On intermediate value theorem in ordered Banach spaces for noncompact and discontinuous mappings

Similar documents
Fixed point theorems of nondecreasing order-ćirić-lipschitz mappings in normed vector spaces without normalities of cones

Applied Mathematics Letters

WEAK CONVERGENCE OF RESOLVENTS OF MAXIMAL MONOTONE OPERATORS AND MOSCO CONVERGENCE

PROXIMAL, DISTAL AND ASYMPTOTIC POINTS IN COMPACT CONE METRIC SPACES. P. Raja (Received 30 June, 2015)

Fixed Point Theorem in Cone B-Metric Spaces Using Contractive Mappings

Economics 204 Summer/Fall 2011 Lecture 5 Friday July 29, 2011

SCALARIZATION APPROACHES FOR GENERALIZED VECTOR VARIATIONAL INEQUALITIES

Some topological properties of fuzzy cone metric spaces

Approximating solutions of nonlinear second order ordinary differential equations via Dhage iteration principle

Existence of Solutions to Split Variational Inequality Problems and Split Minimization Problems in Banach Spaces

Some Properties of the Augmented Lagrangian in Cone Constrained Optimization

STRONG CONVERGENCE OF AN ITERATIVE METHOD FOR VARIATIONAL INEQUALITY PROBLEMS AND FIXED POINT PROBLEMS

Remark on a Couple Coincidence Point in Cone Normed Spaces

On nonexpansive and accretive operators in Banach spaces

Viscosity approximation methods for the implicit midpoint rule of asymptotically nonexpansive mappings in Hilbert spaces

Introduction to Topology

The local equicontinuity of a maximal monotone operator

Research Article Fixed Point Theorems in Cone Banach Spaces

Problem Set 5: Solutions Math 201A: Fall 2016

Functional Analysis. Franck Sueur Metric spaces Definitions Completeness Compactness Separability...

Solution existence of variational inequalities with pseudomonotone operators in the sense of Brézis

CHARACTERIZATION OF (QUASI)CONVEX SET-VALUED MAPS

ON A HYBRID PROXIMAL POINT ALGORITHM IN BANACH SPACES

van Rooij, Schikhof: A Second Course on Real Functions

Metric Spaces and Topology

Economics 204 Fall 2011 Problem Set 2 Suggested Solutions

Contents. 2 Sequences and Series Approximation by Rational Numbers Sequences Basics on Sequences...

Continuous Functions on Metric Spaces

Monotone variational inequalities, generalized equilibrium problems and fixed point methods

Existence Of Solution For Third-Order m-point Boundary Value Problem

On Semicontinuity of Convex-valued Multifunctions and Cesari s Property (Q)

d(x n, x) d(x n, x nk ) + d(x nk, x) where we chose any fixed k > N

Maths 212: Homework Solutions

Problem Set 2: Solutions Math 201A: Fall 2016

GENERAL NONCONVEX SPLIT VARIATIONAL INEQUALITY PROBLEMS. Jong Kyu Kim, Salahuddin, and Won Hee Lim

Math 118B Solutions. Charles Martin. March 6, d i (x i, y i ) + d i (y i, z i ) = d(x, y) + d(y, z). i=1

Viscosity approximation methods for the implicit midpoint rule of nonexpansive mappings in CAT(0) Spaces

Compact operators on Banach spaces

EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR FOURTH-ORDER BOUNDARY-VALUE PROBLEMS IN BANACH SPACES

Available online at J. Nonlinear Sci. Appl., 10 (2017), Research Article

FUNCTIONAL COMPRESSION-EXPANSION FIXED POINT THEOREM

Computers and Mathematics with Applications

converges as well if x < 1. 1 x n x n 1 1 = 2 a nx n

arxiv: v1 [math.ca] 7 Jul 2013

HAIYUN ZHOU, RAVI P. AGARWAL, YEOL JE CHO, AND YONG SOO KIM

Contents: 1. Minimization. 2. The theorem of Lions-Stampacchia for variational inequalities. 3. Γ -Convergence. 4. Duality mapping.

MINIMAL GRAPHS PART I: EXISTENCE OF LIPSCHITZ WEAK SOLUTIONS TO THE DIRICHLET PROBLEM WITH C 2 BOUNDARY DATA

WEAK CONVERGENCE THEOREMS FOR EQUILIBRIUM PROBLEMS WITH NONLINEAR OPERATORS IN HILBERT SPACES

Analysis III Theorems, Propositions & Lemmas... Oh My!

