Cosmic Ray acceleration in clusters of galaxies. Gianfranco Brunetti. Istituto di Radioastronomia INAF, Bologna, ITALY

Similar documents
Turbulence & particle acceleration in galaxy clusters. Gianfranco Brunetti

Radio-bimodality in galaxy clusters and future observations at low radio frequencies: constraining the origin of giant radio halos

Dynamics of galaxy clusters A radio perspective

Uri Keshet / CfA Impact of upcoming high-energy astrophysics experiments Workshop, KAVLI, October 2008

Radio relics and magnetic field amplification in the Intra-cluster Medium

Radio emission in clusters of galaxies. An observational perspective

PoS(EXTRA-RADSUR2015)063

Gamma-ray Observations of Galaxy Clusters!

Radio Halos From Simulations And Hadronic Models I: The Coma cluster

Cosmic Rays in Galaxy Clusters: Simulations and Perspectives

Occurrence of Radio Halos in galaxy clusters Insight from a mass-selected sample Virginia Cuciti

Formation and properties of shock waves in galaxy clusters

Rise and fall of radio haloes in simulated merging galaxy clusters

Cosmic ray feedback in hydrodynamical simulations. simulations of galaxy and structure formation

Cosmic ray feedback in hydrodynamical simulations. simulations of galaxy and structure formation

PoS(EXTRA-RADSUR2015)038

arxiv: v1 [astro-ph.co] 1 Aug 2010

Galaxy Clusters with Swift/BAT

LOFAR Observations of Galaxy Clusters

Observations of diffuse radio emission in cool-core clusters

Mergers and Non-Thermal Processes in Clusters of Galaxies

Intracluster Shock Waves

arxiv:astro-ph/ v1 3 Aug 2002

MULTIWAVELENGTH OBSERVATIONS OF CLUSTERS OF GALAXIES AND THE ROLE OF CLUSTER MERGERS PASQUALE BLASI

Radio relis (and halos) in galaxy clusters

MERGERS, COSMIC RAYS, AND NONTHERMAL PROCESSES IN CLUSTERS OF GALAXIES

arxiv: v1 [astro-ph.co] 7 Sep 2010

RADIO OBSERVATIONS OF CLUSTER MERGERS

PoS(ICRC2017)283. Acceleration of Cosmic Ray Electrons at Weak Shocks in Galaxy Clusters. Hyesung Kang. Dongsu Ryu

Fermi-LAT Analysis of the Coma Cluster

High-Energy Phenomena in Galaxy Clusters

arxiv: v1 [astro-ph.he] 7 Oct 2016

Why are central radio relics so rare?

LOW FREQUENCY EMISSION IN GALAXY CLUSTERS- M ACSJ

Cosmic Rays in Galaxy Clusters Simulations and Reality

Magnetic Fields (and Turbulence) in Galaxy Clusters

Cosmic ray transport in galaxy clusters: implications for radio halos, gamma-ray signatures, and cool core heating ABSTRACT

Investigation of Magnetic Fields in a Cluster of Galaxies based on the Centimeter Wave Polarimetry

arxiv: v1 [astro-ph.he] 1 Dec 2018

Intracluster Medium Plasmas

Giant cosmic tsunamis:

Revista Mexicana de Astronomía y Astrofísica ISSN: Instituto de Astronomía México

arxiv: v1 [astro-ph.he] 26 Mar 2015

Particle Acceleration in the Universe

Alma Mater Studiorum Università degli Studi di Bologna

The role of Planck in understanding galaxy cluster radio halos

arxiv:astro-ph/ v1 19 Mar 2007

arxiv: v1 [astro-ph.he] 24 Jul 2017

Mapping the non thermal emission in Coma cluster of galaxies using the FeXXV/FeXXVI line ratio

