BRITISH PHYSICS OLYMPIAD BPhO Round 1 Section 2 18 th November 2016

Similar documents
PhysicsAndMathsTutor.com 1

BRITISH PHYSICS OLYMPIAD BPhO Round 1. Section 1

BRITISH PHYSICS OLYMPIAD A2 Challenge. September/October 2016

PHYA4/2. (JUN14PHYA4201) WMP/Jun14/PHYA4/2/E4. General Certificate of Education Advanced Level Examination June 2014

Care should be taken to give an appropriate number of significant figures in the final answers to calculations.

A-level PHYSICS (7408/3BD)

Physics Assessment Unit A2 2

You should be able to demonstrate and show your understanding of:

PhysicsAndMathsTutor.com 1

Chapter 1 The discovery of the electron 1.1 Thermionic emission of electrons

Waves Final Review. Name: Date: 1. On which one of the following graphs is the wavelength λ and the amplitude a of a wave correctly represented?

Time allowed: The total time for Section A and Section B of this paper is 1 hour 30 minutes

Care should be taken to give an appropriate number of significant figures in the final answers to calculations.

An ion follows a circular path in a uniform magnetic field. Which single change decreases the radius of the path?

PHYSICS 9646/02. NANYANG JUNIOR COLLEGE Science Department JC 2 PRELIMINARY EXAMINATION Higher 2. Candidate Name. Tutor Name.

PHYSICS : CLASS XII ALL SUBJECTIVE ASSESSMENT TEST ASAT

Ch 17 Problem Set 31. A toaster is rated at 600 W when connected to a 120-V source. What current does the toaster carry, and what is its resistance?

SPECIMEN. Date Morning/Afternoon Time allowed: 1 hour 30 minutes. AS Level Physics A H156/01 Breadth in physics Sample Question Paper PMT

Advanced Higher Physics. Electromagnetism

Care should be taken to give an appropriate number of significant figures in the final answers to calculations.

- 5 - TEST 2. This test is on the final sections of this session's syllabus and. should be attempted by all students.

PHYSICS 30 ELECTROMAGNETISM ASSIGNMENT 3 VERSION:0

A beam of coherent monochromatic light from a distant galaxy is used in an optics experiment on Earth.

PHYSICS (SPECIFICATION A) Unit 10 The Synoptic Unit

BRITISH PHYSICS OLYMPIAD A2 Challenge. September/October 2014

M05/4/PHYSI/HP2/ENG/TZ1/XX+ PHYSICS HIGHER LEVEL PAPER 2. Candidate session number 0 0. Thursday 19 May 2005 (afternoon) 2 hours 15 minutes

Chapter 12. Magnetism and Electromagnetism

Newton s Gravitational Law

PHYS 1102 EXAM - II. SECTION: (Circle one) 001 (TH 9:30 AM to 10:45AM) 002 (TH 3:30 PM to 4:45 PM) You have 1 hr 45 minutes to complete the test

Engage Education Foundation

T10 [186 marks] y 2. w 2

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level

Candidate Name Centre Number Candidate Number

Paper Reference. Thursday 14 June 2007 Morning Time: 1 hour 20 minutes

Physics. Student Materials Advanced Higher. Tutorial Problems Electrical Phenomena HIGHER STILL. Spring 2000

General Physics II Summer Session 2013 Review Ch - 16, 17, 18

Candidate Number. General Certificate of Education Advanced Level Examination June 2012

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level


XXXXXXXXXXXXXXX. First Pre-Board Examination, Physics

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level

APRIL 2015 EXAMINATION version A PHY 132H1S Duration - 2 hours

Sample Question Paper (PHYSICS) CLASS-XII ( ) Time Allowed: 3Hours Maximum Marks: 70

PHYSICS A 2825/01 Cosmology

Time allowed: The total time for Section A and Section B of this paper is 1 hour 30 minutes

Fig. 2.1 I =... A [2] Suggest why it would be impossible for overhead cables carrying an alternating current to float in the Earth s magnetic field.

