Episode 304: Simple pendulum

Similar documents
Physics lab Hooke s Law and Pendulums

Simple Pendulum. L Length of pendulum; this is from the bottom of the pendulum support to center of mass of the bob.

Chapter 14: Periodic motion

CHAPTER 7: OSCILLATORY MOTION REQUIRES A SET OF CONDITIONS

Chapter 11 Vibrations and Waves

Chapter 5 Oscillatory Motion

PHYS 1401 General Physics I EXPERIMENT 14 SIMPLE HARMONIC MOTION. II. APPARATUS Spring, weights, strings, meter stick, photogate and a computer.

TIphysics.com. Physics. Pendulum Explorations ID: By Irina Lyublinskaya

SIMPLE PENDULUM AND PROPERTIES OF SIMPLE HARMONIC MOTION

Simple Harmonic Motion Practice Problems PSI AP Physics 1

Physics 1C. Lecture 12B

Lab 10: Harmonic Motion and the Pendulum

Harmonic Oscillator. Mass-Spring Oscillator Resonance The Pendulum. Physics 109 Experiment Number 12

Physics 1C. Lecture 12C

PHYSICS 1 Simple Harmonic Motion

Simple Harmonic Motion Practice Problems PSI AP Physics B

4 A mass-spring oscillating system undergoes SHM with a period T. What is the period of the system if the amplitude is doubled?

Simple Harmonic Motion Test Tuesday 11/7

Physics Mechanics. Lecture 32 Oscillations II

Chapter 14 Oscillations. Copyright 2009 Pearson Education, Inc.

!T = 2# T = 2! " The velocity and acceleration of the object are found by taking the first and second derivative of the position:

Lab 10 - Harmonic Motion and the Pendulum

PreLab 2 - Simple Harmonic Motion: Pendulum (adapted from PASCO- PS-2826 Manual)

C. points X and Y only. D. points O, X and Y only. (Total 1 mark)

Oscillations. Phys101 Lectures 28, 29. Key points: Simple Harmonic Motion (SHM) SHM Related to Uniform Circular Motion The Simple Pendulum

AP Physics 1. April 11, Simple Harmonic Motion. Table of Contents. Period. SHM and Circular Motion

AP Physics Free Response Practice Oscillations

Harmonic Oscillator. Outline. Oscillatory Motion or Simple Harmonic Motion. Oscillatory Motion or Simple Harmonic Motion

Oscillations. PHYS 101 Previous Exam Problems CHAPTER. Simple harmonic motion Mass-spring system Energy in SHM Pendulums

Oscillations. Oscillations and Simple Harmonic Motion

Introduction. Pre-Lab Questions: Physics 1CL PERIODIC MOTION - PART II Spring 2009

Chapter 14 Oscillations. Copyright 2009 Pearson Education, Inc.

Periodic Motion. Periodic motion is motion of an object that. regularly repeats

LAB 10: HARMONIC MOTION AND THE PENDULUM

Lab 12: Periodic Motion

Chapter 15 Periodic Motion

Chapter 14 Oscillations

Episode 227: Hooke s law

Engineering Science OUTCOME 2 - TUTORIAL 3 FREE VIBRATIONS

AHL 9.1 Energy transformation

Slide 1 / 70. Simple Harmonic Motion

LAB #8: SIMPLE HARMONIC MOTION

Unit 7: Oscillations

Introductory Physics PHYS101

Engineering Mechanics Prof. U. S. Dixit Department of Mechanical Engineering Indian Institute of Technology, Guwahati Introduction to vibration

2016 AP Physics Unit 6 Oscillations and Waves.notebook December 09, 2016

Chapter 10 Lecture Outline. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Introduction. Pre-Lab Questions: Physics 1CL PERIODIC MOTION - PART II Fall 2009

Investigating a pendulum

Chapter 14. Oscillations. Oscillations Introductory Terminology Simple Harmonic Motion:

Brown University Physics 0030 Physics Department Lab 5

Episode 225: Quantitative circular motion

CHAPTER 11 TEST REVIEW

Chapter 15+ Revisit Oscillations and Simple Harmonic Motion

Student Worksheet for Activity The Pendulum. Question. Materials

PHYSICS - CLUTCH CH 15: PERIODIC MOTION (NEW)

How do the physical aspects of the oscillators affect the Period?

