FOURIER TRANSFORM INFRARED

Similar documents
Fourier Transform Infrared. Spectrometry

Introduction to FT-IR Spectroscopy

Fourier transform spectroscopy: an introduction. David Naylor University of Lethbridge

Fourier Transform Infrared Spectrometry

Chemistry Instrumental Analysis Lecture 15. Chem 4631

Chemistry 524--Final Exam--Keiderling Dec. 12, pm SES

2001 Spectrometers. Instrument Machinery. Movies from this presentation can be access at

Introduction to Fourier Transform Infrared Spectroscopy

Introduction to Fourier Transform Infrared Spectroscopy

Chemistry 524--Final Exam--Keiderling May 4, :30 -?? pm SES

Advanced Spectroscopy Laboratory

Astronomical Optics. Second Edition DANIEL J. SCHROEDER ACADEMIC PRESS

Fourier Transform IR Spectroscopy

Optical Shop Testing. Second Edition. Edited by DANIEL MALACARA. John Wiley & Sons, Inc. A Wiley-Interscience Publication

Vibrational Spectroscopy of Molecules on Surfaces

Wavelength Frequency Measurements

FT-IR Spectroscopy. An introduction in measurement techniques and interpretation

PAPER No. 12: ORGANIC SPECTROSCOPY MODULE No. 7: Instrumentation for IR spectroscopy

Optics, Light and Lasers

m m lighter 'atom' dominates 2 INFRARED SPECTROSCOPY All modes of vibrations are not IR active.

Near-Infrared Spectroscopy of Nitride Heterostructures EMILY FINAN ADVISOR: DR. OANA MALIS PURDUE UNIVERSITY REU PROGRAM AUGUST 2, 2012

Where are the Fringes? (in a real system) Div. of Amplitude - Wedged Plates. Fringe Localisation Double Slit. Fringe Localisation Grating

Metrology and Sensing

Light as Wave Motion p. 1 Huygens' Ideas p. 2 Newton's Ideas p. 8 Complex Numbers p. 10 Simple Harmonic Motion p. 11 Polarized Waves in a Stretched

Chem 524 Lecture Notes CD (Section 18) update 2011

Interferometric. Gravitational Wav. Detectors. \p World Scientific. Fundamentals of. Peter R. Sawlson. Syracuse University, USA.

Near-infrared spectroscopy: Comparison of techniques

Spectroscopy: Introduction. Required reading Chapter 18 (pages ) Chapter 20 (pages )

PRINCIPLES OF PHYSICAL OPTICS

Real-time ppb CO 2 Impurity Detection by an Advanced FTIR- UVF System

Chap 4 Optical Measurement

Ultraviolet-Visible and Infrared Spectrophotometry

Optics, Optoelectronics and Photonics

THE OBSERVATION AND ANALYSIS OF STELLAR PHOTOSPHERES

Ch 313 FINAL EXAM OUTLINE Spring 2010

Problem Solving. radians. 180 radians Stars & Elementary Astrophysics: Introduction Press F1 for Help 41. f s. picture. equation.

Electronic Imaging in Astronomy

DEPARTMENT OF CHEMISTRY UNIVERSITY OF SWAZILAND

Interference. Reminder: Exam 2 and Review quiz, more details on the course website

Thermal And Near infrared Sensor for carbon Observation (TANSO) On board the Greenhouse gases Observing SATellite (GOSAT) Research Announcement

DOWNLOAD OR READ : INFRARED AND RAMAN SPECTROSCOPY CONCEPTS AND APPLICATIONS PDF EBOOK EPUB MOBI

Vibrational Spectroscopies. C-874 University of Delaware

Atmospheric Remote Sensing in the Terahertz Region

Spectroscopy in Transmission

Ultraviolet-Visible and Infrared Spectrophotometry

25 Instruments for Optical Spectrometry

Marco Polo ESA Cosmic Visions Candidate Mission Near-Earth Object Sample Return Mission. Asteroid Thermal Mapping Spectrometer

Chem Homework Set Answers

Supporting Information

Metrology and Sensing

Spectroscopic Instruments

Glossary. Analyte - the molecule of interest when performing a quantitative analysis.

