Averaged Modeling of Non-ideal Boost Converter Operating in DCM

Similar documents
, where. This is a highpass filter. The frequency response is the same as that for P.P.14.1 RC. Thus, the sketches of H and φ are shown below.

CHAPTER 3 ANALYSIS OF KY BOOST CONVERTER

Let s start from a first-order low pass filter we already discussed.

Part III Lectures Field-Effect Transistors (FETs) and Circuits

Introduction to Electronic circuits.

ELG4139: Op Amp-based Active Filters

EE 221 Practice Problems for the Final Exam

A Central Control Strategy of Parallel Inverters in AC Microgrid

55:041 Electronic Circuits

IGEE 401 Power Electronic Systems. Solution to Midterm Examination Fall 2004

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

Design of Analog Integrated Circuits

CHAPTER 11. Solutions for Exercises. (b) An inverting amplifier has negative gain. Thus L

Chapter 9. Design via Root Locus

Grumman F-14 Tomcat Control Design BY: Chike Uduku

ME2142/ME2142E Feedback Control Systems. Modelling of Physical Systems The Transfer Function

RAMIFICATIONS of POSITION SERVO LOOP COMPENSATION

EECE 301 Signals & Systems Prof. Mark Fowler

A New Fully Controlled Single Phase PFC Buck Topology

Feedback Principle :-

CHAPTER 3 QUASI-RESONANT BUCK CONVERTER

T(s) 1+ T(s) 2. Phase Margin Test for T(s) a. Unconditionally Stable φ m = 90 o for 1 pole T(s) b. Conditionally Stable Case 1.

Improved Bridgeless Interleaved Boost PFC Rectifier with Optimized Magnetic Utilization and Reduced Sensing Noise

ANALOG ELECTRONICS 1 DR NORLAILI MOHD NOH

Published in: Proceedings of the 30th Annual IEEE Applied Power Electronics Conference and Exposition, APEC 2015

ELG3336: Op Amp-based Active Filters

Design of Nonlinear Controller and Analysis of Nonlinear Phenomena in Non-Minimum Phase DC-DC Switched Mode Converter

Electrical Circuits II (ECE233b)

Novel current mode AC/AC converters with high frequency ac link *

Improved Bridgeless Interleaved Boost PFC Rectifier with Optimized Magnetic Utilization and Reduced Sensing Noise

Exclusive Technology Feature. Eliminate The Guesswork When Selecting Primary Switch V DD Capacitors. ISSUE: May 2011

Concurrent Adaptive Cancellation of Quantization Noise and Harmonic Distortion in Sigma Delta Converter

Chapter 7. Systems 7.1 INTRODUCTION 7.2 MATHEMATICAL MODELING OF LIQUID LEVEL SYSTEMS. Steady State Flow. A. Bazoune

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

Introduction of Two Port Network Negative Feedback (Uni lateral Case) Feedback Topology Analysis of feedback applications

Lecture 13 - Boost DC-DC Converters. Step-Up or Boost converters deliver DC power from a lower voltage DC level (V d ) to a higher load voltage V o.

Wp/Lmin. Wn/Lmin 2.5V

FEEDBACK AMPLIFIERS. β f

(b) i(t) for t 0. (c) υ 1 (t) and υ 2 (t) for t 0. Solution: υ 2 (0 ) = I 0 R 1 = = 10 V. υ 1 (0 ) = 0. (Given).

Lecture 2 Feedback Amplifier

Small signal analysis

CHAPTER 3: FEEDBACK. Dr. Wan Mahani Hafizah binti Wan Mahmud

PHYSICS 536 Experiment 12: Applications of the Golden Rules for Negative Feedback

Distributed Control for the Parallel DC Linked Modular Shunt Active Power Filters under Distorted Utility Voltage Condition

Electric and magnetic field sensor and integrator equations

Digital Simulation of Power Systems and Power Electronics using the MATLAB Power System Blockset 筑龙网

Chapter 8. Root Locus Techniques

Circuit Theorems. Introduction

SIMULATION OF THREE PHASE THREE LEG TRANSFORMER BEHAVIOR UNDER DIFFERENT VOLTAGE SAG TYPES

Design and Simulation of Dc-Dc Voltage Converters Using Matlab/Simulink

FYSE400 ANALOG ELECTRONICS

376 CHAPTER 6. THE FREQUENCY-RESPONSE DESIGN METHOD. D(s) = we get the compensated system with :

A New Modeling Method and Controller Design for a DC DC Zeta Converter

Performance Evaluation and Control Technique of Large Ratio DC-DC Converter

Lecture 4. Chapter 11 Nise. Controller Design via Frequency Response. G. Hovland 2004