FIRST YEAR MATHS FOR PHYSICS STUDENTS NORMAL MODES AND WAVES. Hilary Term Prof. G.G.Ross. Question Sheet 1: Normal Modes

Using a Simple Pendulum plot L T and L T 2 graphs, hence find the effective length of second's pendulum using appropriate graph.

MEI STRUCTURED MATHEMATICS 4763

OSCILLATIONS ABOUT EQUILIBRIUM

Quantitative Skills in AP Physics 1

PHYSICS 289 Experiment 1 Fall 2006 SIMPLE HARMONIC MOTION I

1 Oscillations MEI Conference 2009

The object of this experiment is to study systems undergoing simple harmonic motion.

Oscillatory Motion and Wave Motion

Harmonic Motion: Exercises

Physics 161 Lecture 17 Simple Harmonic Motion. October 30, 2018

Outline. Hook s law. Mass spring system Simple harmonic motion Travelling waves Waves in string Sound waves

PHYS 2211L Final Examination Laboratory Simple Pendulum.

Simple Harmonic Motion. Harmonic motion due to a net restoring force directly proportional to the displacement

Assessment Schedule 2013 Physics: Demonstrate understanding of mechanical systems (91524)

8. What is the period of a pendulum consisting of a 6-kg object oscillating on a 4-m string?

The Spring: Hooke s Law and Oscillations

Practice Test SHM with Answers

AP Physics C Mechanics

Chapter 14 (Oscillations) Key concept: Downloaded from

LAB 10 - HARMONIC MOTION AND THE PENDULUM

Wave Motion: v=λf [m/s=m 1/s] Example 1: A person on a pier observes a set of incoming waves that have a sinusoidal form with a distance of 1.

Level 3 Physics, 2013

Simple Harmonic Motion

No Brain Too Small PHYSICS

What happens if one pulls on the spring? The spring exerts a restoring force which is proportional to the distance it is stretched, F = - k x (1)

Chapter 12 Vibrations and Waves Simple Harmonic Motion page

Energy in a Simple Harmonic Oscillator. Class 30. Simple Harmonic Motion

Corso di Laurea in LOGOPEDIA FISICA ACUSTICA MOTO OSCILLATORIO

Practice Problems from Chapters 11-13, for Midterm 2. Physics 11a Fall 2010

Pre-Class. List everything you remember about circular motion...

CHAPTER 6 VIBRATIONS AND WAVES 6.1 VIBRATIONS

PHYS 2425 Engineering Physics I EXPERIMENT 10 ARCHIMEDES PRINCIPLE

4.1 KINEMATICS OF SIMPLE HARMONIC MOTION 4.2 ENERGY CHANGES DURING SIMPLE HARMONIC MOTION 4.3 FORCED OSCILLATIONS AND RESONANCE Notes

Chapter 14 Preview Looking Ahead

Chapter 13 Oscillations about Equilibrium. Copyright 2010 Pearson Education, Inc.

Physics 4A Lab: Simple Harmonic Motion

Physics 101 Lecture 18 Vibrations, SHM, Waves (II)

Physics 207 Lecture 25. Lecture 25. HW11, Due Tuesday, May 6 th For Thursday, read through all of Chapter 18. Angular Momentum Exercise

40 N 40 N. Direction of travel

End-of-Chapter Exercises

Pre-AP Physics Review Problems

PHYSICS - CLUTCH CH 15: PERIODIC MOTION (OSCILLATIONS)

Transcription:

Episode 304: Simple pendulum This episode reinforces many of the fundamental ideas about SHM. Note a complication: a simple pendulum shows SHM only for small amplitude oscillations. Summary Student experiment: Measuring the restoring force. (20 minutes) Student experiment: Testing the relationship T = 2π (l/g). (30 minutes) Student activity: Using an applet of a pendulum. (30 minutes) Discussion: Gravitational and inertial mass. (10 minutes) Student questions: Calculations involving pendulums. (30 minutes) Student experiment: Measuring the restoring force Measure the restoring force for a simple pendulum. TAP 304-1: The simple pendulum Student experiment: Testing the relationship T = 2π (l/g) Test the relationship T = 2π (l/g) for a simple pendulum. Students could decide for themselves which measurements to make, which quantities to vary, and how to process and interpret the results. Encourage them to look for deviations from linear behaviour, arising from large-amplitude oscillations. Student activity: Using an applet of a pendulum Investigate a virtual pendulum; this allows you to vary g. You can also force the pendulum, which is useful later when studying resonance. (resourcefulphysics.org) http://monet.physik.unibas.ch/~elmer/pendulum/index.html NB the analysis of the data uses log-log plots, so this may not be suitable for all students TAP 304-2: Virtual pendulum 1

Discussion: Gravitational and inertial mass The fact that the period of a simple pendulum is independent of the mass of the bob is an example of the Principle of Equivalence something still not understood today and being tested by very sophisticated experiments involving astronomical measurements on the one hand and how single atoms fall due to gravity on the other. The basic puzzle is why the m in F = ma (where m is the inertial mass which determines how an object responds to any unbalanced force) has exactly the same magnitude as the m in mg (where the m is the gravitational mass, the source of the gravitational force). In deriving the equation for the period of a simple pendulum, we have used both, and used the fact that numerically they cancel out. Student questions: Calculations involving pendulums These questions reinforce basic ideas about SHM. TAP 304-3: Pendulum 2

TAP 304-1: The simple pendulum Requirements large mass (at least 2 kg) very strong cord high, secure attachment for top of cord (tall retort stand is not suitable) spring balance (0 50 or 0 100 N) metre rule with provision for horizontal clamping Experimental exploration With due regard to safety, and as far as laboratory conditions allow, hang a large known mass m (several kg if possible) from a secure attachment on 2 or 3 metres of strong cord. Clamp a metre rule horizontal and level with the mid-point of the mass when it is hanging vertically. Attach a spring balance to the mass so that the force needed to pull it sideways can be measured (i.e. the force needed to balance the horizontal component of the tension). The diagram below shows the arrangement. Safety In equilibrium the mass should be as close to the floor as possible and the cord and support should be able to withstand many times the weight of the mass. A soft landing platform must be under the mass at all times, and feet kept well clear. Wear safety spectacles to protect the eyes from the whipping end of a broken cord. Two persons are needed to fix a high suspension point: one to hold the ladder or steps and one to do the work. h l F x mg Record the length l of the string. Take a sequence of readings (F, x) of the sideways force F needed to pull the mass a horizontal distance x from equilibrium. Work up to as large a value of x 3

as you judge consistent with safety (remember, the tension in the cord will become much bigger than the weight of the mass). Plot a graph of F against x and comment on its shape. For the linear region measure the stiffness k (graph gradient) in N m -1. Use your judgement to decide the value of x above which you could consider the system nonlinear. What value of angle θ does this correspond to? Remember, sin θ = x/l Theory Either from the triangle of forces, or by resolution horizontally and vertically, show that F = mg tan θ From tan θ = x/h, but provided x is not too big (small θ), h (which is of course variable) is approximately the same as l (which is constant), so that tan θ = x/l Hence F = mgx/l Another way of arriving at this is to use the small angle approximation that tan θ sin θ for small θ. You can now see how good the approximation of linearity is it is as good as you want it to be. For θ = 10 0 the difference between tan θ and sin θ is 1.5% of sin θ For θ = 20 0 the difference becomes 6.4% For θ = 30 0 the difference becomes 15% You can see that the theoretical stiffness k is mg/l (for the linear region). Calculate this value and compare it with the value from the graph. An interesting property of a pendulum is that its period is also independent of its mass. Look at the theoretical expression for k and see if you can see why this should be. 4