FAFF20: Multispectral Imaging

FTIR Spectrometer. Basic Theory of Infrared Spectrometer. FTIR Spectrometer. FTIR Accessories

Spectral Characterization of the Herschel SPIRE Photometer. Locke Dean Spencer. B.Sc. Engineering Physics, University of Alberta, 2003

Characterization and Calibration of a Fourier Transform Spectroradiometer for Solar UV Irradiance Measurements

CHAPTER - 3 CHARACTERIZATION OF SINGLE CRYSTALS USING DIFFERENT TECHNIQUES. 3.1 Instrumentations used for characterization

Metrology and Sensing

Design and Development of a Smartphone Based Visible Spectrophotometer for Analytical Applications

1901 Application of Spectrophotometry

Transform Techniques in Chemistry

INTRODUCTION TO MODERN VIBRATIONAL SPECTROSCOPY

COURSE DELIVERY PLAN - THEORY Page 1 of 6

Surface Analysis - The Principal Techniques

A few Experimental methods for optical spectroscopy Classical methods Modern methods. Remember class #1 Generating fast LASER pulses

Surface Analysis - The Principal Techniques

Virtual Bioimaging Laboratory

CHEM*3440. Photon Energy Units. Spectrum of Electromagnetic Radiation. Chemical Instrumentation. Spectroscopic Experimental Concept.

Todays Topics 3/19/2018. Light and Telescope. PHYS 1403 Introduction to Astronomy. CCD Camera Makes Digital Images. Astronomical Detectors

Lecture 0. NC State University

Lecture 7: Optical Spectroscopy. Astrophysical Spectroscopy. Broadband Filters. Fabry-Perot Filters. Interference Filters. Prism Spectrograph

VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur

Modern Techniques in Applied Molecular Spectroscopy

Two-electron systems

Spectroscopic Measurements of Optical Elements For Submillimeter Receivers

Abstract... I. Acknowledgements... III. Table of Content... V. List of Tables... VIII. List of Figures... IX

Astronomical Techniques

remote sensing FTIR-technique remote sensing

PS210 - Optical Techniques. Section VI

Fabry-Perot Interferometer for atmospheric monitoring useful for EAS detection E.Fokitis 1, K. Patrinos 1, Z. Nikitaki 1

Overview: Astronomical Spectroscopy

Chapter 4 Nadir looking UV measurement. Part-I: Theory and algorithm

Wolfgang Demtroder. Laser Spectroscopy. Basic Concepts and Instrumentation. Second Enlarged Edition With 644 Figures and 91 Problems.

Fourier Transform Infrared Spectroscopy (Perkin Elmer - Spectrum One)

The science of light. P. Ewart

Educational experiment package Volume 1. Molecular spectroscopy

Optical Systems Program of Studies Version 1.0 April 2012

Reference literature. (See: CHEM 2470 notes, Module 8 Textbook 6th ed., Chapters )

SOFT X-RAYS AND EXTREME ULTRAVIOLET RADIATION

Physics of Light and Optics

PERFORMANCE AND EXAMPLES OF MEASUREMENTS OF A MID INFRARED INTERFEROMETRIC HYPERSPECTRAL IMAGER

Some Topics in Optics

Metrology and Sensing

Electromagnetic Radiation and Scientific Instruments. PTYS April 1, 2008

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

requency generation spectroscopy Rahul N

Physics 30: Chapter 5 Exam Wave Nature of Light

Evaluating Labsphere s new UV-2000

High Resolution Optical Spectroscopy

THE MICHELSON INTERFEROMETER Intermediate ( first part) to Advanced (latter parts)

Transcription:

FOURIER TRANSFORM INFRARED A Constantly Evolving Technology SEAN JOHNSTON M.SCB.SC. Instrument Manager Laser Monitoring Systems Ltd, Humberside, UK ERRATA Johnston: FOURIER TRANSFORM INFRARED 1. Back cover, 2nd line from bottom: chartered pharmacist should read chartered physicist 2. Back cover, 16th line from bottom: Flegett should read Fellgett 3. P.340 (index), second-to-last entry: ZDP should read ZPD ELLIS HORWOOD NEW YORK LONDON TORONTO SYDNEY TOKYO SINGAPORE

Table of Contents PREFACE 17 1 INTRODUCTION 21 PARTI: CLASSICAL TIMES 2 ORIGINS 27 2.1 The Status in 1800 27 2.1.1 Light waves vs. particles 28 2.2 The discovery of interference 28 2.3 Growth of the undulatory theory 29 2.3.1 The interference of light 29 2.3.2 Polarization 30 2.3.3 Research into interference phenomena 31 2.4 Harmonie analysis 31 2.5 The beginnings of optical spectroscopy 32 2.5.1 Invention of the spectroscope 34 2.5.2 Emission spectra 37 2.5.3 Absorption spectra 37 2.5.4 Molecular spectra 38 References 38 3 THE BIRTH OF INTERFERENTIAL SPECTROSCOPY 40 3.1 The interferometer 40 3.2 The interferogram 43 3.3 The Fourier transform 46 3.4 The harmonic analyser 46 3.5 Experimental limitations 49 3.6 Infrared and far infrared 51

