Exponentiated Pareto Distribution: Different Method of Estimations

Similar documents
A New Family of Transformations for Lifetime Data

Bayes Estimator for Exponential Distribution with Extension of Jeffery Prior Information

Comparing Different Estimators of three Parameters for Transmuted Weibull Distribution

A new Family of Distributions Using the pdf of the. rth Order Statistic from Independent Non- Identically Distributed Random Variables

Estimation of Stress- Strength Reliability model using finite mixture of exponential distributions

VOL. 3, NO. 11, November 2013 ISSN ARPN Journal of Science and Technology All rights reserved.

Bayesian Inferences for Two Parameter Weibull Distribution Kipkoech W. Cheruiyot 1, Abel Ouko 2, Emily Kirimi 3

STK4011 and STK9011 Autumn 2016

BAYESIAN INFERENCES FOR TWO PARAMETER WEIBULL DISTRIBUTION

Analysis of Variance with Weibull Data

Point Estimation: definition of estimators

A NEW MODIFIED GENERALIZED ODD LOG-LOGISTIC DISTRIBUTION WITH THREE PARAMETERS

Estimation and Testing in Type-II Generalized Half Logistic Distribution

Estimation of the Loss and Risk Functions of Parameter of Maxwell Distribution

ESTIMATION OF PARAMETERS OF THE MARSHALL-OLKIN EXTENDED LOG-LOGISTIC DISTRIBUTION FROM PROGRESSIVELY CENSORED SAMPLES

Some Statistical Inferences on the Records Weibull Distribution Using Shannon Entropy and Renyi Entropy

Confidence Intervals for Double Exponential Distribution: A Simulation Approach

Multivariate Transformation of Variables and Maximum Likelihood Estimation

Likelihood and Bayesian Estimation in Stress Strength Model from Generalized Exponential Distribution Containing Outliers

Lecture 3. Sampling, sampling distributions, and parameter estimation

Chapter 5 Properties of a Random Sample

Minimax Estimation of the Parameter of the Burr Type Xii Distribution

The Generalized Inverted Generalized Exponential Distribution with an Application to a Censored Data

Econometric Methods. Review of Estimation

Functions of Random Variables

1 Solution to Problem 6.40

TESTS BASED ON MAXIMUM LIKELIHOOD

Maximum Likelihood Estimation

Solving Constrained Flow-Shop Scheduling. Problems with Three Machines

Modified Moment Estimation for a Two Parameter Gamma Distribution

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ " 1

BAYESIAN ESTIMATION OF GUMBEL TYPE-II DISTRIBUTION

Simulation Output Analysis

Comparison of Parameters of Lognormal Distribution Based On the Classical and Posterior Estimates

Special Instructions / Useful Data

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

BAYESIAN ESTIMATOR OF A CHANGE POINT IN THE HAZARD FUNCTION

Ordinary Least Squares Regression. Simple Regression. Algebra and Assumptions.

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

Part 4b Asymptotic Results for MRR2 using PRESS. Recall that the PRESS statistic is a special type of cross validation procedure (see Allen (1971))

Comparison of Dual to Ratio-Cum-Product Estimators of Population Mean

Bias Correction in Estimation of the Population Correlation Coefficient

Chapter 8: Statistical Analysis of Simulated Data

Lecture Notes Types of economic variables

GENERALIZED METHOD OF MOMENTS CHARACTERISTICS AND ITS APPLICATION ON PANELDATA

Accelerated Life Test Sampling Plans under Progressive Type II Interval Censoring with Random Removals

Order statistics from non-identical Standard type II Generalized logistic variables and applications at moments

LECTURE - 4 SIMPLE RANDOM SAMPLING DR. SHALABH DEPARTMENT OF MATHEMATICS AND STATISTICS INDIAN INSTITUTE OF TECHNOLOGY KANPUR

ESS Line Fitting

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution:

Unimodality Tests for Global Optimization of Single Variable Functions Using Statistical Methods

X ε ) = 0, or equivalently, lim

Application of Calibration Approach for Regression Coefficient Estimation under Two-stage Sampling Design

( ) = ( ) ( ) Chapter 13 Asymptotic Theory and Stochastic Regressors. Stochastic regressors model

Lecture 7. Confidence Intervals and Hypothesis Tests in the Simple CLR Model

Lecture Note to Rice Chapter 8

Module 7: Probability and Statistics

THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA

DISCRIMINATING BETWEEN WEIBULL AND LOG-LOGISTIC DISTRIBUTIONS

CHAPTER VI Statistical Analysis of Experimental Data

Bayes Interval Estimation for binomial proportion and difference of two binomial proportions with Simulation Study

Chapter 14 Logistic Regression Models

Median as a Weighted Arithmetic Mean of All Sample Observations

X X X E[ ] E X E X. is the ()m n where the ( i,)th. j element is the mean of the ( i,)th., then

J P S S. A comprehensive journal of probability and statistics for theorists, methodologists, practitioners, teachers, and others

Parameter, Statistic and Random Samples

Qualifying Exam Statistical Theory Problem Solutions August 2005

9 U-STATISTICS. Eh =(m!) 1 Eh(X (1),..., X (m ) ) i.i.d

2.28 The Wall Street Journal is probably referring to the average number of cubes used per glass measured for some population that they have chosen.

