert-butylpyridine TBS TBS TMS 36 PMP C 2 2, 0 ºC, 1 h 95 % 37 PMP

Completion of Macrolactone Fragments TBS TBS PMP TMS 1. CAN, acetone/ 2 0 ºC, 5 min 2. toluene, 100 ºC, 1 h 67 % TBS TBS 37 39 1. F. pyridine,, 0 ºC 2. PPT, CN, 2, rt 91 % 3 40 Same steps carried out starting from diasteromer 24 to provide 40 ne studies confirmed stereochemistry of lactones

Appending Cyclopropyl Moiety To determine absolute configuration need to synthesize and append both enantiomers of cyclopropyl moiety menthyl-(+) 2 C C 2 (+)-menthyl LiTMP, BrC 2, TF, -78 ºC, 4h d.r.= 99:1, 87 % menthyl-(+) 2 C C 2 (+)-menthyl 1. Na, IPr, 70 ºC, 12h 2. S 2, rt, 12 h 89 % Na N S menthyl-(+) 2 C menthyl-(+) 2 C N., iprmg C DMAP, C 4, nbu 4 NI, then AIBN 58 TF, -20 ºC, 1h 99 % 60 % Sn(C 4 9 ) 3 N 60 1. DIBAL-, C 2 2-78 ºC, 3 h 2. PPh 3, CBr 4, C 2 2 0 ºC, 4 h 80 % Br Br 62 1. Pd 2 dba. 3 C 3, tris(4-methoxyphenyl)phosphine, DIPEA, DMF 80 ºC, 12 h (Et) 2 P 2. PPh 3, CBr 4, C 2 2-40 ºC, 1h 65 3. P(Et) 3, 100 ºC, 4 h 55 %

Two thods for Appending Dienyne Model studies based on deschlorocallipeltoside Synthesis via lefination (Et) 2 P 65 TBS TBS 39 1. s 4, NM TF/ 2, 0 ºC 4 h 2. NaI 4, TF/ 2 rt, 3h 80 % TBS TBS 46 65, LiMDS, TF, -78 ºC, 3 h E/Z= 4/1 52 % TBS TBS F. pyridine, 0 ºC, 5 h 96 % 66 67

thod 2: tathasis 3 crotonaldehyde, Grubbs II C 2 2, 40 ºC 5 h; then, Cr 2, CI 3, dioxane/tf 0 ºC 3 h, 8:1 (E:Z) 84 % 70 I ent-62, nbuli, 2 Sn Et 2, - 78 ºC to rt, 1h; then 70, 2 Pd(CN) 2, DMF, rt 45 min 70 % 72 Br Br ent-62 s N N Ru P Grubbs II s Ph (Cy-ex) 3

Synthesis of Sugar 1. 2 N., pyridine/et (1:1) N 1. Pt 2, 2, Et 2. benzyl chloroformate DIPEA, C 2 2 87 % N Bn 1. 60 % Ac 2. Na, TF 3. TBSTf, 2,6-lutidine, C 2 2, rt 4. I, Ag 2, DMF, rt 28 % NTBS 1. 2 S 4, PPTS, Ac 2, rt, 2. K 2 C 3,, rt 3. 3 CCN, Na C 2 2, rt 62 % 3 C N NTBS 5

End Game Strategy 3 C N 5 NTBS 1. 67 (72) TMSTf, dichloroethane, 4 Å MS, - 30 ºC 2. TBAF, Ac, TF, rt 69 % N 67 1 or N 72 85 Completion of molecule in 46 total steps (22 linear) for 0.05 % overall yield

Paterson s Synthesis of Macrolactone TMS I (R)-BINL, Ti(i-Pr) 4, TF, Ca 2, -78 ºC 96 % e.e.= 94 % 10 I 1. TBS, imid. C 2 2 2. DIBAL-, C 2 2, -78 ºC TBS 3. Mn 2, C 2 2, rt 76 % 5 I 1. DMB(C 3 )CN, PPTS C 2 2 2. N., i-pr, TF, -20 ºC 3. EtMg, TF, 0 ºC 60 % 6 DMB

Completion of Macrolactone 6 DMB c-ex 2 B, Et 3 N, Et 2-20 ºC; then 5, - 78 ºC to -30 ºC 99 % d.r= 95:5 DMB TBS 11 I 1. SmI 2, EtC, TF, -20 ºC 2. TESTf, 2,6-lutidine, C 2 2, -78 ºC 3. DIBAL-, C 2 2, -78 ºC 4. 3 BF 4, proton sponge C 2 2, 0 ºC 79 % DMB TES TBS I 1. DDQ, C 2 2 p 7 buffer, reflux 2. Dess-Martin periodinane, C 2 281 % TES TBS 14 I 7, BF 3. Et 2, C 2 2, -100 ºC 85 %, d.r. = 95:5 TES TBS 15 I 1. PPTS, () 3 C,. 2. TBSTf, 2,6-lutidine, C 2 2, -78 ºC 3. TBAF, TF 4. Ba() 2. 8 2, 5. 2,4,6-3 (C 6 2 )C, Et 3 N; DMAP, Ph, 80 ºC 57 % TBS 2 I 7= TMS TMS