PART A. 4cm 1 =1.4 1 =1.5. 5cm

b. Which bulb is brightest? Justify your answer.

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level

Spring Not-Break Review Assignment

THIS IS A NEW SPECIFICATION

SAMPLE DEB Exams 1065

Topic 4 &11 Review Waves & Oscillations

Which of the following is the SI unit of gravitational field strength?

time/s force/n Polesworth High School 1

PHYS 1444 Section 02 Review #2

Physics Standard level Paper 1

H2 Physics Set C Paper 1 H2 PHYSICS. Exam papers with worked solutions. (Selected from Top JC) SET C PAPER 1.

PHYSICS A Forces, Fields and Energy. OXFORD CAMBRIDGE AND RSA EXAMINATIONS Advanced GCE. 1 hour 30 minutes

Downloaded from

Candidate Number. General Certificate of Education Advanced Level Examination June 2015

AP Physics C Mechanics Objectives

Coimisiún na Scrúduithe Stáit State Examinations Commission

2. A proton is traveling with velocity v, to the right, through a magnetic field pointing into the page as indicated in the figure below.

Gravitational Fields Review

PHYSICS A Forces, Fields and Energy. OXFORD CAMBRIDGE AND RSA EXAMINATIONS Advanced GCE. 1 hour 30 minutes

2 (Total 1 mark) D. 30 N kg 1 (Total 1 mark)

The content assessed by the examination papers and the type of questions is unchanged.

A mass is suspended by a string from a fixed point. The mass moves with constant speed along a circular path in a [1 mark] horizontal plane.

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level PHYSICS 9702/02

1. The diagram shows the electric field lines produced by an electrostatic focussing device.

Physics 240 Fall 2005: Final Exam. Please print your name: Please list your discussion section number: Please list your discussion instructor:

Phys 2B Final Exam Name:

CBSE Annual Examination Question Paper 2013

Paper Reference. Thursday 16 June 2005 Morning Time: 1 hour 20 minutes

Gurgaon TOPIC: ELECTROSTATIC Assignment 1 (2018)

How fast can things go?

PHYSICS HIGHER LEVEL

MAGNETIC EFFECT OF CURRENT

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level

Chapter 4 - Moving Charges and Magnetism. Magnitude of the magnetic field at the centre of the coil is given by the relation,

CBSE Examination Paper

SAMPLE PAPER-05 (solved) PHYSICS (Theory) Class XII. Time allowed: 3 hours Marks: 70

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

Final Practice Problems

KCET PHYSICS 2014 Version Code: C-2

Time allowed: The total time for Section A and Section B of this paper is 1 hour 30 minutes

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level

N13/4/PHYSI/HPM/ENG/TZ0/XX. Physics Higher level Paper 1. Wednesday 6 November 2013 (morning) 1 hour INSTRUCTIONS TO CANDIDATES

THE INDIAN COMMUNITY SCHOOL, KUWAIT

PMT. Cambridge International Examinations Cambridge International Advanced Level

GCE A level 1324/01 PHYSICS PH4 Oscillations and Fields

H2 Physics Set D Paper 2 H2 PHYSICS. Exam papers with worked solutions. (Selected from Top JC) SET D PAPER 2.

MOCK cet paper II 2012 (PHYSICS)

Physics. Practice Questions

Homework 2: Forces on Charged Particles

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level

PMT. GCE AS and A Level. Physics A. AS exams 2009 onwards A2 exams 2010 onwards. Unit 2: Approved specimen question paper. Version 1.

