Chapter 5. Root Locus Techniques

Similar documents
Chapter 8. Root Locus Techniques

Chapter 3.1: Polynomial Functions

The Performance of Feedback Control Systems

Note 8 Root-Locus Techniques

MODERN CONTROL SYSTEMS

Lecture 30: Frequency Response of Second-Order Systems

Chapter 9. Design via Root Locus

Chapter Frequency Response Response Techniques

Root Locus Diagram. Root loci: The portion of root locus when k assume positive values: that is 0

State space systems analysis

Course Outline. Designing Control Systems. Proportional Controller. Amme 3500 : System Dynamics and Control. Root Locus. Dr. Stefan B.

Root locus ( )( ) The given TFs are: 1. Using Matlab: >> rlocus(g) >> Gp1=tf(1,poly([0-1 -2])) Transfer function: s^3 + 3 s^2 + 2 s

CISE302: Linear Control Systems

ELEC 372 LECTURE NOTES, WEEK 4 Dr. Amir G. Aghdam Concordia University

Root Locus Contents. Root locus, sketching algorithm. Root locus, examples. Root locus, proofs. Root locus, control examples

ECEN620: Network Theory Broadband Circuit Design Fall 2014

ME2142/ME2142E Feedback Control Systems

THE CONCEPT OF THE ROOT LOCUS. H(s) THE CONCEPT OF THE ROOT LOCUS

EECE 301 Signals & Systems Prof. Mark Fowler

Chapter #3 EEE Subsea Control and Communication Systems

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

EE Control Systems LECTURE 14

MATH Midterm Examination Victor Matveev October 26, 2016

Chapter #4 EEE Automatic Control

CONTROL SYSTEMS. Chapter 7 : Bode Plot. 40dB/dec 1.0. db/dec so resultant slope will be 20 db/dec and this is due to the factor s

Chapter 7. Root Locus Analysis

System Control. Lesson #19a. BME 333 Biomedical Signals and Systems - J.Schesser

Chapter #5 EEE Control Systems

Control Systems. Root locus.

Phys 2310 Wed. Oct. 4, 2017 Today s Topics

x 2 x 3 x b 0, then a, b, c log x 1 log z log x log y 1 logb log a dy 4. dx As tangent is perpendicular to the x axis, slope

We will conclude the chapter with the study a few methods and techniques which are useful

The Excel FFT Function v1.1 P. T. Debevec February 12, The discrete Fourier transform may be used to identify periodic structures in time ht.

Figure 1: Unity Feedback System

STABILITY OF THE ACTIVE VIBRATION CONTROL OF CANTILEVER BEAMS

x z Increasing the size of the sample increases the power (reduces the probability of a Type II error) when the significance level remains fixed.

Lecture 12: Examples of Root Locus Plots. Dr. Kalyana Veluvolu. Lecture 12: Examples of Root Locus Plots Dr. Kalyana Veluvolu

Last time: Ground rules for filtering and control system design

Automatic Control Systems. Part III: Root Locus Technique

Automatic Control Systems

Ch. 1 Introduction to Estimation 1/15

Control Systems. Root locus.

The Root Locus Method

Erick L. Oberstar Fall 2001 Project: Sidelobe Canceller & GSC 1. Advanced Digital Signal Processing Sidelobe Canceller (Beam Former)

Control Systems Analysis and Design by the Root-Locus Method

REVIEW OF SIMPLE LINEAR REGRESSION SIMPLE LINEAR REGRESSION

ANALOG FILTERS. C. Sauriol. Algonquin College Ottawa, Ontario

Professor: Mihnea UDREA DIGITAL SIGNAL PROCESSING. Grading: Web: MOODLE. 1. Introduction. General information

Chapter 2 Feedback Control Theory Continued

D.S.G. POLLOCK: TOPICS IN TIME-SERIES ANALYSIS STATISTICAL FOURIER ANALYSIS

Introduction to Control Systems

The z-transform. 7.1 Introduction. 7.2 The z-transform Derivation of the z-transform: x[n] = z n LTI system, h[n] z = re j