Completion of Callipeltoside A 2 TBS 1. TFA, aq. TF 2. 4, TMSTf, C 2 2, 4 Å MS, -30 ºC 3. TBAF, Ac, TF 74 % I Pd 2 (PPh 3 ) 2, CuI, ipr 2 N, EtAc, -20 to 0 ºC 83 % N TBS 4= 3 C N N 1 menthyl-(+) 2 C Br n-buli, E 2 C 2 (+)-menthyl Br -78 ºC Synthesized in 4.8 % overall yield (23 steps- longest linear sequence) Sugar and cyclopropyl appendages synthesized by previously reported methods

Panek s Total Synthesis Bn Si 2 Ph C 2 Sn 4, C 2 2-78 ºC, 87 % d.r.= > 30:1 Bn Si 2 Ph C 2 1. Sb 5, C 2 2 2. 3 BF 4, C 2 2 3. 3, 2 S 81 % Bn 11 12, Tf C 2 2, 87 % d.r.= > 30:1 13 Bn C 2 1.mCPBA, C 2 2, rt 2. K 2 C 3,, rt 3. PDC, C 2 2, rt 52 % C 2 14 Bn 1. NaB 4, -78 ºC 2. TBSTf, 2,6-lutidine, -78 ºC 90 % TBS C 2 Bn 1. Li 2. (C) 2, C 2 2 3. C 2 N 2 4. PhC 2 Ag, pyridine, 56 % TBS C 2 Bn 1. CSA, 2. 2, Pd/C, EtAc 3. PDC, C 2 2, rt 85 % TBS C 2 4 12= TMS C 2 Si 2 Ph

Synthesis of Cyclopropyl Dienyne Zn(C 2 I). DME (S,S)-dioxoborolane C 2 2, 82 %, ee= 97 % 1. PDC, C 2 2 2. CBr 4, PPh 3 61 % Br Br SnBu 3 1. CBr 4, PPh 3, C 2 2 (Et) 2 P Pd 2 (dba) 3, (4-Ph) 3 P DIPEA, TF, 68 % 2. P(Et) 3 97 % LiMDS, then 23 TF, 89 % TBDPS Tr 1. TBAF, TF 2. PTS, DIAD, Ph 3 P, TF 3. (N 4 ) 6 Mo 7 24, 2 2 60 % N N PhN N S 2 Tr 1. Ts,,rt 2. EVE, PPTS, rt 90 % 5 23= TBDPS Tr

Completion of Callipeltoside A 5 1. LiMDS, then 4, TF, -78 ºC to rt 2. PPTS, 20 % TBS C 2 1. Li, / 2 /TF 2. 2,4,6-3 PhC, Et 3 N DMAP, toluene, 80 ºC 90 % TBS TBS 28 27 1. TBAF, TF, rt 2. PPTS, 2 /C 3 CN rt 76 % 1.TPB, 2 /C 2 2 2. TBAF, TF, rt 82 % 2

Glycosylation of Macrolactone NTBS N 2 3 C 1. N TMSTf, - 30 ºC 2. TBAF, Ac/TF, rt 73 % Sugar fragment prepared as described by Trost Formal synthesis accomplished with longest linear sequence of 25 steps

Conclusions Four Total Syntheses of Callipeltoside A have been reported to date Trost and Evans both synthesized a diastereomer; changing the configuration about the cyclopropyl moiety The absolute and relative configurations have been assigned based on independent syntheses N R X N

References: Evans, D. A., Burch, J. D., u, E., Jaeschke, G. Tetrahedron, 2008, 64, 4671. Evans, D. A,. u, E., Burch, J. D., Jaeschke, G., J. Am. Chem. Soc. 2002, 124, 5654. Trost, B. M., Gunzner, J. L., Dirat,., Rhee, Y.., J. Am. Chem. Soc. 2002, 124, 10396. Trost, B. M., Dirat,., Gunzner, J. L. Angew. Chem. Int. Ed. 2002, 41, 841. Paterson, I., Davies, R. D. M., eimann, A. C., Marquez, R., yer, A. rg. Lett. 2003, 5, 4477. uang,., Panek, J. S. rg. Lett. 2004, 6, 4383.