Transcription:

BRITISH PHYSICS OLYMPIAD 2016-17 BPhO Round 1 Section 2 18 th November 2016 Instructions This question paper must not be taken out of the exam room. Time: 1 hour 20 minutes on this section. Questions: Only two out of the seven questions in Section 2 should be attempted. Both Qu 5 and Qu 6 are on Gravity - you may choose to answer EITHER Qu 5 OR Qu 6 but not both. Working: working, calculations and explanations, properly laid out, clearly legible, must be shown for full credit. The final answer alone is not sufficient. If derivations are required, they must be mathematically supported, with any approximations stated and justified. Marks: Students are recommended to spend about 40 minutes on each question. The maximum mark for each question is 20. Solutions: answers and calculations are to be written on loose paper or in examination booklets. Graph paper and formula sheets should also be made available. Students should ensure that their name and their school are clearly written on each and every answer sheet. Setting the paper: There are two options for setting BPhO Round 1: Section 1 and Section 2 may be sat in one session of 2 hours 40 minutes. Section 1 and Section 2 may be sat in two sessions on separate occasions, with 1 hour 20 minutes allocated for each section. If the paper is taken in two sessions on separate occasions, Section 1 must be collected in after the first session and Section 2 handed out at the beginning of the second session.

Answer TWO questions only from this section (and only one from Qu 5 and Qu 6 if you choose one of those) Question 2. ** A table of useful constants can be found inside the back page ** (a) Ideal cells of EMF,, are connected to a wire of resistance and of length l between ends A and B as shown in Figure 2(a). (i) (ii) With switches K 1 and K 2 initially open, write down the potential at length l l from A in terms of,l and l. The cells and are chosen such that. When K 1 and K 2 are closed, the galvanometer G (a very sensitive ammeter) is connected between A and B at a distance l from A so that no current flows through it. Write down equations relating a.,,l and l b.,,l and l [2] A l B K 1 G K 2 Figure 2(a). Cells connected to a resistance wire. (b) The circuit in Figure 2(b) enables the measurement of the EMF,, of a thermocouple T (a temperature dependent source of a small EMF). AB is a uniform wire of length 1.00 m and resistance 2.00 Ω. K 1 and K 2 are switches. No current flows through G when: (i) (ii) K 1 is closed and K 2 is open and AC = 90.0 cm. K 2 is closed and K 1 is open and AC = 45.0 cm. Determine the EMF, ε, and the resistance. [8] 2

Figure 2(b). (c) The potential difference across a filament lamp,, is related to the current through it by 28 The lamp is connected to a measurement arm of a Wheatstone bridge, the circuit shown in Figure 2(c). The other arms are each of resistance 4 Ω. Determine the value of the voltage across the bridge, 0, necessary for the bridge to be balanced i.e. when no current flows through G. [5] G Figure 2(c). Wheatstone Bridge circuit. Figure 2(d). (d) In the circuit, Figure 2(d), determine the value of resistance required to minimise the heat generated in the 5 Ω resistor. [5] 3

Question 3. Figure 3(a). (a) In a Young s slit experiment the slits, S 1 and S 2, are a distance 2 apart and the screen is at a distance from the line joining the slits, Figure 3(a). P is a point on the screen a distance from the line of symmetry of the system. (i) (ii) (iii) Derive an expression for the spacing between adjacent fringes, Δ, for light of wavelength, in terms of, and in the approximation,. [10] If white light was passed through the slits, sketch or describe what would be seen near the centre of the screen. A laser is often used to illuminate the two slits. Before the invention of the laser, a light bulb with a small filament and with a colour filter was used to illuminate a single slit in front of the double slit in Figure 3(b). Explain the purpose of the single slit. Your answer should consider the effect of coherence. [4] filament bulb filter single slit double slit Figure 3(b). Filament bulb and single slit to illuminate the double slit. 4