Transmuted Lindley-Geometric Distribution and its Applications

Point Estimation: definition of estimators

Lecture 3 Probability review (cont d)

Investigation of Partially Conditional RP Model with Response Error. Ed Stanek

Dimensionality Reduction and Learning

EFFICIENT ESTIMATION OF THE WEIBULL SHAPE PARAMETER BASED ON A MODIFIED PROFILE LIKELIHOOD

Bivariate Zero-Inflated Power Series Distribution

Summary of the lecture in Biostatistics

THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA

Chapter 4 Multiple Random Variables

Lecture 2 - What are component and system reliability and how it can be improved?

Midterm Exam 1, section 1 (Solution) Thursday, February hour, 15 minutes

ECON 5360 Class Notes GMM

Chapter 4 (Part 1): Non-Parametric Classification (Sections ) Pattern Classification 4.3) Announcements

The Kumaraswamy-Generalized Pareto Distribution

Module 7. Lecture 7: Statistical parameter estimation

Some Notes on the Probability Space of Statistical Surveys

A New Measure of Probabilistic Entropy. and its Properties

Lecture 8: Linear Regression

Minimax Estimation of the Parameter of ЭРланга Distribution Under Different Loss Functions

22 Nonparametric Methods.

Class 13,14 June 17, 19, 2015

ECONOMETRIC THEORY. MODULE VIII Lecture - 26 Heteroskedasticity

Bounds on the expected entropy and KL-divergence of sampled multinomial distributions. Brandon C. Roy

Parameter Estimation of Geographically Weighted. Trivariate Weibull Regression Model

Goodness of Fit Test for The Skew-T Distribution

arxiv: v1 [math.st] 24 Oct 2016

Chapter 3 Sampling For Proportions and Percentages

BERNSTEIN COLLOCATION METHOD FOR SOLVING NONLINEAR DIFFERENTIAL EQUATIONS. Aysegul Akyuz Dascioglu and Nese Isler

On Submanifolds of an Almost r-paracontact Riemannian Manifold Endowed with a Quarter Symmetric Metric Connection

Feature Selection: Part 2. 1 Greedy Algorithms (continued from the last lecture)

Transcription:

It. J. Cotemp. Math. Sceces, Vol. 4, 009, o. 14, 677-693 Expoetated Pareto Dstrbuto: Dfferet Method of Estmatos A. I. Shawky * ad Haaa H. Abu-Zadah ** Grls College of Educato Jeddah, Scetfc Secto, Kg Abdulazz Uversty, P. O. Box 3691, Jeddah 1438, Saud Araba * Permaet address: Fac. of Eg. at Shoubra, P.O. Box 106, El Maad 1178 Caro, Egypt (E-mal address: ashawky @yahoo.com) ** E-mal address: haaa_abuzadah@yahoo.com Abstract Recetly Gupta et al. (1998) troduced a ew dstrbuto, called the expoetated Pareto dstrbuto. I ths paper, we cosder the maxmum lkelhood estmato of the dfferet parameters of a expoetated Pareto dstrbuto. We also maly cosder fve other estmato procedures ad compare ther performaces through umercal smulatos. Mathematcs Subject Classfcato: 6G30; 6E15; 6G05; 6F10; 6F1; 6G0 Keywords: Expoetated Pareto dstrbuto; Maxmum lkelhood estmators; Bas; Fsher Iformato matrx; Asymptotc dstrbuto; Root mea squared errors; Ubased estmators; Order statstcs; Method of momet estmators; Least squares estmators; Weghted least squares estmators; Percetles estmators; L-momet estmators; Smulatos 1. INTRODUCTION A ew two-parameter dstrbuto, called the expoetated Pareto dstrbuto EP(θ,λ ) has bee troduced recetly by Gupta et al. (1998). The EP(θ, λ ) has the probablty desty fucto (pdf) ( 1) ( ;, ) [1 (1 ) ] 1 + f x θ λ = θ λ + x λ θ (1 + x), x > 0, λ > 0, θ > 0 (1.1) ad cumulatve dstrbuto fucto (cdf) F ( x; θ, = [1 (1 + x) λ ] θ, x > 0, λ > 0, θ > 0, (1.)