6 Table of contents 3.7 The measurement of infrared radiation 51 3.8 Interferential spectroscopy in the infrared 52 References 55 PART II: DARKAGES 4 THE DECLINE OF INTERFERENTIAL SPECTROSCOPY 59 4.1 Spreading the word 59 4.2 Ambiguities 60 4.3 Restriction to emission spectra 60 4.4 The missing link 61 4.5 Final decline 63 References 64 5 COMPETING TECHNOLOGIES 66 5.1 Spectral units 66 5.2 Spectral ränge 67 5.3 Spectral resolution 67 5.4 Multiple-beam spectroscopic instruments 67 5.4.1 The echelon spectroscope 67 5.4.2 The Fabry-Perot etalon 69 5.4.3 The Lummer-Gehrcke plate 70 5.5 Dispersive spectroscopic instruments 72 5.5.1 Prism spectrometers 72 5.5.2 The diffraction grating 73 5.6 A typical spectroscopic implementation in the late 1920s....74 References 76 6 COMMERCIAL DISPERSIVE SPECTROMETERS 77 6.1 Improvements to classical detection methods 77 6.1.1 The Pfund resonance radiometer 77 6.1.2 The Firestone amplifier 77 6.1.3 Electronic amplifiers 78 6.2 Recording spectrophotometers 79 6.3 Servomechanisms 81 6.4 Fourier transformation before Computers 82 6.5 The growth of commercial spectroscopy 83 6.6 Double beam vs. single beam instruments 83 6.6.1 Optical null instruments 84 6.6.2 Energy control 85 6.6.3 Electronic null instruments 85 6.6.4 Recording Systems 86

Table of contents 7 6.6.5 The dispersive infrared laboratory 86 References 87 PART III: RENAISSANCE 7 POST-WAR DEVELOPMENTS 91 7.1 Computer development 91 7.1.1 Optical processing 91 7.2 Information theory 92 7.3 Instrument science 92 7.4 The multiplex advantage 93 7.5 The Jacquinot advantage 95 7.6 Other contributions 96 References 97 8 EXPERIMENTAL INTERFEROMETRIC SPECTROSCOPY....98 8.1 Fellgett's demonstration 98 8.2 The Johns Hopkins group 99 8.3 Lawrence Mertz at Baird Associates Ine 101 8.4 The road to transformation 101 8.5 Jacquinot's group 103 8.6 The 1957 Bellevue Conference 103 8.7 Connes' thesis 104 8.8 Work at NPL 106 8.8.1 Michelson vs. lamellar interferometers 106 8.8.2 Early NPL instruments 107 8.8.3 A near infrared FTIR 107 8.8.4 The compensator plate 107 8.8.5 An evacuable Michelson interferometer 110 8.9 Moire position measurement 110 8.10 Advances in detectors 112 8.10.1 The Golay cell 112 8.10.2 The photoelectric infrared detectors 113 8.10.3 Photomultiplier tubes 113 8.11 The state-of-the-art: the Connes' planetary spectra 114 References 115 9 WORKING OUT THE DETAILS 117 9.1 Apodization 118 9.2 Digital sampling 120 9.3 Surface flatness vs. wavelength 120 9.4 The effect of beam divergence in an interferometer 121

10 Table of contents 13.5.2 LVDTs 204 13.5.3 Fringe monitoring 204 13.6 Associated spectrometer optics 208 13.6.1 Jacquinot stop 208 13.6.2 Source and source optics 209 13.6.3 Sample optics 212 13.6.4 Detectors 213 13.6.5 Detector optics 214 References 217 14 THE OPTIMIZATION OF FTIR 219 14.1 Interferometer efficiency 219 14.2 Dynamic ränge 223 14.3 Amplifier linearity 224 14.4 Filtering 225 14.5 Beamsplitter design 226 14.5.1 Wavefront distortion 226 14.5.2 Spectral band 227 14.5.3 Polarization effects 228 References 229 15 FTIR SINCE 1980 230 15.1 Analect 231 15.2 Beckman 232 15.3 Block Engineering 232 15.4 Bomem 232 15.5 Bran+Luebbe 234 15.6 Bruker 234 15.7 Chelsea Instruments 235 15.8 Digilab 235 15.9 Hewlett-Packard 235 15.10 Hitachi 236 15.11 IBM Instruments 236 15.12 Idealab 236 15.13 Janos 236 15.14 Jasco 236 15.15 Jeol 236 15.16 Kayser-Threde 237 15.17 Lloyd Instruments 237 15.18 Mattson 238