THE NEARLY ADDITIVE MAPS

MATHS 730 FC Lecture Notes March 5, Introduction

Sequential Pareto Subdifferential Sum Rule And Sequential Effi ciency

STRONG CONVERGENCE THEOREMS BY A HYBRID STEEPEST DESCENT METHOD FOR COUNTABLE NONEXPANSIVE MAPPINGS IN HILBERT SPACES

Layered Compression-Expansion Fixed Point Theorem

McGill University Math 354: Honors Analysis 3

Tomasz Człapiński. Communicated by Bolesław Kacewicz

SOME GENERALIZATION OF MINTY S LEMMA. Doo-Young Jung

CONVERGENCE THEOREMS FOR STRICTLY ASYMPTOTICALLY PSEUDOCONTRACTIVE MAPPINGS IN HILBERT SPACES. Gurucharan Singh Saluja

Analysis Finite and Infinite Sets The Real Numbers The Cantor Set

Nonlinear D-set contraction mappings in partially ordered normed linear spaces and applications to functional hybrid integral equations

Continuity of convex functions in normed spaces

1. Let A R be a nonempty set that is bounded from above, and let a be the least upper bound of A. Show that there exists a sequence {a n } n N

FIXED POINT METHODS IN NONLINEAR ANALYSIS

(convex combination!). Use convexity of f and multiply by the common denominator to get. Interchanging the role of x and y, we obtain that f is ( 2M ε

Shih-sen Chang, Yeol Je Cho, and Haiyun Zhou

Well-posedness for generalized mixed vector variational-like inequality problems in Banach space

THE INVERSE FUNCTION THEOREM

PROJECTIONS ONTO CONES IN BANACH SPACES

CONTROLLABILITY OF NONLINEAR DISCRETE SYSTEMS

A convergence result for an Outer Approximation Scheme

ON QUADRATIC INTEGRAL EQUATIONS OF URYSOHN TYPE IN FRÉCHET SPACES. 1. Introduction

Generalized Taylor Series

J. Banasiak Department of Mathematics and Applied Mathematics University of Pretoria, Pretoria, South Africa BANACH LATTICES IN APPLICATIONS

Applicable Analysis and Discrete Mathematics available online at

Iterative common solutions of fixed point and variational inequality problems

Iterative algorithms based on the hybrid steepest descent method for the split feasibility problem

Sum of two maximal monotone operators in a general Banach space is maximal

Locally convex spaces, the hyperplane separation theorem, and the Krein-Milman theorem

Plasticity of the unit ball and related problems

The sum of two maximal monotone operator is of type FPV

Real Analysis Qualifying Exam May 14th 2016

Convergence Theorems of Approximate Proximal Point Algorithm for Zeroes of Maximal Monotone Operators in Hilbert Spaces 1

YET MORE ON THE DIFFERENTIABILITY OF CONVEX FUNCTIONS

A Concise Course on Stochastic Partial Differential Equations

Convergence theorems for a finite family. of nonspreading and nonexpansive. multivalued mappings and equilibrium. problems with application

Strong Convergence of the Mann Iteration for Demicontractive Mappings

Analysis Qualifying Exam

Polishness of Weak Topologies Generated by Gap and Excess Functionals

The Journal of Nonlinear Science and Applications

Section 45. Compactness in Metric Spaces

A Viscosity Method for Solving a General System of Finite Variational Inequalities for Finite Accretive Operators

TWO MAPPINGS RELATED TO SEMI-INNER PRODUCTS AND THEIR APPLICATIONS IN GEOMETRY OF NORMED LINEAR SPACES. S.S. Dragomir and J.J.

Real Analysis. Joe Patten August 12, 2018

Common fixed points of generalized contractive multivalued mappings in cone metric spaces

SHRINKING PROJECTION METHOD FOR A SEQUENCE OF RELATIVELY QUASI-NONEXPANSIVE MULTIVALUED MAPPINGS AND EQUILIBRIUM PROBLEM IN BANACH SPACES

Math 5052 Measure Theory and Functional Analysis II Homework Assignment 7

A MAXIMUM PRINCIPLE FOR A MULTIOBJECTIVE OPTIMAL CONTROL PROBLEM

CONVERGENCE OF THE STEEPEST DESCENT METHOD FOR ACCRETIVE OPERATORS

ON GAP FUNCTIONS OF VARIATIONAL INEQUALITY IN A BANACH SPACE. Sangho Kum and Gue Myung Lee. 1. Introduction

Transcription:

Int. J. Nonlinear Anal. Appl. 7 (2016) No. 1, 295-300 ISSN: 2008-6822 (electronic) http://dx.doi.org/10.22075/ijnaa.2015.341 On intermediate value theorem in ordered Banach spaces for noncompact and discontinuous mappings Ali Farajzadeh Department of Mathematics, Razi University, Kermanshah, 67149, Iran (Communicated by M.B. Ghaemi) Abstract In this paper, a vector version of the intermediate value theorem is established. The main theorem of this article can be considered as an improvement of the main results have been appeared in [On fixed point theorems for monotone increasing vector valued mappings via scalarizing, Positivity, 19 (2) (2015) 333-340] with containing the uniqueness, convergent of each iteration to the fixed point, relaxation of the relatively compactness and the continuity on the map with replacing topological interior of the cone by the algebraic interior. Moreover, by applying Ascoli-Arzela s theorem an example in order to show that the main theorem of the paper [An intermediate value theorem for monotone operators in ordered Banach spaces, Fixed point theory and applications, 2012 (1) (2012) 1-4] may fail, is established. Keywords: intermediate value theorem; fixed point; increasing mapping; algebraic interior; normal cone. 2010 MSC: Primary 26A25; Secondary 39B62. 1. Introduction and preliminaries As we know that the intermediate value theorem in real analysis ( especially in calculus) is one of the most important and applicable theorem and one can apply to prove fixed points of a real mapping. We recall that if f : [a, b] R is continuous mapping with f(a) < a and b < f(b) then there exists c [a, b] such that f(c) = c. Now a natural question will arise as that how can extend this fact when the real R replaced by a Banach space and the interval [a, b] of the real line by ordered interval of X. The aim of this note is to answer to the question. It is worth noting that the result of this paper can be viewed as an improvement of the main theorem given in [4]. Email address: farajzadehali@gmail.com (Ali Farajzadeh) Received: March 2015 Revised: October 2015

296 Farajzadeh The rest of this section deals with some definitions and basic results which we need in the next section. Definition 1.1. ([3, 6]) Let X be a real vector space with its zero vector θ and P X. P is called (a) Cone if it is closed under nonnegative scalar multiplication, i.e., tx P for all x P and t 0. (b) Convex if tx + (1 t)y P, (x, y, t) P P [0, 1]. (c) Pointed if P P = {θ}. Let X be a real vector space and P be a convex pointed cone of it. P induces an ordering on X as follows, x, y X, x P y y x P. It is easy to verify that the ordering P is a partial ordering; that is reflexive, antisymmetric and transitive. Also if X is a topological vector space and P is a convex pointed cone of X with nonempty interior ( that is intp ) then we can define an ordering on X using the interior of P as follows, x, y X, x intp y y x intp. Remark that the ordering induced by intp is not necessarily a partial ordering on X. If the cone P is known, for simplicity, we replace P and intp by and, respectively. Definition 1.2. ([6]) Assume that X is a real ordered vector space by a convex cone P. The cone P is said to be minihedral if sup{x, y} (sup means the least upper bound) exists for each x, y in X and is said to be strongly minihedral if sup D exists for each nonempty bounded subset D X. Definition 1.3. ([1, 2]) A convex cone P of a normed space is called normal if and only if there exists a constant k 1 such that, for all x, y X, θ x y x k y. Definition 1.4. ([3, 4]) The mapping T : X Y acting in partially ordered real vector linear spaces X and Y is called increasing if x y implies T (x) T (y). Note that if we take X = Y = R then Definition 1.4 collapses to the usual definition of an increasing mapping. Definition 1.5. ([2, 4]) Let X and Y be two topological spaces. The mapping T : X Y is called compact, if the closure of its range; that is T (X), is a compact subset of Y, where T (X) = x X T (x). We note that T is compact when T is a continuous mapping and X is compact. But there are many discontinuous mappings with non-compact domain which satisfy in Definition 1.5. For example, T (x) = 0, where x is a rational number and otherwise T (x) = 1. Theorem 1.6. ([9]). Suppose that X is Banach space, P is a normal and convex cone, and u 0, v 0 X with u 0 < v 0 ( that is, u 0 v 0 with u 0 v 0 ). Let A : [u 0, v 0 ] X be an increasing mapping and let h 0 = v 0 u 0. If one of the following assumptions holds:

On intermediate value theorem in ordered Banach spaces... 7 (2016) No. 1, 295-300 297 (i) A is a convex mapping (that is A(λx + (1 λ)y) λa(x) + (1 λ)a(y)) Au 0 Av 0 v 0 ɛh 0 for some ɛ (0, 1); u 0 and (ii) A is a concave mapping Au 0 u 0 + ɛh 0, Av 0 v 0, for some ɛ (0, 1), then A has a unique fixed point x in [u 0, v 0 ]. Moreover, for any x 0 [u 0, v 0 ], the iterative sequence {x n } given by x n = Ax n for n = 1, 2,... converges to x and satisfying x n x M(1 ɛ) n, for all n = 1, 2,... and a positive constant M independent of x 0. In 2012, Kostrykin and Oleynik [4] presented the following theorem which is an extension of Lemma 2.1 of [5] that plays a key role in [5]. Moreover, it can be considered as an important existence result of the unstable bumps in neural, Integral equations and operator theory (see, for instance, [5]). Theorem 1.7. ([4]). Let X be a real Banach space with an ordered cone K satisfying: (a) K has a nonempty interior, (b) K is normal and minihedral. Assume that there are two points in X, u u + and an increasing, compact, and continuous operator T : [u ; u + ] X. If u is a strong supersolution of T and u + is a strong subsolution, that is, T u u and u + T u +, then T has a fixed point u [u, u + ], where [u, u + ] denotes {z C([u, u + ]) : u z u + }. We denote the set of all continuous mappings from [a, b] into R ( the real line) by C([a, b]). It is a well known fact that (C([a, b]), d) is a complete metric space, where d(f, g) = sup t [a,b] f(t) g(t). Definition 1.8. Let Ω be a nonempty subset of C([a, b]). The set Ω is called: Pointwise bounded if for each x [a, b] there exists nonnegative real number m x such that f(x) m x, f Ω. Equicontinuous if for each ɛ > 0 there exists δ > 0 such that, for each t, s [a, b] with t s < δ, we have f(t) f(s) < ɛ, f Ω. The following theorem plays a key role in the next section. Theorem 1.9. (Arzela-Ascoli)([8]). A subset of C([a, b]) is compact if and only if it is pointwise bounded and equicontinuous.

298 Farajzadeh 2. Main results In this section we first show, by providing an example, that the result of Theorem 1.7 may fail. Hence there are some gaps in it. Then we will try to present the correct version of Theorem 1.7 by relaxing some assumptions of it and extending it in a general space (topological vector space) by using a new proof. The following example indicates that the result of Theorem 1.7 is not true. Example 2.1. Let X = C([0, 1]) and K = {u X; u(t) 0, t [0, 1]}. Define T : [u, u + ] X: (T u)(x) = 2u(0) + x 0 u(t)dt 2 3, (u, x) [u, u + ] [0, 1]. Let u = 0, u + = 1, Then u << u + and T (0) = 1 << 0, 1 << T (1). It is easy to check that K satisfies conditions (a) and (b) of Theorem 1.7. It follows from the inequality (T u)(x) (T u)(y) = y x u(t)dt y x, (x, y, u) [0, 1] [0, 1] T [u 0, u + ], that the set T [u, u + ] is equicontinuous and pointwise bounded. Consequently, the set T [u, u + ] as a subset of X fulfils all assumptions of Theorem 1.9 and hence it is relatively compact. So T is compact. It is straightforward to verify that T is continuous and increasing. Consequently T satisfies all the assumptions of Theorem 1.6 while it does not have any fixed point in [u, u + ], because if u is a fixed point of T then Hence 2u(0) + is a unique fixed point of T which x 0 u(t)dt 2 3 = u(x) x [0, 1]. u(x) = 2 3 ex, x [0, 1] u [u = 0, u + = 1] = {v C([0, 1]) : 0 v(x) 1, x [0, 1]}. Definition 2.2. Let S be a nonempty subset of a real linear space X. The set cor(s) = { x S : x X λ > 0 with ( x + tx) S t [0, λ]}, is called the algebraic interior of S. Remark 2.3. Let P be a convex cone in a linear space X with a nonempty algebraic interior. Then (a) cor(p ) {0 X } is a convex cone ( see, Lemma 1.12 of [3]) (b) cor(cor(s)) = cor(s), ( see, Lemma 1.9 of [3]). Note that if X is a topological vector space and S is a nonempty subset of X then the topological interior of S; that is ints, is a subset the algebraic interior of S. Moreover, there are some examples which show the inclusion may be strict. For instance, let X = C 00 = {x = (x(n)) : the set {n N; x(n) 0} is finite }