678 A. I. Shawky ad H. H. Abu-Zadah where θ ad λ are two shape parameters. Whe θ = 1, the above dstrbuto correspods to the stadard Pareto dstrbuto of the secod kd. Therefore, EP dstrbuto has a survval fucto S ( x; θ, = 1 [1 (1 + x) λ ] θ, x > 0, λ > 0, θ > 0 (1.3) ad a hazard fucto θ 1 ( λ + 1) θ λ [1 (1 + x) ] (1 + x) h( x; θ, =, x > 0, λ > 0, θ > 0. (1.4) θ 1 [1 (1 + x) ] Next, Gupta ad Kudu (1999) have troduced the geeralzed expoetal dstrbuto whch has bee studed qute extesvely. I (001), they dscussed also a dfferet method of estmatos of the parameters of a geeralzed expoetal dstrbuto. May authors have studed dfferet parameters estmators for certa dstrbutos; Balakrsha ad Basu (1995), Hossa ad Zmmer (003), Komor ad Hrose (004), Kotz ad Nadarajah (000), Kudu ad Raqab (005), Murthy et al. (004), Nguye (004), Surles ad Padgett (005), Wgo (1993), Wu ad L (003) ad Wu (003). Gupta et al. (1998) showed that the expoetated Pareto dstrbuto EP(θ,λ ) ca be used qute effectvely aalyzg may lfetme data. The EP(θ,λ ) ca have decreasg ad upsde-dow bathtub shaped falure rates depedg o the shape parameter θ. The ma am of ths paper s to study how the dfferet estmators of the ukow parameter/parameters of a EP dstrbuto ca behave for dfferet sample szes ad for dfferet parameter values. Here, we maly compare the maxmum lkelhood estmators ('s) wth the other estmators such as the method of momet estmators (MME's), estmators based o percetles (PCE's), least squares estmators (LSE's), weghted least squares estmators (WLSE's) ad the estmators based o the lear combatos of order statstcs (LME's), maly wth respect to ther bases ad root mea squared errors (RMSE's) usg extesve smulato techques. The remag sectos go as follows. I Secto, we brefly dscuss the 's ad ther mplemetatos. I Sectos 3 to 6 we dscuss other methods. Smulato results ad dscussos are provded Secto 7.. MAXIMUM LIKELIHOOD ESTIMATORS I ths secto the maxmum lkelhood estmators of EP(θ,λ ) are cosdered. We cosder two dfferet cases. Frst, cosder estmato of θ ad λ whe both are ukow. If x, 1 x,..., x s a radom sample from EP(θ,λ ), the the log-lkelhood fucto, L ( θ,, s

Expoetated Pareto dstrbuto 679 L ( θ, = l( θ ) + l( + ( θ 1) l[1 (1 + x ) ] ( λ + 1) l(1 + x ). = 1 = 1 (.1) The ormal equatos become: L = + l[1 (1 + ) x λ ] = 0, θ θ = 1 L (1 + x ) l(1 + x ) = + ( θ 1) l(1 + x ) = 0. λ λ λ = 1 [1 (1 + x ) ] = 1 (.) (.3) From (.), we obta the of θ as a fucto of λ, say ˆ θ (, where ˆ( θ =. (.4) l[1 (1 + ) x ] = 1 Puttg ˆ θ ( (.1), we obta g( = L( ˆ( θ, = l( ) l ( l[1 (1 + x ) ]) + l( = 1 (.5) l[1 (1 + x ) ] ( λ + 1) l(1 + x ). = 1 = 1 Therefore, of λ, say λˆ, ca be obtaed by maxmzg (.5) wth respect to λ. It s observed that g( λ ) s a umodal fucto, ad the λˆ whch maxmzes (.5) ca be obtaed from the fxed pot soluto of h ( λ ) = λ, (.6) where 1 (1 + x ) l(1 + x ) /[1 (1 + x ) ] 1 l(1 + x ) ( ) 1 h λ = = +. l[1 (1 ) ] = 1 [1 (1 + ) ] + x x = 1 (.7) A very smple teratve procedure ca be used to fd a soluto of (.6) ad t works very well. Oce we obta λˆ, the of θ say θˆ ca be obtaed from (.4) as ˆ θ = ˆ( θ ˆ λ ).

680 A. I. Shawky ad H. H. Abu-Zadah Now we state the asymptotc ormalty results to obta the asymptotc varaces of the dfferet parameters. It ca be stated as follows: [ ( ˆ θ θ ), ( ˆ λ )] N ( 0, I 1 ( θ, ), (.8) where I ( θ, s the Fsher formato matrx,.e., 1 ( / ) ( / ) 1 (, ) E L θ E L θ λ I I I θ λ = = 11 1. ( / ) ( / ) I I E L λ θ E L λ 1 Usg the otatos 1 d ξ ( a, b) =, Ψ ( a) = l Γ( a) s the dgamma fucto ad Ψ (a) s b = 0 ( + a) da the dervatve of Ψ (a), we obta I I V ( ˆ θ ) ad V ( ˆ λ ) 11, I I I I I I 11 1 11 1 where I = 11 θ θ I = I = { [ Ψ( θ ) Ψ(1)] [ Ψ( θ + 1) Ψ(1)]}, for θ 1 1 1 λ θ 1 = ξ (,), for θ = 1 λ θ ( θ 1) I = {1 + ( Ψ (1) Ψ ( θ 1) + [ Ψ( θ 1) Ψ(1)] ) λ θ θ ( Ψ (1) Ψ ( θ ) + [ Ψ( θ ) Ψ(1)] )}, for θ = [1 + 4ξ (,3)], λ for θ =. Now cosder the of θ, whe the shape parameter λ s kow. If λ s kow the of θ s ˆ θ =. (.9) l[1 (1 + ) x ] = 1 The dstrbuto of θˆ s the same as the dstrbuto of (θ /Y), where Y follows Gamma(,1). Therefore, for > ˆ E ( θ ) = θ, 1