MEM 355 Performance Enhancement of Dynamical Systems Root Locus Analysis

Stability Criterion Routh Hurwitz

MATHEMATICS 9740/01 Paper 1 14 Sep hours

Problem 1. Problem Engineering Dynamics Problem Set 9--Solution. Find the equation of motion for the system shown with respect to:

BC Calculus Review Sheet. converges. Use the integral: L 1

are specified , are linearly independent Otherwise, they are linearly dependent, and one is expressed by a linear combination of the others

Chapter 3. Electric Flux Density, Gauss s Law and Divergence

Isolated Word Recogniser

Maximum and Minimum Values

Dynamic Response of Linear Systems

If you need more room, use the backs of the pages and indicate that you have done so.

Grumman F-14 Tomcat Control Design BY: Chike Uduku

Dynamic Response of Second Order Mechanical Systems with Viscous Dissipation forces

If σis unknown. Properties of t distribution. 6.3 One and Two Sample Inferences for Means. What is the correct multiplier? t

E o and the equilibrium constant, K

Analysis of Stability &

ROOT-LOCUS ANALYSIS. Lecture 11: Root Locus Plot. Consider a general feedback control system with a variable gain K. Y ( s ) ( ) K

CONTROL ENGINEERING LABORATORY

STRUCTURES IN MIKE 21. Flow over sluice gates A-1

Queueing Theory (Part 3)

BIO752: Advanced Methods in Biostatistics, II TERM 2, 2010 T. A. Louis. BIO 752: MIDTERM EXAMINATION: ANSWERS 30 November 2010

LECTURE 13 SIMULTANEOUS EQUATIONS

Statistical Inference Procedures

ALE 26. Equilibria for Cell Reactions. What happens to the cell potential as the reaction proceeds over time?

High-Speed Serial Interface Circuits and Systems. Lect. 4 Phase-Locked Loop (PLL) Type 1 (Chap. 8 in Razavi)

(s)h(s) = K( s + 8 ) = 5 and one finite zero is located at z 1

CONTROL SYSTEMS. Chapter 5 : Root Locus Diagram. GATE Objective & Numerical Type Solutions. The transfer function of a closed loop system is

Lesson #15. Section BME 373 Electronics II J.Schesser

MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI

EE/ME/AE324: Dynamical Systems. Chapter 8: Transfer Function Analysis

ROOT LOCUS. Poles and Zeros

Grade 3 Mathematics Course Syllabus Prince George s County Public Schools

Feedback Control Systems (FCS)

EE 508 Lecture 6. Dead Networks Scaling, Normalization and Transformations

Notes 8 Singularities

ECM Control Engineering Dr Mustafa M Aziz (2013) SYSTEM RESPONSE

(a) (b) All real numbers. (c) All real numbers. (d) None. to show the. (a) 3. (b) [ 7, 1) (c) ( 7, 1) (d) At x = 7. (a) (b)

ECE 422 Power System Operations & Planning 6 Small Signal Stability. Spring 2015 Instructor: Kai Sun

Solutions. Definitions pertaining to solutions

CDS 101: Lecture 8.2 Tools for PID & Loop Shaping

EE 508 Lecture 6. Scaling, Normalization and Transformation

Function and Impulse Response

Chapter 7: The z-transform. Chih-Wei Liu

Copyright Paul Tobin 63

x c the remainder is Pc ().

θ * f * θ F (s) ξ s s+h a sin(ωt- φ)

732 Appendix E: Previous EEE480 Exams. Rules: One sheet permitted, calculators permitted. GWC 352,

Fig. 1: Streamline coordinates

Transcription:

Chapter 5 Rt Lcu Techique

Itrducti Sytem perfrmace ad tability dt determied dby cled-lp l ple Typical cled-lp feedback ctrl ytem G Ope-lp TF KG H Zer -, - Ple 0, -, - K Lcati f ple eaily fud Variati f fgai K d t affect the lcati f ay ple H Cled-lp TF KG T KG H K 6 K 8 K K Lcati f ple eed t factr the demiatr difficult variati f gai K d chage the lcati f ple Eay way t kw the CL ple lcati w/ lvig higher-rder characteritic equati f CLTF fr variu gai K? Rt lcu graphical repreetati f the cled-lp ple a a fucti f ytem parameter Ca be ued t deig ytem parameter f the high rder ytem t yield a deired ytem pecificati Etimatig cled-lp ple lcati whe gai K i varied uig pe-lp ple Repreet the ple f T a K varie