(b) Two whistles, both of frequency = 2.00 khz, are situated 3.00 m apart and blown simultaneously. An observer travelling along a line parallel to the line joining the whistles, and at a distance approximately 20.0 m opposite the whistles, detects minima in sound intensity at a series of points spaced 1.14 m apart. Calculate the speed of sound in air. [6] ( For small, 1+ = 1+ + ) Question 4. (a) Fixed charges of +Q are situated at the corners of (b) (i) a square of side 2 and (ii) a cube of side 2. The square and cube each have a charge of # at their centre. Determine the total potential energy of each system. Sketch diagrams of the charge arrangements for each example. [9] (i) (ii) Obtain the force, $, on the charge # when it is displaced a distance from the centre of the square along a line through its centre, and perpendicular to the plane of the square. Sketch a graph of $ against. [5] If the charge #, mass %, in (b)(i), performs simple harmonic motion about the centre of the square, determine the period, &, of the motion. If the motion is simple harmonic, obtain the necessary condition for the amplitude of the motion, '. [6] ( For small, 1+ = 1+ + ) 5

Question 5. (You may answer EITHER Qu 5 OR Qu 6 but not both) Galaxies are a large collection of stars and gas that are held together by their own gravity. One class of galaxies, spiral galaxies, are characterised by a spherical bulge and a flattened disk in which the stars form a spiral pattern. The stars and gas in a spiral galaxy trace out circular orbits around the centre of the galaxy. A schematic of a spiral galaxy, the Milky Way, can be seen below in Figure 5. Figure 5. Schematic of the Milky Way galaxy. (a) Using the gravitational force acing on a star moving in a circular orbit and assuming spherical symmetry, determine the rotational velocity () *+, ) of a star as a function of the mass enclosed within a radius -. Only the mass of material contained within the orbital radius of the star contributes to the gravitational force of attraction. [2] (b) Assuming that most of the mass of the galaxy is contained within the spherical bulge of radius -., with uniform density /., determine the shape of the rotation curve (the graph of ) *+, against -) inside and outside -.. Sketch the expected rotation curve of the galaxy. [7] (c) Astronomers have observed the rotation curves of galaxies and found a significant discrepancy between what is measured and the theoretical prediction. They found that the rotation velocity curve was flat at - -., which cannot be explained by a centrally dominating mass. Another component was suggested to make up for the missing, invisible mass, called dark matter. Assuming a more realistic density profile for the spherically distributed dark matter: /-=/. 0-2 1 -. Determine the exponent, α, needed such that the rotation curve is flat at - -., as seen from measurements. [4] 6

(d) At - =2.8 10 6 light years distant from the centre of the Milky Way, our Sun has a measured velocity of ) *+, =220 km s 2 and an expected velocity of ) :;< = 70 km s 2. Calculate the visible as well as the true mass of the Milky Way. What is the percentage of dark matter in the galaxy? Express your answer in units of solar masses, >. > =1.99 10. kg. 1 light year is the distance light travels in a year. (e) Although dark matter is now the widely accepted explanation for the rotation curve problem, an alternative has been suggested: modifying the laws of gravity. Modified Newtonian Dynamics (MOND) postulates that Newton s third law can be re-written as $ =%AB C C D E where A is a function with the property that A=1 for 1 and A=, for 1, is the acceleration and. is a constant that marks the transition between Newtonian gravity and MOND. In the limits of small acceleration., show that this formulation also leads to a flat rotation curve at large radii. [3] [4] Question 6. (You may answer EITHER Qu 5 OR Qu 6 but not both) (a) Kepler s 3 rd Law requires that planets in orbit around the Sun, with radius and period &, have the same value of GH orbits of the Earth and Jupiter are circular: I ϒ, where and J are constants. Assuming the (i) Calculate the ratio K by using the data provided below. The radii of the orbits of the Earth and Jupiter are respectively 1.50 x 10 11 m and 7.76 x 10 11 m. Orbital period of Jupiter is 11.8 years. (ii) Using the data above, show that the mass of the Sun is about 2.0 x 10 30 kg. [8] (b) A satellite is launched into a synchronous orbit of the Earth. Determine its radius of orbit,, and speed, ) L. [4] 7