CIRCUIT ANALYSIS II Chapter 1 Sinusoidal Alternating Waveforms and Phasor Concept. Sinusoidal Alternating Waveforms and

A BAND SELECTION METHOD FOR HIGH PRECISION REGISTRATION OF HYPERSPECTRAL IMAGE. Han Yang 1, Xiaorun Li *1

Section I5: Feedback in Operational Amplifiers

Circuits Op-Amp. Interaction of Circuit Elements. Quick Check How does closing the switch affect V o and I o?

Electrical Engineering Department Network Lab.

Root Locus Techniques

Comparative Study on Electromagnetic and Electromechanical Transient Model for Grid-connected Photovoltaic Power System

ECE 2100 Circuit Analysis

Coupled Inductors and Transformers

EE 215A Fundamentals of Electrical Engineering Lecture Notes Operational Amplifiers (Op Amps) 8/6/01 Reviewed 10/04

Chapter 6 Control Systems Design by Root-Locus Method. Lag-Lead Compensation. Lag lead Compensation Techniques Based on the Root-Locus Approach.

Dead-beat controller design

Conversion from geometrical to electrical model of LVDT

Schedule. ECEN 301 Discussion #17 Operational Amplifiers 1. Date Day Class No. Lab Due date. Exam

728. Mechanical and electrical elements in reduction of vibrations

ZVS Boost Converter. (a) (b) Fig 6.29 (a) Quasi-resonant boost converter with M-type switch. (b) Equivalent circuit.

III. Operational Amplifiers

제어이론복습 강의보조자료. 박상혁

Diodes Waveform shaping Circuits

Lecture 20a. Circuit Topologies and Techniques: Opamps

Sensorless Permanent Magnet Synchronous Motors (PMSM) For Torque Ripple Reduction

Linear Amplifiers and OpAmps

Lecture 8 - SISO Loop Design

PT326 PROCESS TRAINER

Name Student ID. A student uses a voltmeter to measure the electric potential difference across the three boxes.

Faculty of Engineering

Diodes Waveform shaping Circuits. Sedra & Smith (6 th Ed): Sec. 4.5 & 4.6 Sedra & Smith (5 th Ed): Sec. 3.5 & 3.6

Bicycle Generator Dump Load Control Circuit: An Op Amp Comparator with Hysteresis

Modification of Symmetric Optimum Method. 1 A synthesis of linear one-dimensional regulatory circuits

University of Southern California School Of Engineering Department Of Electrical Engineering

LaPlace Transforms in Design and Analysis of Circuits Part 3: Basic Parallel Circuit Analysis

5.5 Application of Frequency Response: Signal Filters

Waveshapping Circuits and Data Converters. Lesson #17 Comparators and Schmitt Triggers Section BME 373 Electronics II J.

Lesson #15. Section BME 373 Electronics II J.Schesser

Advances in Engineering Research (AER), volume 102 Second International Conference on Mechanics, Materials and Structural Engineering (ICMMSE 2017)

ECE-320: Linear Control Systems Homework 1. 1) For the following transfer functions, determine both the impulse response and the unit step response.

Common Gate Amplifier

State-Space Model Based Generalized Predictive Control for Networked Control Systems

T-model: - + v o. v i. i o. v e. R i

Nonisothermal Chemical Reactors

The Measurement of DC Voltage Signal Using the UTI

ECE 3510 Root Locus Design Examples. PI To eliminate steady-state error (for constant inputs) & perfect rejection of constant disturbances

Micro and Smart Systems

Makoto SAKANE GS Yuasa Power Electronics Ltd Osaka ,Japan. U d

Transcription:

Internatnal Jurnal f Cmputer and lectrcal ngneerng l.3 N. February 793-863 Averaged Mdelng f Nn-deal Bt Cnverter Operatng n DCM Guang-jun Xe Senr Member IACSI Xuan Zha Ha-bn Fang and Hu-fang Xu Abtract he averaged mdel f nn-deal Bt cnverter peratng n dcntnuu mde (DCM crcut a tuded baed n the tchng element mdel the equvalent crcut methd and the energy cnervatn la n hch the duty rat cntrant a ntrduced t mprve the mdel. he pen-lp tranfer functn a derved t buld the mall gnal mdel by addng a vltage-cntrlled feedback lp the cled-lp tranfer functn a al derved. he mulatn reult hed the crrectne f the mdel at lat. Index erm Bt cnverter Nn-deal Cled-lp cntrl I. INRODUCION A general per tchng regulatn ytem nclude per crcut (v. tchng cnverter and cntrl crcut. Bth part nteract and rk tgether. here are many knd f cntrl mde n per tchng regulatn ytem uch a vltage-mde cntrl current-mde cntrl current-lag-lp-mde cntrl charge-mde cntrl and n. ltage cntrl crcut mple n tructure and t ant-nterference ablty trng t utable fr the tuatn hch dn t requre hgh cntrl perfrmance f the crcut[-3]. here an agnable quetn n tch cnverter mdelng that the devatn beteen the tradtnal deal mdel and actual crcut[4-6]. herefre t very neceary t tudy cnverter tch mdelng methd cnderng the nn-deal tuatn. In th paper take Bt cnverter fr example e tudy the average crcut mdel f nn-deal bac cnverter peratng n dcntnuu cnductn mde (DCM and ue the duty rat cntrant t mprve the average mdel and derve tranfer functn then derve the tranfer functn f cled-lp cntrl mdel cmbnng th vltage cntrl feedback lp. Bth ere mulated under the MAAB tl t verfy the crrectne f th mdel. Manucrpt receved May. h rk a upprted by the Intercllegate Key Prject f Nature Scence f Anhu Prvnce. Gang-jun Xe th Schl f lectrnc Scence and Appled Phyc Hefe Unverty f echnlgy Hefe 39 Anhu Chna (crrepndng authr e-mal: gjxe8@hfut.edu.cn. Xuan Zha th Schl f lectrnc Scence and Appled Phyc Hefe Unverty f echnlgy Hefe 39 Anhu Chna. Ha-bn Fang th Schl f lectrnc Scence and Appled Phyc Hefe Unverty f echnlgy Hefe 39 Anhu Chna. Hu-fang Xu th Schl f lectrnc Scence and Appled Phyc Hefe Unverty f echnlgy Hefe 39 Anhu Chna. 79 II. ARG SIGNA ARAG MOD OF NON-IDA BOOS CONRR IN DCM A. arge Sgnal Averaged Mdelng f Nn-deal Bt Cnverter n DCM When e cnder the paratc parameter f the Bt cnverter e can ee per tch MOSF a that deal tch and n retance R n are n ere ee dde a the ere f deal tch frard vltage drp F and n retance R F. R R c are repectvely equvalent ere retance (SR f flter nductance and flter capactr. Accrdng t the energy cnervatn prncple the paratc parameter f the t tch nductance are equvalent t the nductance branch. And then ue the methd f average mdel f tchng element ung current-cntrlled current urce ntead f actve tchng element S ung vltage-cntrlled vltage urce ntead f pave tchng element D. S e can get the large gnal average mdel hn n Fgure. Fg.. arge gnal average mdel f nn-deal Bt cnverter n DCM B. Duty Rat Cntrant he duty cycle frmula hch baed n vltage-ecnd f nductance vltage can nt reflect accurately the frequency charactertc f the crcut and t ha lmtatn. h paper ue the ne duty rat cntrant f Bt cnverter hch a derved n lterature []. d d dv n ( he varable a analyed t drect cmpnent and AC mall-gnal cmpnent. hen the duty rat cntrant ( I ˆ d ˆ d ( D d dv ( D ˆ d( (