Vectr Repreetati f Cmplex Number Vectr repreetati f cmplex umber Cmplex umber σ jω Magitude M ad agle, a M Cmplex fucti F a whe σ j ω Cmplex fucti F ha a zer at -a F a σ a jω a cmplex umber a ca be repreeted by a vectr draw frm the zer f the fucti t the pit Ex F 7 5 j

Cmplicated fucti m zi i : prduct F where M: umber f zer pi N: umber f ple j Value f F at ay pit Each cmplex factr vectr magitude & agle Magitude f F M where zer ple legth legth z i p i m zi i p j i Magitude f the vectr draw frm t the pit p Magitude f the vectr draw frm t the pit z i p i Agle f F at ay pit Meaured frm the pitive real axi agle t zer m i z i j p agle t i ple

Ex Fid F at the pit - j F Magitude M zer legth ple legth j j j 5 0 7 0.7 Agle r F agle t zer z p 0 p. 6.66 agle t 6.9 90 ple ta 0.00 6.6 F ta ta ta.

Prpertie f Rt Lcu Subject trackig camera ytem Kb 에해당 Equivalet cled lp TF Cled lp ple fucti f gai K P, 0 ± 0 K

Lcati f C.L.ple vary with gai K Sytem perfrmace varie K ple K<5 Real : verdamped Ple plt K5 Repeated real: critically damped K>5 uderdamped d d Cectig the C.L.ple crrepdig t frm K 0 t K C.L. ple lcu fr frm K 0 t K Rt lcu Rt lcu Path f cled-lp ple a gai i varied Uig rt lcu, we ca eaily aalyze the characteritic f the higher-rder ytem w/ calculatig cled-lp ple

Prpertie f Rt Lcu Higher-rder ytem difficult t calculate the cled-lp ple lcati fr variu gai K. Uig rt lcu, withut lvig demiatr plymial f cled lp TF, it i pible t have rapid ketch f cled-lp ple lcati chage fr variu gai K rt lcu C.L.T.F. KG T KG H KG KL where L G H :OLTF Characteritic equati i.e. C.L. ple the value that atify the characteritic equati KG H 0 r KG H k 80 KG H k 80 KL 0 k 0, ±, ±, ±, L Ay cmplex umber that atifie thee cditi cled-lp ple! KG H K G H Agle cditi determie the rt lcu Magitude cditi Determie the pecific piti crrepdig t pecific value f K the rt lcu

Ex Ope-lp TF KG H K Cled-lp TF T K K 7K K If a ple a jb i a cled-lp ple fr me value f gai K a jb mut atify KG H k 80 ad KG H Cider a the firt tet pit KG H j 70.55 agle t zer 56. agle t 7.57 80 i t a cled-lp ple j ple 90 08. j What abut / j KG H 80 j K G H / i a cled-lp ple fr me value f gai K ple legth zer legth j / j j / j / /... 0. j / i a cled-lp ple i.e. i a pit the rt lcu whe K 0.

Ple ad Zer at Ifiity Ifiite ple: if O.L.T.F. apprache, a apprache OLTF ha a ple at ifiity Ifiite zer: if O.L.T.F. apprache 0, a apprache OLTF ha a zer at ifiity ex G G ha a ple at ifiity ice ha a zer at ifiity limg lim lim G lim 0 Ex KG H K Three fiite ple 0, -, - N fiite i zer K lim KG H 0 Fr every fucti f umber f fiite i ple ifiite i ple umber f fiite zer ifiite zer Three zer at ifiite fiite ple 0 ifiite ple 0 fiite zer ifiite zer

