Science Case for / Physics Goals of ALPS-II. Andreas Ringwald for the ALPS Collaboration

Similar documents
Physics case for axions and other WISPs. Andreas Ringwald (DESY)

Axions and Axion-Like Particles in the Dark Universe. Andreas Ringwald (DESY)

Physics Case for Axion or ALP DM. Andreas Ringwald (DESY)

Thermalization of axion dark matter

Axion-Like Particles from Strings. Andreas Ringwald (DESY)

Topology in QCD and Axion Dark Matter. Andreas Ringwald (DESY)

Outline of my talk 1) Axion BEC: a model beyond CDM. 2) Production and Detection of Axion-like Particles by Interferometry.

Opportunities for Subdominant Dark Matter Candidates

AXIONS AND AXION-LIKE PARTICLES

Jun. Prof. Dr. Alessandro MIRIZZI (Universität Hamburg)

Search for New Physics at the Milliscale

Axions and other (Super-)WISPs

Novel Astrophysical Constraint on Axion-Photon Coupling

DARK MATTER. Martti Raidal NICPB & University of Helsinki Tvärminne summer school 1

Axion Detection With NMR

Introduction to Cosmology

Hidden Sector particles at SNS

The QCD Axion. Giovanni Villadoro

Ultra-Light Particles Beyond the Standard Model

Yang-Hwan Ahn Based on arxiv:

Axino Phenomenology in the Kim-Nilles mechanism

Study of indirect detection of Axion-Like- Particles with the Fermi-LAT instrument and Imaging Atmospheric Cherenkov Telescopes

The Standard Model and Beyond

Attacking Dark Forces with Intense Electron Beams at DESY

Dark Energy vs. Dark Matter: Towards a unifying scalar field?

Search for New Low Energies

ADMX: Searching for Axions and Other Light Hidden Particles

Sub-GeV Scale Dark Forces?!

Theoretical Physics at DESY and the University of Hamburg

QCD axions with high scale inflation

Pangenesis in a Baryon-Symmetric Universe: Dark and Visible Matter via the Affleck-Dine Mechanism

Dynamics of the Peccei-Quinn Scale

Axion Cold Dark Matter with High Scale Inflation. Eung Jin Chun

Axion in Large Extra Dimensions

Igor G. Irastorza Lab. Física Nuclear y Astropartículas, Departamento de Física Teórica Universidad de Zaragoza Martes Cuánticos, 2-Diciembre-2014

Cosmological tests of ultra-light axions

Astrophysical and Cosmological Axion Limits

Possible sources of very energetic neutrinos. Active Galactic Nuclei

New experiment for axion dark matter

Solar Axions Globular Cluster Supernova 1987A Dark Matter Long-Range Force. Axion Landscape. Georg G. Raffelt, Max-Planck-Institut für Physik, München

Can you detect dark energy in the laboratory? Clare Burrage University of Nottingham

Cosmic Positron Signature from Dark Matter in the Littlest Higgs Model with T-parity

Axion and Dark Matter Studies in IBS

Making Light from the Dark Universe

Dark Matter Decay and Cosmic Rays

Theory and phenomenology of hidden U(1)s from string compactifications

Shedding Light on the Hidden Sector

New Experiments at the Intensity Frontier

Stochastic conversions of TeV photons into axionlike particles in extragalactic magnetic fields

Search for exotic process with space experiments

Axion and ALP Dark Matter Search with the International Axion Observatory (IAXO)

Phenomenological Aspects of LARGE Volume Models

Scale symmetry a link from quantum gravity to cosmology

Project Paper May 13, A Selection of Dark Matter Candidates

Dark Matter in Particle Physics

Searching for ALPs and other WISPs at the intensity frontier

Light Paraphotons and Minicharged Particles in Realistic Extensions of the Standard Model

Reminder : scenarios of light new physics

Gravity, Strings and Branes

Axion and axion-like particle searches in LUX and LZ. Maria Francesca Marzioni

SENSITIVITY OF THE CHERENKOV TELESCOPE ARRAY TO THE DETECTION OF AXION-LIKE PARTICLES

Non-detection of the 3.55 kev line from M31/ Galactic center/limiting Window with Chandra

Axion Searches Overview. Andrei Afanasev The George Washington University Washington, DC

Searching for ALPs and Hidden Photons with Intense Photon-and Electron-Beams

Axions as Dark matter candidates. Javier Redondo Ramón y Cajal fellow Universidad de Zaragoza (Spain)