Internatnal Jurnal f Cmputer and lectrcal ngneerng l.3 N. February 793-863 d dv ( D dˆ ( d d d vap d d vap D dˆ ap ( I ˆ ( p p ( D d ( (3 ( ( ( ap (4 C. AC Small-Sgnal Mdel If e uppe that the mall-gnal cmpnent much le than the drect cmpnent make the drect cmpnent er and neglect the ecndary mall-gnal prduct term. hen the (3 and (4 can be predgeted t the ( and (6. S e can get the mall-gnal lnear equvalent mdel f nn-deal Bt cnverter n dcntnuu cnductn mdel hn n fg.. ( d d v D dˆ ( d d a a dˆ dv ap ( dd vp ( D dˆ ( ( I ˆ ( D dˆ ( [( I R ( R ˆ ] b v b d b3 b4 v (6 Fg.. mall-gnal mdel f Bt cnverter n DCM Frm fg. e can calculate the nput-t-utput tranfer functn Gv( and the cntrl-t-utput tranfer functn Gvd( are ( Gv( ( dˆ( ( b a( R b3 3 C ( R b ( R C RC b4 RRC ( C tt 4 ( ( tt 3 tt 4 ( Q (7 G vd ( ( dˆ (ˆ v ( b a( R b3 ( R b3( RCC RC b4 RRC ( C tt 4 ( ( 3 tt 3 tt 4 ( Q (8 he parameter f the actual Bt cnverter a fllng: nput-vltage utput-vltage ad current I.A R Ω 9.μH R 3.6mΩ C μf RC mω. he mdel number f the MOSF hch e ued n th paper SK69. Rn mω fr Schttky dde RF mω tchng frequency f kh PWM utput the Peak vltage. hen there parameter are put nt the frmula a fllng R 4 DR n DR F ( R 3( D D D D D D ap I D IO D I ( D D D and D R the ttal equvalent retance f the three paratc retance hch ere calculated t branch f nductance. hen e can get D.3 R.69mΩ.84 I.43A. Put the fur parameter nt frmula(7and (8 then e can get frmula (9 and (. ( ( G (. 93333 v 8.4 4 (9 ( ( G ( 3.696 37433 vd 8.4 4 ( 8

Internatnal Jurnal f Cmputer and lectrcal ngneerng l.3 N. February 793-863 III. MODING OF BOOS CONRR WIH OAG FDBACK-OOP CONRO Nn-deal Bt cnverter th vltage-mde cntrl hn n fg.3. Cntrl crcut cnttuted by the cntrller the PWM cmparatr the clck crcut and the trgger. he crcut take a ample f the utput vltage and then the ample gnal a the feedback gnal put nt the nput t make the nput vltage table. Fg.3. Sytem tructure f Bt cnverter th feedback-lp A. Sample Crcut and the Pule Wdth Mdulatr ( he tranfer functn f the ample crcut H and H( v vref ref H( ( he pule dth mdulatr a vltage cmparatr actually. v c the utput gnal f errr amplfer and Cmpenatn netrk.. It cmpared th clck gnal then the cmparatr putut a pule th the duty cycle d that cntrl t man tch f the cnverter. he tranfer functn f the PWM cmparatr d ˆ ( Fm( c( ( B. PID Cmpenatr he mt mprtant cmpnent f the degn cmpenatr n cntrl crcut. ranfer functn f the man crcut Gvd( f there n cmpenatr the tranfer Gc( put t nt frmula (3 the pen-lp functn tranfer functn f the ytem. hen e can get the pen-lp tranfer functn (4 f the ytem thut cmpenatr. ( H( Gc( Gvd( (3 8 ( Gvd ( m (4 37433 3.7 8.4 4 And ( 3.7 7.dB. We can calculate ut the crver frequency c 383 rad/. c f c. H and the phae margn 9. It π can be een that the crver frequency t l repne peed f the ytem t l and the phae margn t large. hee are dadvantaged fr ele dynamc charactertc. S the cmpenatn netrk neceary. he PID cmpenatr nt nly ha the advantage that can mprve the teady perfrmance f ytem but al ha the mre uperrty t mprve ytem dynamc perfrmance. S e che the PID cmpenatn netrk hch hn n fg.4. Fg.4. PID cmpenatr n th paper Frm the fg.4 e can get the tranfer functn f the PID cmpenatr hch frmula (. hen the ytem Open-lp tranfer functn after cmpenated frmula (6. ( ( Gc( G c ( ( p p. ( c ( G (( GcG m vd p c p Q 3 (6 he next tep t calculate parameter f the Cmpenatn netrk. If e make p rad / t cancel the er pnt hch a caued by utput capactance (SR then the