Expoetated Pareto dstrbuto 681 ˆ V ( θ ) = θ, ( 1) ( ) ˆ + MSE ( θ ) = θ. ( 1)( ) Clearly θˆ s ot a ubased estmator of θ, although asymptotcally t s ubased. From the expresso of the expected value, we cosder the followg ubased estmator of θ, say θˆ, UBE ˆ 1 ˆ 1 θ = θ =, (.10) UBE l[1 (1 + ) x ] = 1 where ˆ ˆ θ V ( θ ) = MSE( θ ) =. (.11) UBE UBE Therefore, V ( ˆ θ ) s closer to the Cramer-Rao lower boud ( = θ / ) UBE compared to the. Now cosder the of λ whe the shape parameter θ s kow. For kow θ the of λ say λˆ ca be obtaed by maxmzg u ( λ ) = l( + ( θ 1) l[1 (1 + x ) ] ( λ + 1) l(1 + x ), (.1) = 1 = 1 wth respect to λ. It ca be easly show that u ( s a umodal fucto of λ ad λˆ whch maxmzes u ( ca be obtaed as the fxed pot soluto of v ( λ ) = λ, (.13) where 1 [1 (1 ) ]l(1 ) 1 θ + x + x v ( =. λ 1 [1 (1 + ) ] = x From the asymptotc propertes of the, t follows that E( ˆ λ ) λ ad V ( ˆ λ ) I 1.

68 A. I. Shawky ad H. H. Abu-Zadah 3. METHOD OF MOMENT ESTIMATORS I ths secto we provde the method of momet estmators (MME's) of the parameters of a EP dstrbuto. Frst, we cosder the case whe both of the parameters are ukow. If X follows EP(θ,λ ), the μ = E ( X ) = θ Β( θ,1 1/ 1; λ > 1, (3.1) σ = V ( X ) = θ Β( θ,1 / [ θ Β( θ,1 1/ ] ; λ >. (3.) Here Β (.,. ) deotes the beta fucto. Smlarly, the mea ad varace of the radom sample x, 1 x,..., x from EP(θ,λ ) are x = x / ad = S ( x x) /( 1). = 1 = 1 Therefore, equatg the mea ad varace of the sample wth the mea ad varace of the populato, we obta x = θ Β( θ,1 1/ 1; λ > 1, (3.3) S = θ Β( θ,1 / [ θ Β( θ,1 1/ ] ; λ >. (3.4) The, the MME's of θ ad λ, say θˆ ad λˆ, respectvely, ca be MME MME obtaed by solvg the two equatos (3.3) ad (3.4). It s ot possble to obta the exact varaces of θˆ or λˆ. MME MME If the shape parameter λ s kow, the the MME of θ ca be obtaed by solvg the o-lear equato (3.3) wth respect to θ. I the same way, f the shape parameter θ s kow, the the MME of λ ca be obtaed by solvg the o-lear equato (3.3) wth respect to λ. 4. ESTIMATORS BASED ON PERCENTILES If the data comes from a dstrbuto fucto whch has a closed form, the t s qute atural to estmate the ukow parameters by fttg a straght le to the theoretcal pots obtaed from the dstrbuto fucto ad the sample percetle pots. Ths method was orgally explored by Kao (1958, 1959) ad t has bee used qute successfully for Webull dstrbuto ad for the geeralzed expoetal dstrbuto [see, Murthy et al. (004) ad Gupta ad Kudu (001)].

Expoetated Pareto dstrbuto 683 I case of a EP dstrbuto, also, t s possble to use the same cocept to obta the estmators of θ ad λ based o the percetles, because of the structure of ts dstrbuto fucto. Frst let us cosder the case, whe both of the parameters are ukow. Sce F ( x; θ, = [1 (1 + x) λ ] θ, therefore, l[ F ( x; θ, ] = θ l[1 (1 + x) λ ]. (4.1) Let X () deotes the -th order statstc,.e., X ( 1) < X () <... < X ( ). If p deotes some estmate of F ( x ; θ, ) ( ) λ, the the estmate of θ ad λ ca be obtaed by mmzg (l( ) θ l[1 (1 ) λ ]) p + x, (4.) ( ) = 1 wth respect to θ ad λ. We otce that (4.) s a o-lear fucto of θ ad λ. It s possble to use some o-lear regresso techques to estmate θ ad λ smultaeously. We call these estmators as percetle estmators (PCE's). Several estmators of p ca be used here [see, Murthy et al. (004)]. I ths paper, we maly cosder p =, whch s the expected value of F ( X ( ) ). +1 Now let us cosder the case whe oe parameter s kow. If the shape parameter θ s kow, the the estmator of λ ca be obtaed by mmzg (4.) wth respect to λ oly. The percetle estmator of λ for kow θ, say λˆ, ca be obtaed as the soluto of the followg o-lear equato; PCE (1 + x ) l(1 + x ) ( ) ( ) (l( ) l[1 (1 + ) λ p θ x ]) ( ) = 1 [1 (1 + x ) ] ( ) = 0. (4.3) If the shape parameter λ s kow, the the estmator of θ ca be obtaed by mmzg (4.) wth respect to θ oly. The percetle estmator of θ for kow λ, say θˆ, becomes PCE l( p ) l[1 (1 + x ) ] ( ) ˆ θ = = 1. (4.4) PCE (l[1 (1 + x ) ]) ( ) = 1 Iterestgly, θˆ s also a closed form lke θˆ whe λ s kow. PCE