Non-Thermal Dark Matter from Moduli Decay. Bhaskar Dutta. Texas A&M University

Gravity, Strings and Branes

Astronomy 182: Origin and Evolution of the Universe

SM*A*S*H. Standard Model * Axion * See-saw * Hidden PQ scalar inflation. Andreas Ringwald (DESY)

The Story of Wino Dark matter

Searching for the Axion

(Mainly centered on theory developments)

AXIONS. 1. Introduction

Axions. Kerstin Helfrich. Seminar on Theoretical Particle Physics, / 31

The cosmological constant puzzle

Gamma-ray Astrophysics

The mass of the Higgs boson

Axions Theory SLAC Summer Institute 2007

The Dark Side of the Higgs Field and General Relativity

SEARCH FOR AXION- LIKE PARTICLE SIGNATURES IN GAMMA-RAY DATA

PHYSICS BEYOND SM AND LHC. (Corfu 2010)

M. Lattanzi. 12 th Marcel Grossmann Meeting Paris, 17 July 2009

Fermi: Highlights of GeV Gamma-ray Astronomy

Low-Energy Photons as a Probe of Weakly Interacting Sub-eV Particles

Versatility of the Abelian Higgs Model

Signatures of clumpy dark matter in the global 21 cm background signal D.T. Cumberland, M. Lattanzi, and J.Silk arxiv:

Week 3 - Part 2 Recombination and Dark Matter. Joel Primack

Vacuum Energy and the cosmological constant puzzle

EDMs from the QCD θ term

Light hidden U(1)s in LARGE volume string compactifications

International AXion Observatory IAXO

A short review of axion and axino parameters

I V E R S U N. The Hot Big Bang I T Y T H E O F E. Andrew Liddle R G. Image: NASA/WMAP Science Team

The Mystery of Dark Matter

The quest for axions and other new light particles

(International AXion Observatory)

Moment of beginning of space-time about 13.7 billion years ago. The time at which all the material and energy in the expanding Universe was coincident

Solutions for Assignment of Week 06 Introduction to Astroparticle Physics

New Physics below the Fermi Scale. Mikhail Shaposhnikov

November 24, Scalar Dark Matter from Grand Unified Theories. T. Daniel Brennan. Standard Model. Dark Matter. GUTs. Babu- Mohapatra Model

Transcription:

Science Case for / Physics Goals of ALPS-II. Andreas Ringwald for the ALPS Collaboration ALPS-II TDR Review, DESY Site Zeuthen, 07 November 2012

Strong case for particles beyond the Standard Model > Standard Model (SM) of particle physics describes basic properties of known matter and forces > SM not a complete and fundamental theory: No satisfactory explanation for values of its many parameters No quantum gravity Andreas Ringwald Science Case/Physics Goals, ALPS-II TDR Review, 24./25. Oktober 2012 Page 2

Strong case for particles beyond the Standard Model > Standard Model (SM) of particle physics describes basic properties of known matter and forces > SM not a complete and fundamental theory: No satisfactory explanation for values of its many parameters No quantum gravity No explanation of the origin of dark energy and dark matter (wikipedia) Andreas Ringwald Science Case/Physics Goals, ALPS-II TDR Review, 24./25. Oktober 2012 Page 3

Strong case for particles beyond the Standard Model > Standard Model (SM) of particle physics describes basic properties of known matter and forces > SM not a complete and fundamental theory: No satisfactory explanation for values of its many parameters No quantum gravity No explanation of the origin of dark energy and dark matter > Leading dark matter candidates: Neutralinos and other Weakly Interacting Massive Particles (WIMPs) Axions and other very Weakly Interacting Slim (=ultra-light) Particles (WISPs) (Kim,Carosi 10) Andreas Ringwald Science Case/Physics Goals, ALPS-II TDR Review, 24./25. Oktober 2012 Page 4

Axion and axion-like particles: Theory > Peccei-Quinn solution of strong CP puzzle: introduce axion field a(x) as dynamical theta parameter, enjoying a shift symmetry, broken only by anomalous couplings to gauge fields, Effective theta parameter has zero expectation value: no strong CP violation Elementary particle excitation of axion field: QCD axion (Weinberg 78; Wilczek 78) For large decay constant : prime example of a WISP... (Kim 79; Shifman et al 80; Zhitnitsky 80; Dine et al 81) > Axion-like particles (ALPs) : more axion-like fields with shift symmetry and anomalous couplings to gauge bosons Andreas Ringwald Science Case/Physics Goals, ALPS-II TDR Review, 24./25. Oktober 2012 Page 5

