MOS Transistor Properties Review

Similar documents
ECE 342 Electronic Circuits. Lecture 6 MOS Transistors

EE105 - Fall 2005 Microelectronic Devices and Circuits

Practice 3: Semiconductors

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

MOSFET: Introduction

Lecture 3: CMOS Transistor Theory

Microelectronics Part 1: Main CMOS circuits design rules

Integrated Circuits & Systems

Introduction and Background

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor

EE382M-14 CMOS Analog Integrated Circuit Design

ECE 342 Electronic Circuits. 3. MOS Transistors

Quantitative MOSFET. Step 1. Connect the MOS capacitor results for the electron charge in the inversion layer Q N to the drain current.

Lecture 12: MOSFET Devices

MOS Transistor I-V Characteristics and Parasitics

II III IV V VI B C N. Al Si P S. Zn Ga Ge As Se Cd In Sn Sb Te. Silicon (Si) the dominating material in IC manufacturing

EE105 - Fall 2006 Microelectronic Devices and Circuits

EE115C Winter 2017 Digital Electronic Circuits. Lecture 3: MOS RC Model, CMOS Manufacturing

Lecture 4: CMOS Transistor Theory

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices.

MOS Transistor Theory

Chapter 4 Field-Effect Transistors

EEC 118 Lecture #2: MOSFET Structure and Basic Operation. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

Device Models (PN Diode, MOSFET )

Device Models (PN Diode, MOSFET )

Today s lecture. EE141- Spring 2003 Lecture 4. Design Rules CMOS Inverter MOS Transistor Model

Lecture 11: MOS Transistor

MOSFET Physics: The Long Channel Approximation

Lecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET:

Introduction to CMOS VLSI. Chapter 2: CMOS Transistor Theory. Harris, 2004 Updated by Li Chen, Outline

The Devices. Devices

The Gradual Channel Approximation for the MOSFET:

Lecture 12: MOS Capacitors, transistors. Context

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

ECE 546 Lecture 10 MOS Transistors

Operation and Modeling of. The MOS Transistor. Second Edition. Yannis Tsividis Columbia University. New York Oxford OXFORD UNIVERSITY PRESS

6.012 Electronic Devices and Circuits Spring 2005

The Devices. Jan M. Rabaey

The Devices: MOS Transistors

Fig. 1 CMOS Transistor Circuits (a) Inverter Out = NOT In, (b) NOR-gate C = NOT (A or B)

EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region

3. Design a stick diagram for the PMOS logic shown below [16] Y = (A + B).C. 4. Design a layout diagram for the CMOS logic shown below [16]

Course Administration. CPE/EE 427, CPE 527 VLSI Design I L04: MOS Transistors. Review: CMOS Process at a Glance

Section 12: Intro to Devices

MOS Transistors. Prof. Krishna Saraswat. Department of Electrical Engineering Stanford University Stanford, CA

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ELEC 3908, Physical Electronics, Lecture 23. The MOSFET Square Law Model

Microelectronics Main CMOS design rules & basic circuits

EE 560 MOS TRANSISTOR THEORY PART 2. Kenneth R. Laker, University of Pennsylvania

Chapter 2 CMOS Transistor Theory. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan

SECTION: Circle one: Alam Lundstrom. ECE 305 Exam 5 SOLUTIONS: Spring 2016 April 18, 2016 M. A. Alam and M.S. Lundstrom Purdue University

Studio 3 Review MOSFET as current source Small V DS : Resistor (value controlled by V GS ) Large V DS : Current source (value controlled by V GS )

P. R. Nelson 1 ECE418 - VLSI. Midterm Exam. Solutions

Field-Effect (FET) transistors

Lecture 9 MOSFET(II) MOSFET I V CHARACTERISTICS(contd.)

VLSI Design I; A. Milenkovic 1

Lecture 210 Physical Aspects of ICs (12/15/01) Page 210-1

LECTURE 3 MOSFETS II. MOS SCALING What is Scaling?