684 A. I. Shawky ad H. H. Abu-Zadah 5. LEAST SQUARES AND WEIGHTED LEAST SQUARES ESTIMATORS I ths secto, we provde the regresso based method estmators of the ukow parameters, whch was orgally suggested by Swa et al. (1988) to estmate the parameters of Beta dstrbutos. The method ca be descrbed as follows: Suppose Y 1, Y,..., Y s a radom sample of sze from a dstrbuto fucto G (. ) ad Y ( 1) < Y() <... < Y( ) deotes the order statstcs of the observed sample. It s well kow that ( + 1) E ( G( Y )) = ad V ( G( Y )) =, ( ) + 1 ( ) ( + 1) ( + ) [see, Johso et al. (1995)]. Usg the expectatos ad the varaces, two varats of the least squares methods ca be used. Method 1 (Least Squares Estmators): Obta the estmators by mmzg ) ) ( G( Y, (5.1) ( ) = 1 + 1 wth respect to the ukow parameters. Therefore, case of EP dstrbuto the least squares estmators of θ ad λ, say θˆ ad λˆ, respectvely, ca be LSE LSE obtaed by mmzg ([1 (1 ) ] ) + x λ θ, (5.) ( ) = 1 + 1 wth respect to θ ad λ. Method (Weghted Least Squares Estmators): The weghted least squares estmators ca be obtaed by mmzg ) ) w ( G( Y, (5.3) ( ) = 1 + 1 wth respect to the ukow parameters, where w = (1/( V ( G( Y )))) = ( + 1) ( + ) / ( + 1). Therefore, case of EP ( ) dstrbuto the weghted least squares of θ ad λ, say θˆ ad λˆ, WLSE WLSE respectvely, ca be obtaed by mmzg ([1 (1 ) ] ) w + x λ θ, (5.4) ( ) = 1 + 1 wth respect to θ ad λ oly.

Expoetated Pareto dstrbuto 685 I case of EP dstrbuto, f the shape parameter λ s kow, the the LSE ad WLSE of θ ca be obtaed by mmzg (5.) ad (5.4), respectvely, wth respect to θ. I the same way, f the shape parameter θ s kow, the the LSE ad WLSE of λ ca be obtaed by mmzg (5.) ad (5.4), respectvely, wth respect to λ. 6. L-MOMENT ESTIMATORS I ths secto we propose a method for estmatg the ukow parameters of a EP dstrbuto based o the lear combatos of order statstcs, see, for example Davd (1981), Hoskg (1990), or Davd ad Nagaraja (003). The estmators obtaed by ths method are popularly kow as L-momet estmators (LME's). The LME's are aalogous to the covetoal momet estmators but ca be estmated by lear combatos of order statstcs,.e., by L-statstcs. The LME's have theoretcal advatages over covetoal momets of beg more robust to the presece of outlers the data. It s observed that LME's are less subject to bas estmato ad sometmes more accurate small samples tha eve the 's. Frst, we dscuss the case how to obta the LME's whe both the parameters of a EP dstrbuto are ukow. If x ( 1) < x() <... < x( ) deotes the ordered sample, the usg the same otato as Hoskg (1990), we obta the frst ad secod sample L-momets as 1 l = x, l = ( 1) x l (6.1) 1 ( ) ( ) 1 = 1 ( 1) = 1 ad the frst two populato L-momets are λ = θ Β( θ, 1 1/ 1, λ = θ Β(θ, 1 1/ θ Β( θ,1 1/ ; λ > 1, (6.) 1 respectvely. Note that (6.) follows from the dstrbuto fucto of the -th order statstc of a EP radom varable. Now to obta the LME's of the ukow parameters θ ad λ, we eed to equate the sample L-momets wth the populato L-momets. Therefore, the LME's ca be obtaed from l = θ Β( θ, 1 1/ 1; λ > 1, (6.3) 1 l = θ Β(θ, 1 1/ θ Β( θ,1 1/ ; λ > 1. (6.4) The, the LME's of θ ad λ, say θˆ ad λˆ, respectvely, ca be LME LME obtaed by solvg the two equatos (6.3) ad (6.4). It s ot possble to obta the exact varaces of θˆ or λˆ. LME LME If the shape parameter λ or θ s kow, the the LME of θ or λ ca be obtaed by solvg the o-lear equato (6.3) wth respect to θ or λ,