Axion and axion-like particles: Theory Andreas Ringwald Science Case/Physics Goals, ALPS-II TDR Review, 24./25. Oktober 2012 Page 6

Axion and axion-like particles: Theory > In field theoretic extensions of SM, axion and ALP fields realised as phase of complex SM singlet scalar fields whose vacuum expectation values break global anomalous chiral U(1) symmetries. (Peccei, Quinn 77) At energies much below the symmetry breaking, the low-energy effec-tive field theory is that of (pseudo-)nambu-goldstone bosons with decay constants > In models, in which the global PQ symmetries are not imposed by hand, but in which they appear as automatic consequences of local gauge invariance, renormalisability and pattern of gauge symmetry breakdown:. (Georgi, Hall, Wise 81) > Big range of possibilities discussed in literature: Andreas Ringwald Science Case/Physics Goals, ALPS-II TDR Review, 24./25. Oktober 2012 Page 7

Axion and axion-like particles: Theory > Particular strong motivation for the existence of the axion and ALPs comes from string theory > Low-energy effective field theory emerging from string theory predicts natural candidates for the QCD axion, often even an `axiverse, containing many additional ALPs (Witten 84; Conlon 06; Svrcek, Witten 06; Arvanitaki et al 09; Acharya et al 10; Cicoli,Goodsell,AR 12) > Number of ALPs = number of cycles of extra-dimensional manifold > Big range of possibilities, since its volume can take a range of values: Andreas Ringwald Science Case/Physics Goals, ALPS-II TDR Review, 24./25. Oktober 2012 Page 8

Axion and axion-like particles: Theory Andreas Ringwald Science Case/Physics Goals, ALPS-II TDR Review, 24./25. Oktober 2012 Page 9

Axion and axion-like particles: Astrophysics > Strong bounds on axions/alps come from their effects on stellar evolution and on the propagation of SM particles through astrophysical environments: (Raffelt 96) Non-observation of an anomalous energy loss of Horizontal Branch (HB) stars due to ALP emission: Absense of a gamma-ray burst due to axion/alp-photon conversion in coincidence with neutrinos from SN 1987A: (Brockway et al 96; Grifols et al 96) > Just behind the boundary of current bounds, there are intriguing hints suggesting existence of axions and ALPs (Isern et al 08;12) Evidence for a non-standard energy loss in white dwarfs, consistent with the existence of a sub kev mass axion or ALP with Andreas Ringwald Science Case/Physics Goals, ALPS-II TDR Review, 24./25. Oktober 2012 Page 10

Axion and axion-like particles: Astrophysics > TeV photons from distant Active Galactic Nuclei (AGN) should show absorption features due to e+e- pair production at the Extragalactic Background Light (EBL) Andreas Ringwald Science Case/Physics Goals, ALPS-II TDR Review, 24./25. Oktober 2012 Page 11

Axion and axion-like particles: Astrophysics > TeV photons from distant Active Galactic Nuclei (AGN) should show absorption features due to e+e- pair production at the Extragalactic Background Light (EBL) > Not the case: (e.g. Horns,Meyer) Analysis of 50 spectra (HESS, MAGIC, Veritas): minimal EBL, absorption excluded by more than 4 sigma (Horns,Meyer 12) Andreas Ringwald Science Case/Physics Goals, ALPS-II TDR Review, 24./25. Oktober 2012 Page 12

Axion and axion-like particles: Astrophysics > TeV photons from distant Active Galactic Nuclei (AGN) should show absorption features due to e+e- pair production at the Extragalactic Background Light (EBL) > Not the case: (e.g. Horns,Meyer) Analysis of 50 spectra (HESS, MAGIC, Veritas): minimal EBL, absorption excluded by more than 4 sigma > Possible explanation in terms of photon <-> ALP conversions in astrophysical magnetic fields (Roncadelli et al 07; Simet et al 08; Sanchez- Conde et al 09; Horns et al 12) Andreas Ringwald Science Case/Physics Goals, ALPS-II TDR Review, 24./25. Oktober 2012 Page 13

Axion and axion-like particles: Astrophysics Andreas Ringwald Science Case/Physics Goals, ALPS-II TDR Review, 24./25. Oktober 2012 Page 14