Practical advice Students measure the restoring force on the bob of a simple pendulum when it is displaced by different amounts. They then use trigonometry and the small angle approximation to derive an expression for the period of small-amplitude oscillations and consider what is meant here by small. Safety In equilibrium the mass should be as close to the floor as possible and the cord and support should be able to withstand many times the weight of the mass. A soft landing platform must be under the mass at all times, and feet kept well clear. Wear safety spectacles to protect the eyes from the whipping end of a broken cord. Two persons are needed to fix a high suspension point: one to hold the ladder or steps and one to do the work. External reference This activity is taken from Salters Horners Advanced Physics, section BLD, additional sheet 4 5

TAP 304-2: Virtual pendulum Use a computer simulation of a pendulum to explore factors affecting its oscillation. Go to a suitable website with a simple pendulum simulation. For example: http://monet.physik.unibas.ch/~elmer/pendulum/index.html http://www.walter-fendt.de/ph11e/pendulum.htm Use the applet to demonstrate how the period, T, of a pendulum is affected by its length, l, and/or the gravitational field strength, g. Varying the length Set g = 9.8 N kg -1 Select a value of l. Find T by timing a known number of oscillations. Change l, keeping g constant, and find the new T. Continue until you have at least five sets of results. Enter your results into a spreadsheet. Plot a graph of log T against log l. Find the gradient of the graph. Hence obtain a relationship that shows how T varies with l. Your relationship should be of the form T l a where the exponent a is found from your graph. Varying the gravitational field The applet allows you to vary the gravitational field you cannot do in a real Earth-based laboratory! Select a value of l. Choose a new value of g. Find T by timing a known number of oscillations. Change g, keeping l constant, and find the new T Continue until you have at least five sets of results. Enter your results into a spreadsheet. Plot a graph of log T against log g. Find the gradient of the graph. Hence obtain a relationship that shows how T varies with g Your relationship should be of the form T g b where the exponent a is found from your graph 6

Pendulum oscillations Combine your two expressions to give a single expression connecting T, l and g in the form: T = kl a g b Use one of your sets of measurements to determine the value of the constant k. Use your complete formula to predict the period of a pendulum of length = 2.8 m in a gravitational field g = 9.8 N kg -1 Check your prediction using the virtual pendulum. Practical advice Students will need Internet access. No other apparatus is needed. Use of a spreadsheet to record and graph results may also be appropriate. 7

TAP 304-3: Pendulum The pendulum is often used as an example of a simple harmonic oscillator. Consider an ideal pendulum consisting of a point mass, m, in a gravitational field, g, at the end of a light string of length l. The pendulum is displaced to one side of its rest position such that the string makes an angle to the vertical of φ. 1. Draw a force diagram for the pendulum in this position. 2. In what direction does the resultant force act? 3. Derive an expression for the resultant force in terms of m, g and φ. 4. How does the force vary with angular displacement? 5. Why is the pendulum a good example of simple harmonic motion? Under what conditions the pendulum could not be used as a good example of simple harmonic motion? 8

Practical advice These are interesting but challenging questions, to stretch more able students. Answers and worked solutions 1. Force diagram must show weight (mg) and the tension in the string, e.g.: φ l T mg 2. The resultant force must act tangential to the arc traced out by the swinging mass and hence perpendicular to the string. 3. Restoring force = component of weight perpendicular to the string = mg cos(90 φ) = mg sinφ. 4. Force is a function of the sine of angular displacement. 5. This only works for simple harmonic motion where φ is small so sin φ is considered to be the same as φ. The pendulum is not a simple harmonic oscillator when the difference between sin φ and φ is too large. 9