686 A. I. Shawky ad H. H. Abu-Zadah respectvely. It s terestg to ote that f λ or θ s kow, the the LME of θ or λ s the same as the correspodg momet estmator. 7. NUMERICAL EXPERIMENTS AND DISCUSSIONS I ths secto we preset results of some umercal expermets to compare the performace of the dfferet estmators proposed the prevous sectos. We perform extesve Mote Carlo smulatos to compare the performace of the dfferet estmators, maly wth respect to ther bases ad root mea squared errors (RMSE's) for dfferet sample szes ad for dfferet parameter values. Note that, we take λ =3 all cases cosdered. We cosder θ = 0.5, 1.0, 3.0 ad = 10, 30 ad 50. We compute the bases ad RMSE's of estmators over 1000 replcatos for dfferet cases. Frst cosder the estmato of θ whe λ s kow. Whe λ s kow the, ubased estmator (UBE) ad PCE of θ ca be obtaed from (.9), (.10) ad (4.4), respectvely. The methods of momet estmator of θ ca be obtaed by solvg the o-lear equato (3.3). Smlarly, the least squares ad weghted least squares estmators of θ ca be obtaed by mmzg (5.) ad (5.4), respectvely, wth respect to θ oly. The results are reported Table 1. It s observed Table 1 that most of the estmators usually overestmate θ, except PCE, whch uderestmates all the tmes. As far as bases are cocered, the UBE's are more or less ubased as expected ad cosderg the mmum RMSE's for most dfferet values of θ ad cosdered here. The RMSE's of the UBE's are also qute close to the 's ad PCE's. I the cotext of computatoal complextes, UBE, ad PCE are easest to compute. They do ot volve ay o-lear equato solvg, whereas the MME, LSE ad WLSE volve solvg o-lear equatos ad they eed to be calculated by some teratve processes. Comparg all the methods, we coclude that for kow shape parameter λ, the UBE should be used for estmatg θ. Now cosder the estmato of λ whe θ s kow. I ths case the of λ ca be obtaed by maxmzg (.1) wth respect to λ. The MME ad PCE ca be obtaed by solvg the o-lear equatos (3.3) ad (4.3), respectvely. Fally the LSE ad the WLSE ca be obtaed by mmzg (5.) ad (5.4) wth respect to λ oly for fxed θ. The results are reported Table. I ths case t s observed that the estmators usually overestmate λ. Comparg the bases of all the estmators, t s observed that the WLSE performs the best for most dfferet values of θ ad cosdered here. The performace of the 's ad LSE's are qute close to the WLSE whe θ 1. As far as RMSE's are cocered, PCE ad LSE outperforms others whe θ 1 ad θ > 1,

Expoetated Pareto dstrbuto 687 respectvely, ad the performs the best for most dfferet values of θ ad cosdered here. Comparg the computatoal complextes of the dfferet estmators, t s observed that whe the shape parameter θ s kow, we eed some teratve techques to compute, MME, PCE, LSE ad WLSE. Summg up, we recommed to use the for estmatg λ whe the shape parameter θ s kow. Now we cosder the estmato of θ ad λ whe both of them are ukow. We cosder sx dfferet estmators, amely, MME, PCE, LSE, WLSE, ad LME. The results for θ ad λ are reported Tables 3 ad 4, respectvely. Comparg the performace of all the estmators, t s observed that as far as bases or RMSE's are cocered, the performs best most cases cosdered here. Iterestgly, whle estmatg λ, the bases ad RMSE's of the LME are lower tha the other estmators most of the tmes. Computatoally, the volve oly oe dmesoal optmzato whereas the rest of the estmators volve two dmesoal optmzato. Eve though, the estmators ca be obtaed by performg oe or two dmesoal optmzato, we recommed to use the for estmatg θ ad λ whe both are ukow.