Axion and axion-like particles: Dark matter > Axions and other bosonic WISPy cold dark matter may be produced non-thermally via vacuumrealignment in form of classical, spatially coherent oscillating fields = coherent state of extremely non-relativistic dark matter (Preskill et al 83; Abbott,Sikivie 83; Dine,Fischler 83; Cadamuro et al 12) Andreas Ringwald Science Case/Physics Goals, ALPS-II TDR Review, 24./25. Oktober 2012 Page 15

Axion and axion-like particles: Dark matter > Axions and other bosonic WISPy cold dark matter may be produced non-thermally via vacuumrealignment in form of classical, spatially coherent oscillating fields = coherent state of extremely non-relativistic dark matter Axion (ALPs) can contribute significantly to cold dark matter for. (a wider range of parameters) > Axion or ALP cold dark matter may form rethermalising Bose Einstein Condensate (BEC) (Sikivie,Yang 09; Erken et al. 12; Sikivie 12) Observational evidence for caustic rings of dark matter consistent with BEC, but not with WIMPy dark matter (Cadamuro et al. 12) Andreas Ringwald Science Case/Physics Goals, ALPS-II TDR Review, 24./25. Oktober 2012 Page 16

Axion and axion-like particles: Goals of ALPS-IIc > Chart thus-far unexplored parameter space, surpassing, at low masses, even the limits from the CERN Axion Solar Telescope (CAST) > Tackle regions which are favored by astrophysical hints, dark matter, and theory Andreas Ringwald Science Case/Physics Goals, ALPS-II TDR Review, 24./25. Oktober 2012 Page 17

Hidden photons: Theory > Most extensions of standard model based on supergravity or superstrings predict hidden sector of particles which are very weakly coupled to the visible sector standard model particles > Hidden-sector Abelian gauge bosons (hidden photons) provide a window to the hidden sector since they can mix kinetically with the visible sector hypercharge U(1) gauge boson, > Kinetic mixing generated at loop level via messenger exchange (Holdom 86; Dienes et al 97; Abel et al 08; Goodsell et al 09;12; Cicoli et al 11) Andreas Ringwald Science Case/Physics Goals, ALPS-II TDR Review, 24./25. Oktober 2012 Page 18

Hidden photons: Dark radiation > For mev scale masses, photon <-> hidden photon oscillations occur resonantly after big bang nucleosynthesis, producing a hidden cosmic microwave background, leading to an increase of the cosmic energy density in invisible radiation at decoupling (dark radiation), often quoted as the effective number of neutrino species (Jaeckel,Redondo,AR 08) > CMB observations seem to favour extra dark radiation: (Komatsu et al [WMAP] 10; Dunkley et al [Acatama Cosmology Telescope Collaboration] 10) > Required parameters: Andreas Ringwald Science Case/Physics Goals, ALPS-II TDR Review, 24./25. Oktober 2012 Page 19

Hidden photons: Goals of ALPS-IIa/IIb > Conclusive test of hidden photon dark radiation hypothesis > Probe parameter region predicted in intermediate string scale scenarios > Tackle a fraction of hidden photon dark matter parameter space Andreas Ringwald Science Case/Physics Goals, ALPS-II TDR Review, 24./25. Oktober 2012 Page 20

Summary > Strong physics case for WISPs from theory: Solution of strong CP problem gives particularly strong motivation for existence of QCD axion In many UV completions of SM with a QCD axion, there occur also ALPs Hidden sectors are often exploited in supersymmetric extensions of the SM. In these sectors, hidden photons are very well motivated WISP candidates providing a window to the hidden sector. > ALPs and hidden photons can solve puzzles in astrophysics and cosmology: Anomalous energy loss of white dwarfs Anomalous transparency of the universe for TeV photons Extra dark radiation WISPy dark matter > ALPS-II can tackle corresponding regions in WISPy parameter space! Andreas Ringwald Science Case/Physics Goals, ALPS-II TDR Review, 24./25. Oktober 2012 Page 21

Backup > Study on ALP explanation of TeV transparency in progress (Horns,Meyer): ALPS-II covers fiducial region Andreas Ringwald Science Case/Physics Goals, ALPS-II TDR Review, 24./25. Oktober 2012 Page 22

Backup > Projected axion/alp sensitivities of other experiments: (Hewett et al 12) Andreas Ringwald Science Case/Physics Goals, ALPS-II TDR Review, 24./25. Oktober 2012 Page 23

Backup > Projected hidden photon sensitivities of other experiments: (Hewett et al 12) Andreas Ringwald Science Case/Physics Goals, ALPS-II TDR Review, 24./25. Oktober 2012 Page 24