On intermediate value theorem in ordered Banach spaces... 7 (2016) No. 1, 295-300 299 and x = max n N x(n), for all x = (x(n)) C 00. It is easy to check that (C 00,. ) is a normed space. Put P = {x = (x(n)) C 00 : x(n) 1 n, ( n)}. One can verify that intc = while (α, 0, 0,...) cor(c), where 0 < α < 1. Hence the example shows that the algebraic interior is a suitable replacement of the topological interior for the case where it is empty. Further, we can relax the topological structure when we use of the algebraic interior. The next result is a correct version of Theorem 1.7 by relaxing minihedrality on the cone and replacing the topological interior of the cone by the algebraic interior. Moreover, in this case the uniqueness of the fixed point has been ensured. Theorem 2.4. Let X be a real Banach space and let P be a normal cone with nonempty algebraic interior ( i.e., cor(p ) ). Assume that K = cor(p ) {θ X }, there are two points in X, u corp u +, and an increasing convex mapping T : [u, u + ] X. If T u + K u + and u K T u, then T has a unique fixed point x [u, u + ]. Moreover each iteration Ax n = x n 1 for all n = 1, 2, 3,... with x 0 [u, u + ] converges to x. Proof. By Remark 2.3 (a), the set K is a convex cone and by the assumption u corp u +, we get h 0 = u + u cor(p ). Hence by Remark 2.3 (b) we have So there exists a positive number λ such that u + T u + cor(p ) = cor(cor(p ). u + T u + + ɛ(u + u ) cor(p ), ɛ [0, λ]. Therefore, we can choose ɛ (0, 1) such that T u + K u + ɛ(u + u ). This means that T u + K u + ɛh 0. Consequently, it follows from part (i) of Theorem 1.6 that T has a unique fixed point x and each iteration x n = T x n 1 with arbitrary x 0 [u, u + ] converges to x. This completes the proof. It worth noting that in Theorem 1.7 minihedrality of the cone is essential. While it has been relaxed in Theorem 2.4. There are many cones which are not minihedral. In the following, for instance, one of them is presented. Hence we cannot apply Theorem 1.7 in this case. Example 2.5. Assume that with X = C 1 ([ 1, 1]) = {f : [ 1, 1] R, f is continuously differentiable} f = f + f and P = {f X : f(x) 0, x [ 1, 1]}. It is easy to check that X is a Banach space and P is a convex cone but not minihedral, because sup{x, x} X. Hence we cannot apply Theorem 1.7 for X.

300 Farajzadeh Conclusion The main theorem, that is, Theorem 1.7, of [4] may fall down is shown by Example 2.1. A correct version of Theorem 1.7, by relaxing some assumptions and a new proof, is presented. Some examples in order to support the results of the article are provided. Finally, It is worth noting that Theorem 2.4 is another version of Theorem 3.5 and Theorem 3.12 of [7] by relaxing relatively compactness of the range T, having nonempty interior of the cone, and continuity of T. Moreover, advantage of Theorem 2.4 to Theorem 2.1 and Theorems 3.5, 3.12 of [7] is containing iteration method; that is each iteration convergent to the unique fixed point which is important in numerical analysis. Finally, by applying part (ii) of Theorem 1.6 and suitable modification in Theorem 2.4 we can establish a similar result as Theorem 2.4 when the mapping T is concave. References [1] L.G. Huang and X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl. 323 (2007) 1468 1476. [2] K. Deimling, Nonlinear functional analysis, Springer-Verlag, Berlin Heidelberg, 1988. [3] J. Jahn, Vector optimization, Springer-Verlag, Berlin Heidelberg, 2011. [4] V. Kostrykin and A. Oleynik, An intermediate value theorem for monotone operators in ordered Banach spaces, Fixed Point Theory Appl. 2012 (2012) 1 4. [5] V. Kostrykin and A. Oleynik, On the existence of unstable bumps in neural, Integral Equations Operator Theory 75 (2013) 445 458. [6] J.S. Vandergraft, Newton s method for convex operators in partially ordered spaces, SIAM J. Numer. Anal. 4 (1967) 406 432. [7] P. Zangenehmehr, A.P. Farajzadeh and S.M. Vaezpour, On fixed point theorems for monotone increasing vector valued mappings via scalarizing, Positivity 19 (2015) 333 340. [8] E. Zeidler, Nonlinear functional analysis and its applications I: Fixed-point theorems, Springer, New York, 1986. [9] Z. Zhang, Variational, topological, and partial order methods with their applications, Springer-Verlag, Berlin Heidelberg, 2013.