Lecture 5: CMOS Transistor Theory

MOS Transistor Theory

ECE 415/515 ANALOG INTEGRATED CIRCUIT DESIGN

ELEC 3908, Physical Electronics, Lecture 26. MOSFET Small Signal Modelling

FIELD-EFFECT TRANSISTORS

Extensive reading materials on reserve, including

Lecture 0: Introduction

Lecture 04 Review of MOSFET

EE 330 Lecture 16. MOS Device Modeling p-channel n-channel comparisons Model consistency and relationships CMOS Process Flow

The Physical Structure (NMOS)

Lecture 13 MOSFET as an amplifier with an introduction to MOSFET small-signal model and small-signal schematics. Lena Peterson

Figure 1: MOSFET symbols.

nmos IC Design Report Module: EEE 112

MOS Transistor Theory MOSFET Symbols Current Characteristics of MOSFET. MOS Symbols and Characteristics. nmos Enhancement Transistor

ELEN0037 Microelectronic IC Design. Prof. Dr. Michael Kraft

EE 560 MOS TRANSISTOR THEORY

AE74 VLSI DESIGN JUN 2015

! CMOS Process Enhancements. ! Semiconductor Physics. " Band gaps. " Field Effects. ! MOS Physics. " Cut-off. " Depletion.

University of Pennsylvania Department of Electrical Engineering. ESE 570 Midterm Exam March 14, 2013 FORMULAS AND DATA

ECEN474/704: (Analog) VLSI Circuit Design Spring 2018

MOS Capacitors ECE 2204

HW 5 posted due in two weeks Lab this week Midterm graded Project to be launched in week 7

CMPEN 411 VLSI Digital Circuits. Lecture 04: CMOS Inverter (static view)

Lecture 15 OUTLINE. MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: MOS Capacitor with External Bias

VLSI Design The MOS Transistor

Metal-oxide-semiconductor field effect transistors (2 lectures)

ECE 497 JS Lecture - 12 Device Technologies

EE 330 Lecture 16. MOSFET Modeling CMOS Process Flow

VLSI Design and Simulation

ECE321 Electronics I

! PN Junction. ! MOS Transistor Topology. ! Threshold. ! Operating Regions. " Resistive. " Saturation. " Subthreshold (next class)

ECE-305: Fall 2017 MOS Capacitors and Transistors

Lecture 15 OUTLINE. MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor

Fundamentals of the Metal Oxide Semiconductor Field-Effect Transistor

VLSI VLSI CIRCUIT DESIGN PROCESSES P.VIDYA SAGAR ( ASSOCIATE PROFESSOR) Department of Electronics and Communication Engineering, VBIT

Lecture 150 Basic IC Processes (10/10/01) Page ECE Analog Integrated Circuits and Systems P.E. Allen

CMOS INVERTER. Last Lecture. Metrics for qualifying digital circuits. »Cost» Reliability» Speed (delay)»performance

Technische Universität Graz. Institute of Solid State Physics. 11. MOSFETs

ECE315 / ECE515 Lecture-2 Date:

GEORGIA INSTITUTE OF TECHNOLOGY School of Electrical and Computer Engineering

Lecture 12 Digital Circuits (II) MOS INVERTER CIRCUITS

Transcription:

MOS Transistor Properties Review 1

VLSI Chip Manufacturing Process Photolithography: transfer of mask patterns to the chip Diffusion or ion implantation: selective doping of Si substrate Oxidation: SiO 2 growth Deposition: Al and polysilicon thin films 2

NMOS Enhancement Device 3

Establishing a Channel v GS V t v DS =0 v GD =v GS v DS =v GS C ox = ox t ox F /cm 2 C gb =C ox WLF 4

Acts as a Voltage-Controlled Resistor v GD =v GS v DS v GS 5

NMOS Operation as v DS Increases 1. For small v DS : v GD =v GS v DS v GS 2. As v DS is increased for fixed v GS : v GD=v GS v DS -> decreases 3. When v DS =v DSsat =v GS V t v GD =V t channel pinches off at drain-end 4. As v DS is increased v DS v DSsat =v GS V t v GD V t channel L decreases. 6