(c) Satellites launched from Earth speed up slowly as they take off from the launch pad, which uses up a lot of fuel (energy) in the process. This is inefficient but it is the only method at present. Physicists use the idea of escape velocity instead. (i) (ii) (iii) What is meant by escape velocity? Determine a value for the escape velocity, ) M, from the Earth. In what way does the location of the launch site on the Earth s surface affect the escape velocity, ) M? (iv) Determine the minimum initial launch speed from the Earth. [6] (d) Ignoring any effect of the launch site location on the Earth in c(i), what is the minimum escape velocity when launching from the Earth to escape the gravitational field of the Sun? [2] Radius of the Earth - M = 6.38 x 10 6 m, mass of the Earth > M = 5.98 x 10 24 kg. Question 7. Millikan s oil drop experiment, illustrated in Figure 7, was the first experiment to determine the size of the elementary charge, N. Charged oil droplets are sprayed into an air filled chamber and observed through a microscope inserted in the side of the chamber. The droplets fall under gravity with a terminal velocity. A uniform electric field between the top and bottom plates could be used to hold the charged oil drops in a fixed vertical position in the electric field. The potential between the plates was measured. The polarity could be changed in order to pull them back up against gravity. The drag force on them due to air resistance is known as viscous drag. The charge on an oil drop may spontaneously change due to random ionisation. 8

Figure 7. Millikan oil drop experiment apparatus (schematic). Source: https://en.wikipedia.org/wiki/oil_drop_experiment (a) The viscous drag force on a small spherical droplet is given by $ O =6QRS where is the radius of the drop, S is the terminal velocity of the drop, R is the viscosity of the air. R =1.82510 26 kg m 2 s 2. In two successive measurements of an oil droplet, the rise times were 42 s and 78 s. The distance travelled upwards at constant velocity was 1.00 cm, the potential difference across the plates was 5000 V, and the plate separation was 1.50 cm. The radius of the drop was 2.76510 2X m. Calculate the change in the number of electrons in the drop between the two observations. [8] (b) Two drops of the same density, with radii - and -, both with identical charges # and terminal velocities S and S respectively, coalesce. How is the final terminal velocity ) of the drop related to the initial velocities? [5] (c) A separate experiment to measure N/% Z for an electron could be used to enable the electron mass, % Z, to be determined. A potential difference of 3000 V is maintained between deflector plates, with separation 2.0 cm, in an evacuated tube. A magnetic field of 2.5510 2 T at right angles to the electric field gives no deflection to an electron beam entering the fields. The electron beam received an initial kinetic energy by being accelerated through a potential difference of 10 000 V. Calculate the ratio N/% Z. [7] 9

Question 8. Figure 8. A circular copper ring, of radius - =0.125 m and resistance, rotates about a vertical diameter with constant angular velocity, ], radians per second. A small magnetic compass needle, which can rotate about a vertical axis, is situated in the middle of the ring, Figure 8. When the ring is stationary, the needle points in the direction of the horizontal component of the Earth s magnetic field, ^. However, when it rotates at the rate of 10 revolutions per second, the compass needle deviates by an average angle of 2.00 + from this orientation. At time _ 0 the ring is in a plane perpendicular to ^. Determine, algebraically: (a) the magnetic flux,φ, through the ring at time _. [2] (b) the current,, in the ring. [3] (c) the magnetic field components of the ring, parallel and perpendicular to ^. [3] (d) the average values, over time, of these components. [7] (e) Hence determine, numerically,. [5] 2sin c 1 cos2c, sin2c 2sinccosc field at the centre of a circular loop f g Dh ij END OF SECTION 2 10

Important Constants Speed of light k 3.00 10 l m s -1 Planck constant h 6.63 10 2n J s Electronic charge N 1.60 10 2o C Mass of electron % Z 9.11 10 2 kg Gravitational constant p 6.67 10 2 N m 2 kg -2 Acceleration of free fall q 9.81 m s -2 Permittivity of a vacuum. 8.85 10 2 F m -1 Avogadro constant r s 6.02 10 mol -1 11

BPhO SPONSORS Worshipful Company of Scientific Instrument Makers 12