Shw hw lcati f the CL ple mve a K varie frm 0 t Sketchig the Rt Lcu K0~ 변할때 rt lcu가어떻게변하는지본다.. Mark pe lp ple with x ad pe lp zer with. Draw rt lci the real-axi t the left f a dd umber f real ple plu zer K>0일때, 실수축상에서 Tet pit의오른쪽에있는 ple과 zer의수의합이홀수이면그점은rt luc상에있다 Satifyig the agle cditi KG H k 80. Rt lcu i.e. K 0 tart at fiite ad ifiite pe-lp ple ad ed at fiite ad ifiite pe-lp zer i.e. K. Draw the aymptte f rt lcu a. Real-axi itercept r ceter f aymptte fiite ple fiite zer σ a # fiite ple# fiite zer b. 양의실수축과이루는각도 k 80 a k 0, ±, ±, ± # fiite ple# fiite zer Nte. - Number f brache f the rt lcu umber f cled-lp lp ple ytem rder Brach: path that e ple travere - The rt lcu i ymmetrical abut the real axi

ex 8. Ed at zer at tifiity it. Mark OL ple ad zer. Draw lci real axi t the left f dd umber. Start at ple ad ed at zer. Draw aymptte σ a a 0 # π / π fiite k 80 ple# fiite fr fr k 0 k 5 π / fr k π / zer Ed at zer at ifiity 5π / π Check! # f aymptte # fiite ple - #fiite zer # f brache # f CL ple ytem rder The rt lcu i ymmetrical abut the real axi # ifiite zer #fiite zer #fiite ple Ed at zer at ifiity

Refiig the Sketch breakaway frm real axi ad mve it the cmplex plae A. Real-axi Breakaway ad Break-i Pit σ σ : Breakaway pit : Break-i Pit 80 Break-i ad Breakaway agle : : # f CL ple arrivig at r departig frm the BA r BI the real axi A K icreae Tw ple 90 at BA Tw zer 90 at BI Determie the lcati f BA ad BI pit O the real axi betwee pe-lp p ple, gai K i maximum at BA pit O the real axi betwee pe-lp zer, gai K i miimum at BI pit dk d σ 0 where σ i a either BA r BI pit K Q KG H 0 G H Characteritic equati

Ex 5 8 5 K K H KG 5 8 K 5 8 8 5 8 dk 6 6 5 8 8 5 8 σ σ σ σ d dk 8 5 0 5 8 6 6 σ σ σ σ A d i.8.5, σ BA ad BI pit

B. j ω -Axi Crig A pit the rt lcu that eparate the table perati f the ytem frm the utable perati A ple j ω -axi at a certai gai K Hw t fid the value f ω ad K? Methd I Subtitute j ω directly it characteritic equati 0 A ple j ω -axi σ jω Methd II Ue Ruth table A rw f etire zer f Ruth table ple j ω-axi pible

Ex fid the frequecy ad gai K fr which the rt lcu cre the imagiary axi. C.L.T.F. T 7 K 8 K K Methd I Characteritic equati: 7 8 K K 0 A j ω i a ple f cled-lp ytem, it mut atify characteritic equati Subtitute t j ω it characteritic ti equati jω 7 jω jω 8 K jω K 0 ω j7ω ω 8 K jω K 0 Real part Imagiary part ω ω K 0 7ω 8 K ω 0 Slve fr ω ad K ω ±.59 K 9.65 Rt lcu cre j ω -axi at ± j. 59 at a gai f K 9.65

Methd II Ue Ruth table K T 7 8 K K N ig chage frm t LHP ple remaiig, but eve plymial f require ymmetric ple ple huld be j jωω -axi Oly rw ca make all zer rw K 65K 70 0 Aumig K>0, the K 9.65 Frm eve plymial uig rw 90 K K ± j.59 80.5 0.7 0 K 9.65 j.59 Rt lcu cre j ω-axi at ± j. 59 at a gai f K 9.65 K 0 K 0 Sytem i table fr 0 K < 9.65 K 9.65 j.59