688 A. I. Shawky ad H. H. Abu-Zadah Table 1: Smulated values of bases ad RMSE's of estmators of θ whe λ s kow Method θ =.5 θ =1 θ =3 10-0.00980615 0.10456 0.88156 0.14734 0.395878 1.1683 MME - 0.6846 0.3346 0.37150 0.86649 5.84695 6.30757 PCE - 0.073947-0.0803979-0.649 0.156903 0.339805 1.0354 LSE 1.4381 1.6667 0.0369 8.9883 15.0536 1.46751 WLSE 16.067 1.74409 0.18375.634 0.5497 1.497 UBE - 0.058855-0.0059703-0.0406594 0.14474 0.343685 1.0197 30-0.03096 0.0444549 0.098635 0.0843468 0.0906 0.57643 MME - 0.67409 0.0349956 0.107316 0.73069 0.488673 1.30866 PCE - 0.058755-0.0551994-0.06314 0.105 0.01578 0.59455 LSE 31.1969 0.54445 0.0676617 39.3873 16.49 0.657346 WLSE 17.078 0.361177 0.0619634 4.9788 10.469 0.67775 UBE - 0.047698 0.00963976-0.0046561 0.0896 0.191616 0.54593 50-0.045786 0.018531 0.0530657 0.073147 0.144461 0.445753 MME - 0.70747 0.0354505 0.044305 0.74431 0.411635 0.957471 PCE - 0.0554737-0.0549771-0.165407 0.084738 0.156556 0.47708 LSE 37.7797 0.01385 0.0308608 44.5797 0.1674 0.53799 WLSE 16.6766 0.0114148 0.09019 4.9756 0.158809 0.494395 UBE - 0.05177-0.00184736-0.00799559 0.0779163 0.140414 0.43380 Note: The frst etry s the smulated bas. The secod etry s the smulated RMSE.

Expoetated Pareto dstrbuto 689 Table : Smulated values of bases ad RMSE's of estmators of λ whe θ s kow Method θ =.5 θ =1 θ =3 10 0.710669 0.336866 0.0698888.07309 1.576 0.607684 MME 0.9160 0.463331 0.18978.30594 1.583 0.667056 PCE 101.894 8.4037 0.870305 678.03 64.754.89517 LSE 0.7075 0.30774 10.648 4.1315 1.3868 3.776 WLSE 0.64845 0.11045 5.47036 3.9595 1.34451 4.3551 30 0.4538 0.104 0.033176 0.916391 0.60643 0.365181 MME 0.69836 0.158105 0.0854876 0.8944 0.593066 0.41000 PCE 1.5408 0.634533 0.7654 4.00111 1.66535 0.703883 LSE 0.188446 0.065469.853 1.17345 0.668338 61.8346 WLSE 0.165386 0.0596311 1.34897 1.0831 0.635864 1.833 50 0.10711 0.0744489 0.00761307 0.606939 0.445785 0.761 MME 0.18468 0.0910077 0.0417486 0.684345 0.455961 0.98875 PCE 0.90466 0.43356 0.176949.4633 1.1709 0.50853 LSE 0.1885 0.0311515 3.8 0.811335 0.518908 66.4174 WLSE 0.11171 0.073665-0.000670567 0.751958 0.49667 0.88109 Note: The frst etry s the smulated bas. The secod etry s the smulated RMSE.

690 A. I. Shawky ad H. H. Abu-Zadah Table 3: Smulated values of bases ad RMSE's of estmators of λ whe θ s ukow Method θ =.5 θ =1 θ =3 10-0.60384-0.9145-1.6366 1.77 3.88654.00195 MME.91094 1.85975 1.554 4.706.97359.488 PCE 6.59788 1.56754 1.61655 4.94 14.036.961 LSE - 1.31048-1.4305-1.94587 1.36007 1.47834.9119 WLSE - 1.56318-1.15938-1.50304 1.57733 3.17366 3.81379 LME 1.16994 0.84887 0.63689.85074.0969 1.4691 30-0.0049541-0.38651-0.679139 1.09006 1.164 1.49465 MME 1.1687 0.963864 0.57181 1.89776 1.58037 1.57158 PCE 0.4004-0.4093 1.14 6.5884.50644 1.60098 LSE - 0.997554-1.31807 -.48773 1.05496 1.3448 3.06457 WLSE - 1.5477-1.40151 -.44654 1.54971 1.4309 3.3015 LME 0.516765 0.34478 0.54083 1.3433 0.95136 0.7534 50 0.14797-0.001414-0.451146 0.76954 0.74444 1.878 MME 0.873549 0.669543 0.44378 1.4654 1.31107 1.4489 PCE 0.940435-0.99585 1.05443 38.18 1.03004 1.396 LSE - 0.971074-1.3187 -.5361 1.00766 1.33663.865 WLSE - 1.56119-1.44376 -.636 1.56498 1.45611 3.03574 LME 0.33578 0.1894 0.14917 0.95654 0.70338 0.589051 Note: The frst etry s the smulated bas. The secod etry s the smulated RMSE.