Internatnal Jurnal f Cmputer and lectrcal ngneerng l.3 N. February 793-863 pen-lp tranfer functn frmula (7 n. ( ( ( GG c vd 3 c( G c( ( ( [ ( ] p Q (7 If e make crver frequency fc f pen-lp tranfer functn after cmpenatn t ne ffth f the tchng f frequency that fc f khz and 4 ϕ m 4 uppe that phae margn then er-pnt frequency and ple frequency repectvely are nϕ m n 4 f fc 4.4kH nϕ m n4 fp fc nϕ m n4 4.4kH nϕ m n4 fc f kh and make. Frm c( c ( c c( c db db e can get Gc( jc 33dB 44.8 hen db ( f f ( f f c p c p Gc Gc ( jc ( fc f ( f fc 8.6 68 8.6( ( G ( 6 c ( ( 6 GG c vd c 3.7 8.6 439..8dB 68 439.( ( ( ( 6 37433 c ( [ ] 6 8.4 4 (8 (9 ( Frm p rad / RC 68 rad / RC C C3 p 6 rad / RCC 3 We can get R Ω C nf R 3.3kΩ C 4.nF R3.8kΩ and C3.9nF repectvely. And they meet the fllng frmula. G c RC 8.6 R3( C C3 I. SIMUAION AND XPRIMNA RSUS he mall-gnal f pen-lp and cle-lp Bt cnverter mulated by ung MAAB t verfy the accuracy f mdelng hch prped n th paper. he Bde f pen-lp tranfer functn and nput-t-utput tranfer functn are hn n fg. (a (b repectvely. Fg.6 h the tep repne avefrm f cntrl-t-utput n pen-lp and cle-lp crcut repectvely. Frm the fgure; e kn that crver frequency and phae margn f pen-lp tranfer functn n the ytem are mre reanable after cmpenatn. And ha decreaed teady-tate errr n l frequency decreaed ampltude f nput-t-utput tranfer functn and utput mpedance n l and medum frequency trengthened the dturbance f nhbtry ablty and mprved the tranent repne peed and tablty. Magntude (db Phae (deg - 36 3 7 8 3 9 (a Magntude (db Phae (deg - - -3-4 - -6-7 -8 9 4-4 -9 Bde Dagram 3 4 6 Frequency (rad/ec he pen-lp tranfer functn(he brken lne and real lne tand fr tuatn f befre and after cmpenatn repectvely. Bde Dagram 3 4 6 7 Frequency (rad/ec (b he nput-t-utput tranfer functn(he brken lne and real lne tand fr tuatn f pen-lp and cle-lp crcut repectvely Fg.. he mall-gnal tranfer functn f Bt cnverter 8

Internatnal Jurnal f Cmputer and lectrcal ngneerng l.3 N. February 793-863 4 Step Repne 4 3 3 Ampltude..4.6.8..4 me (ec x -3 Fg.6. he tep repne avefrm f cntrl-t-utput n pen-lp and cle-lp crcut.(he brken lne and real lne tand fr tuatn f befre and after cmpenatn repectvely. CONCUSION Baed n the average mdel f tchng element methd an average f the equvalent crcut methd and the dea f energy cnervatn la e take Bt cnverter fr example t tudy the average mdel f the bac nn-deal cnverter hch added vltage cntrl feedback lp n DCM crcut. And e mprve the mdel by ung the duty rat cntrant; derve the pen-lp tranfer functn and cled-lp tranfer functn f the mdel. Bth t be verfed the crrectne f the mdel buldng under the MAAB mulatn tl. In th paper e have tuded the mdelng f vltage-cntrl Bt cnverter cndered paratc parameter n DCM. he mdel ueful and ntutntc and t phycal gnfcance clear. RFRNCS [] Sun J Mtchell D M Greuel M F. Averaged mdelng f PWM cnverter peratng n dcntnuu cnductn mde[j]. I ran. Per lectrn 6(4: 48-49. [] Carkk D Kamercuk M K. nergy-cnervatn apprach t mdelng PWM dc-dc cnverter[j]. I ran Aerp lectrn Syt 993 9(3:9 63. [3] Davud A Jatkevch J Chapman P. Averaged mdellng f tched-nductr cell cnderng cnductn le n dcntnuu mde[j]. I lectr. Per Appl 7 (3: 4 46. [4] Zhang Wepng. Mdel and Cntrl f Stchng Cnverter [M]. Bejng: Chna Per Pre. [] Wang Zhengln Wang Kaheng Chen Guheng. MAAB/Smulnk and Cntrl Sytem Smulatn[M]. Bejng: lectrnc Indutry Pre. [6] Sun J Mtchell D M Greuel M F. Averaged mdelng f PWM cnverter peratng n dcntnuu cnductn mde[j]. I ran. Per lectrn 6(4: 48 49. Guang-jun Xe receved the B.S. degree and the M.S. degree frm Hefe Unverty f echnlgy n 99 and 99 repectvely. He receved the Ph.D. degree frm Unverty f Scence and echnlgy f Chna n. He n a Prfer f Hefe Unverty f echnlgy and h reearch nteret nclude IC degn cmputatnal ntellgence. 83