C. Agle f Departure ad Arrival Rt lcu tart at pe-lp ple ex. p ad ed at fiite ad ifiite pe-lp zer ex. z Fr mre accurate rt lcu, eed t kw the rt lcu departure agle frm the cmplex ple arrival agle t the cmplex zer If a cmplex umber i rt-lcu ad cle ε t a cmplex ple p, i.e. i e f the cledlp ple, it mut atify agle cditi Tet pit KG H agle t zer k 80 6 agle t 5 ple if wat t kw the departure agle frm a cmplex ple p 6 5 k 80 Nte. if ple p ha multiplicity q, the departure agle KG H k 80 q 6 5 6 k q 5 80

if wat t kw the arrival agle t a cmplex zer z z Agle cditi fr a cmplex umber ear z ple agle t zer agle t H KG 80 k 5 6 80 k 80 5 6 k N t if h lti li it th d t l Nte. if zer z ha multiplicity q, the departure agle 5 6 80 q k H KG q k 80 5 6 Nte. ad 대신각을찾고자하는 ple 이나 zer 까지의각도를직접구하면된다.

Ex fid the agle f departure frm the cmplex ple ad ketch the rt lcu Ope lp ple at -, -±j Departure agle frm -j k 80 k 80 ta 08. 5.6 90 ta 80

D. Plttig ad Calibratig the Rt Lcu Hw t fid exact pit at which rt lcu atifie certai cditi ad the gai at that pit? Methd I Ex Fid exact pit at which rt lcu cre the 0.5 dampig lie ad the gai at that pit K KG H ζ c c 0.5 6.5 O the ζ 0.5 lie, ly a pit with radiu r 0.77 atifie agle cditi KG H k 80 5 zi i G H p m j i zer legth G H ple legth ple legth A C D E At that pit, the crrepdig gai K. 7 G H zer legth B

Methd II Ex Fid exact pit at which rt lcu cre the 0.58 dampig lie ad the gai at that pit G 6 C R G G α 0 ζω ω 0.76ω α α 0.76ω ω 0.76ω α ω αω c 0.58 ζ 0.58 69.0 0.76ω α 0 0.76ω α ω αω ω.8 ζ 0.58 d.007 ± j.67 CL ple pair ζ 0.58 dampig lie C B A 80-69.0 0 ζω ± jω ζ.007 ± j.67-6 - - 0 K ple legth G H zer legth A B C 80

Cmmet T be table All C.L. ple mut be i LHP If #O.L. ple - #fiite zer There i a vlue f the gai K beyd which rt rci eter the RHPi..e ytem becme utable

Nmiimum-Phae Sytem Skip! Miimum phae ytem: all the ple ad zer lie i LHP Nmiimum phae ytem: at leat e ple r zer lie i RHP G K T a T H & T > 0 a G K T a T T 80 T ±80 k Phae hift thi i why it i called miimum phae K T ± 80 T K a a k 0 Lcu Nt here!

Geeralized Rt Lcu S far, rt lcu a a fucti f the frward-path gai K Hw t draw rt lcu fr variati f ther parameter? Ex rt lcu fr variati f the value f pe lp ple p? 0 KG H gai K wa a multiplyig factr f the fucti but P i t. p Demiatr f C.L.T.F. fr a rt lcu fr gai K variati KG H Fr a rt lcu fr p variati, we eed a CLTF demiatr pg H KG T KG H KG p 0 p 0 0 Ilatig p 0 p 0 0 p 0 p H 0 P i w a multiplyig factr f the pe lp trafer fucti G H 0 Path f cled lp ple a p i icreaed

Summary f the Step fr Ctructig Rt Lci. Cvert it a frm i which ytem parameter i a multiplyig factr. Lcate the pe-lp ple ad zer the -plae. The brache tart frm pe-lp pple ad ed at fiite r ifiite zer. Draw the rt lcu the real axi 5. Determie the aymptte f rt lcu 6. Fid the breakaway ad break-i pit 7. Dt Determie the agle f fdeparture/arrival lf frm/t a cmplex ple/zer l/ 8. Fid the pit where the rt lci may cr the imagiary axi 9. Lcate the cled-lp ple the rt lcu ad determie the crrepdig gai K by ue f the magitude cditi

Rt Lcu fr Pitive-Feedback Sytem KG T KG H Pitive feedback ytem A cled-lp ple exit whe KG H 0 KG H 60 k k 0, ±, ±, ± Agle cditi fr a rt lcu f pitive feedback ytem KG H 60 k Rule fr ketchig rt lcu Read by yurelf