Expoetated Pareto dstrbuto 691 Table 4: Smulated values of bases ad RMSE's of estmators of θ whe λ s ukow Method θ =.5 θ =1 θ =3 10-0.0504934-0.44803-0.654884 0.48358 0.83436.5790 MME 0.6768 1.4131 7.7395 1.04113.53815 17.0479 PCE 0.01039 0.0084774 0.687646 0.359044 0.660053.16553 LSE 14.444 15.9734 7.64417 14.8155 16.4903 10.975 WLSE 10.6081 18.4618 6.5514 10.847 5.5338 18.9534 LME 0.11636 0.37041.696 0.41488 1.3018 6.87684 30 0.0138416-0.0377313-0.49436 0.15069 0.35333 1.6763 MME 0.3345 0.6908.64749 0.45401 0.91516 4.178 PCE - 0.03190-0.090496 0.550753 0.1547 0.337953 1.8638 LSE 17.1909 17.779 7.4118 17.4979 17.9063 7.90065 WLSE 10.7364 17.877 4.7485 10.8087 18.3678 7.43866 LME 0.059318 0.137975 0.60309 0.196169 0.410591 1.70638 50 0.016143 0.0169791-0.80777 0.0968914 0.36084 1.3493 MME 0.3518 0.49093 1.8598 0.3448 0.743149.8561 PCE - 0.0368757-0.0804915 0.387774 0.11699 0.57455 1.30836 LSE 17.53 17.739 7.49818 17.6817 17.89 7.8757 WLSE 10.86 17.375 4.559 10.8571 17.56 7.40833 LME 0.0349669 0.0613618 0.369778 0.140606 0.93694 1.17376 Note: The frst etry s the smulated bas. The secod etry s the smulated RMSE.

69 A. I. Shawky ad H. H. Abu-Zadah REFERENCES [1] A. M. Hossa ad W. J. Zmmer, Comparso of estmato methods for Webull parameters: Complete ad cesored samples, J. Statst. Comput. Smul., 73(), (003), 145-153. [] D. Kudu ad M. Z. Raqab, Geeralzed Raylegh dstrbuto: Dfferet methods of estmatos, J. Computatoal Statstcs ad Data Aalyss, 49 (005), 187-00. [3] D. N. P. Murthy, M. Xe ad R. Jag, Webull Models, Joh Wley, New Jersey, 004. [4] D. R. Wgo, Maxmum lkelhood estmato of Burr XII dstrbuto parameters uder Type II cesorg, Mcroelectro. Relab., 33(9), (1993), 151-157. [5] H. A. Davd, Order statstcs, Secod Edto, Joh Wley, New York, 1981. [6] H. A. Davd ad H. N. Nagaraja,Order statstcs, Thrd Edto, Joh Wley, New Jersey, 003. [7] J. G. Surles ad W. J. Padgett, Some propertes of a scaled Burr type X dstrbuto, J. Statst. Pla. ad Iferece, 18 (005), 71-80. [8] J. H. K. Kao, Computer methods for estmatg Webull parameters relablty studes, Trasactos of IRE-Relablty ad Qualty Cotrol, 13(1958), 15-. [9] J. H. K. Kao, A graphcal estmato of mxed Webull parameters lfe testg electro tube, Techometrcs, 1 (1959), 389-407. [10] J. R. M. Hoskg, L-Momet: Aalyss ad estmato of dstrbutos usg lear combatos of order statstcs, Joural of Royal Statstcal Socety, 5 B(1), (1990), 105-14. [11] J. Swa, S. Vekatrama ad J. Wlso, Least squares estmato of dstrbuto fucto Johso's traslato system, J. Statst. Comput. Smul., 9 (1988), 71-97. [1] J.-W. Wu ad P.-L. L, Optmal parameter estmato of the Extreme Value dstrbuto based o a Type II cesored sample, Commu. Statst.-Theory Meth., 3(3), (003), 533-554. [13] N. Balakrsha ad A. P. Basu, The Expoetal Dstrbuto: Theory, Methods ad Applcatos, Gordo ad Breach Publshers, Amsterdam, 1995.

Expoetated Pareto dstrbuto 693 [14] N. L. Johso, S. Kotz ad N. Balakrsha, Cotuous Uvarate Dstrbuto, Vol., d Ed., Joh Wley, New York, 1995. [15] R. C. Gupta, R. D. Gupta ad P. L. Gupta, Modelg falure tme data by Lehma alteratves, Commu. Statst. - Theory Meth., 7(4), (1998), 887-904. [16] R. D. Gupta ad D. Kudu, Geeralzed expoetal dstrbuto, New Zealad Joural of Statstcs, 41(), (1999), 173-188. [17] R. D. Gupta ad D. Kudu, Geeralzed expoetal dstrbuto: Dfferet method of estmatos, J. Statst. Comput. Smul., 69 (001), 315-337. [18] S.-J. Wu, Estmato for the two-parameter Pareto dstrbuto uder progressve cesorg wth uform removals, J. Statst. Comput. Smul., 73(), (003), 15-134. [19] S. Kotz ad S. Nadarajah, Extreme Value Dstrbutos: Theory ad Applcatos. Imperal College Press, Lodo, 000. [0] T. T. Nguye, Maxmum lkelhood estmators of the parameters a Beta dstrbuto, A. K. Gupta ad S. Nadaraah, eds. Hadbook of Beta Dstrbuto ad Its Applcatos, Marcel Dekker, New York, (004), 9-35. [1] Y. Komor ad H. Hrose, Easy estmato by a ew parameterzato for the three-parameter logormal dstrbuto, J. Statst. Comput. Smul., 74(1), (004), 63-74. Receved: November, 008