Curve Flattens With Increased v DS 7

NMOS Enhancement Model Background If v GS V t,the drain to source current, i DS, increases until: v DS v GS V t The MOSFET saturates at this value of v DS and (except for an Early Effect ) i DS does not increase with further increases in v DS. This channel current is proportional to the channel width W, inversely proportional to its length L, and proportional to its transconductance parameter, k' n : ' k n = n C ox = cm2 V sec F cm2 C /V = 2 cm V sec cm = A 2 V 2 C ox is the capacitance per unit area of the gate-channel interface and n is the fabrication-dependent channel electron mobility. 8

Uniform Channel Width (Small v DS ) Model Drain-to-source current with fixed gate-to-source voltage is proportional to drain to source voltage: g DS =k n L v GS V t i D =i DS =g DS v DS =k n L v GS V t v DS r DS =1/ g DS = voltage-controlled resistance k n Intuitively, conductance g DS is proportional to the conductor cross-section - channel width, W, times channel depth (set by the gate to source voltage, v GS -V t ) and the conductivity of the channel material. Conductance is inversely proportional to L, the length of the current path. 1 L v GS V t 9

NMOS Enhancement Model Structure A satisfactory v DS - i DS model for the triode region is a quadratic expression that is linear for small v DS and reaches a maximum where the device saturates: Small v DS, where i D =i DS =k n L [ v GS V t v DS 1 2 v DS Saturation, where v DS =v GS V t : i D =i DS =k n 2 ] 1 2 v 2 v V v : DS i =i =k GS t DS D DS n L v GS V t v DS [ L v GS V t v GS V t 1 2] 2 v GS V t = k ' n 2 i D =i DS = k ' n 2 W L v GS V t 2 Triode region W L v GS V t 2 Saturation region 10

NMOS Enhancement Models For the NMOS enhancement mode (strong-inversion) transistor: For: For: v GS V t 0 i DS =0 v GS V t 0 (Channel non-existent) (Channel exists) v DS v GS V t 2 ] i D =i DS =k n L [ v GS V t v DS 1 2 v DS (Triode) v DS v GS V t i D =i DS = 1 2 k n L v V GS t 2 (Saturation) 11

Channel Length Modulation v DS v DSsat =v GS V t v GD V t L= Lv DS process parameter withunits V 1 Modify the saturation model to account for L: i D =i DS = 1 2 k n L v GS V t 2 1 2 k n L L v GS V t 2 = 1 2 k n L L L 1 L 1 L/ L v GS V t 2 i D =i DS 1 2 k n L 1 L L v GS V t 2 = 1 2 k n L v GS V t 2 1 n v DS 12

V A Early Voltage Relation to Lambda Saturation: i D =i DS 1 2 k n L v GS V t 2 1 n v DS small-signal output-resistance r o = V A I D = 1 I D where I D = 1 2 k n L V GS V t 2 slope=1/r o V A = 1 Triode: [ i D =i DS k n L v GS V t v DS 1 2 v ] 2 1 DS nv DS 13

NMOS Enhancement Circuit Symbols Sedra Symbols Multisim Symbols The body diode is indicated by the B terminal arrow. The substrate typically is connected to the most negative circuit voltage so the body diode is back biased. 14

NMOS Physical Representations 15

PMOS Enhancement Device PMOS Transistor on a p-type body (CMOS circuit). NOTE: p-type body is substrate for NMOS transistor n-well is local substrate for PMOS transistor 16

PMOS Enhancement Model PMOS device model is NMOS model with all polarities reversed: For: For: v SG V 0 t i D =i SD =0 v SG V 0 t v SD v SG V t (Channel non-existent) (Channel exists) [ i D =i SD =k p L v SG V t v SD 1 2 v ] 2 1 SD p v SD v SD v SG V t i D =i SD = 1 2 k p L v SG V 2 t 1 p v SD (Triode) (Saturation) 17

PMOS Enhancement Circuit Symbols Sedra Symbols Multisim Symbols another PMOS symbol 18

nmos Small Signal Model Low Frequency (approximate) v gs g m v gs r o g m= 2 nc ox W L I D r o = 1 n I D C gd C gs C High Frequency (approximate) V gs C gs g m V gs r o C gd C 19