Table of contents 11 15.19 Midac 239 15.20 Nicolet 239 15.21 Perkin-Elmer 242 15.22 Philips Analytical 244 15.23 Specac 245 15.24 Soviet instruments 246 15.25 Epilogue: companies no longer manufacturing FTIRs....246 References 246 16 FTIR IN SPACE 248 16.1 Ground-based astronomy 248 16.2 Airborne Fourier spectrometers 249 16.2.1 JPL 249 16.2.2 University of Arizona 250 16.2.3 Other airborne instruments 252 16.3 Space-borne interferometers 252 16.3.1 Block Engineering 252 16.3.2 Nimbus satellites 252 16.3.3 EXCEDE experiment 255 16.3.4 Mariner Mars probe 255 16.3.5 Voyager space probe 256 16.3.6 Cosmic Background Explorer 257 16.3.7 Tropospheric emission spectrometer (TES) 257 16.3.8 Soviet space-borne interferometers 258 16.3.9 Manned Space flight 258 References 258 17 BEYOND FTIR 260 17.1 Double-beam FTIR 260 17.1.1 Double-beam configurations and applications....261 17.1.2 Technical advantages of double-beam configurations 268 17.1.3 Comparison with dispersive double-beam instruments 270 17.1.4 Factors affecting Performance 271 17.1.5 Summary 274 17.2 Asymmetrie FTIR 275 17.3 Field-widened interferometers 278 17.3.1 Principle of field-widening 278 17.3.2 Practical instruments 280 17.3.3 Imaging interferometers 283 17.4 Polarizing interferometers 284

12 Table of Contents 17.4.1 Wire-grid polarizers 284 17.4.2 Mertz's polarizing interferometer 285 17.4.3 Martin and Puplett design 286 17.4.4 Polarizing interferometer for dichroism measurements 288 17.5 FT spectrometry in the ultraviolet 289 17.5.1 Optical quality 289 17.5.2 Scanning accuracy 289 17.5.3 Alignment 289 17.5.4 Practical instruments 290 17.5.5 Types of noise and their effect on the multiplex advantage 291 17.5.6 The Jacquinot advantage in FT-UV 293 17.6 Gas chromatography and IR 294 17.7 Thermogravimetric analysis and IR 299 17.8 Raman spectroscopy 299 17.9 Sampling techniques 301 17.9.1 Infrared microsampling 301 17.9.2 Diffuse reflectance 302 17.9.3 Attenuated total reflectance 303 17.9.4 Photo-acoustic spectroscopy 304 17.9.5 Long-path gas cells 306 17.9.6 Fibre optics interfaces 308 References 310 18 THE SHAPE OF THINGS TO COME 312 18.1 Changing markets 312 18.2 Advances in technology 313 18.3 Data analysis 313 18.3.1 Neural nets 313 18.3.2 Expert Systems 314 18.3.3 Communication 314 18.4 Interferometer design 315 18.4.1 FTIR with no moving parts 315 18.4.2 FTIR within an optical fibre 317 18.5 Advances in sampling techniques 317 18.6 The eventual demise of FTIR 318 18.6.1 Scanning laser spectroscopy 318 18.6.2 Infrared diode-array spectrometers 320 18.7 The weaknesses of FTIR 320 18.8 The strengths of FTIR 321

Table of contents 13 18.9 FTS or FTIR? 321 18.10 In the crystal ball 322 References 324 Appendix PRACTICAL EVALUATION OF AN FTIR SPECTROMETER 325 ALI The single-beam spectrum: alignment and purging 325 AI.2 The 100% line: alignment, stability, speed Variation, and noise 325 AI.3 The polystyrene test: amplifier linearity and frequency scale 328 AI.4 Absorbance ränge and linearity 329 AI.5 Substitution of a frequency generator for detector and preamplifier 330 AI.6 Interferogram examination: modulation efficiency and long-term stability 332 Reference 333 INDEX 334