Fundamental Physics with GeV Gamma Rays

Astronomy. Astrophysics. Radio halos in future surveys in the radio continuum

Clusters of galaxies: observational properties of the diffuse radio emission

Particle Acceleration and Radiation from Galaxy Clusters

arxiv: v1 [astro-ph.he] 10 Jun 2017

arxiv:astro-ph/ v3 9 Feb 2006

Simulating magnetic fields within large scale structure an the propagation of UHECRs

Mergers and Radio Sources in Abell 3667 and Abell 2061

A2255: the First Detection of Filamentary Polarized Emission in a Radio Halo

Enrico Fermi School Varenna Cool Cores and Mergers in Clusters Lecture 3

Gamma rays from supernova remnants in clumpy environments.! Stefano Gabici APC, Paris

DARC - DYNAMICAL ANALYSIS OF RADIO CLUSTERS

Turbulence and Magnetic Field in High-β Plasma of Intracluster Medium

Radio Continuum: Cosmic Rays & Magnetic Fields. Rainer Beck MPIfR Bonn

The Physics of Gas Sloshing in Galaxy Clusters

Literature on which the following results are based:

Tesla Jeltema. Assistant Professor, Department of Physics. Observational Cosmology and Astroparticle Physics

arxiv: v1 [astro-ph.co] 13 Jun 2013

A M 3 shock in El Gordo cluster and the origin of the radio relic

Magnetisation of Interstellar and Intergalactic Media: The Prospects of Low-Frequency Radio Astronomy DFG Research Unit

Astronomy. Astrophysics. 153 MHz GMRT follow-up of steep-spectrum diffuse emission in galaxy clusters

Extragalactic Gamma Ray Excess from Coma Supercluster Direction

Constraints on diffuse gamma-ray emission from structure formation processes in the Coma cluster Zandanel, F.; Ando, S.

c/o IRA Area Ricerca CNR via Gobetti autobus Dip.to Astronomia. appuntamento via consigliato!!!

Understanding the Physics and Observational Effects of Collisions between Galaxy Clusters

Two Topics: Prospects of detection of Hard X- rays from I. Active Cool Stars, II. Clusters of galaxies. K.P. Singh (TIFR, Mumbai)

Shock Acceleration in the Cluster of Galaxies ACO2163

Observations of Magnetic Fields in Intracluster Medium. Govoni Federica INAF Osservatorio Astronomico di Cagliari

Cosmic Rays, Photons and Neutrinos

PDF hosted at the Radboud Repository of the Radboud University Nijmegen

Gamma ray emission from supernova remnant/molecular cloud associations

arxiv: v1 [astro-ph.he] 11 Dec 2016

Nonthermal Emission in Starburst Galaxies

VHE emission from radio galaxies

Cosmological Shocks and Their Signatures

Cosmological Evolution of Blazars

Remnants and Pulsar Wind

The AGN Jet Model of the Fermi Bubbles

Galaxy Clusters in radio

Gamma-rays from black-hole binaries (?)

The High-Energy Interstellar Medium

On the equipartition of thermal and non-thermal energy in. clusters of galaxies

arxiv: v1 [astro-ph.he] 10 Feb 2015

arxiv: v1 [astro-ph.co] 9 Mar 2015

High-Energy Plasma Astrophysics and Next Generation Gamma-Ray Observatory Cherenkov Telescope Array

Radio Ghosts. T.A. Enßlin 1,2

Constraints on physics of gas and dark matter from cluster mergers. Maxim Markevitch (SAO)

Cluster magnetic fields through the study of polarized radio halos in the SKA era

CTA as a γ-ray probe for dark matter structures: Searching for the smallest clumps & the largest clusters

Pulsar Wind Nebulae as seen by Fermi-Large Area Telescope

Fermi-Large Area Telescope Observations of Pulsar Wind Nebulae and their associated pulsars

Transcription:

Cosmic Ray acceleration in clusters of galaxies Gianfranco Brunetti Istituto di Radioastronomia INAF, Bologna, ITALY

Outline NT components (CRe,CRp,B) in galaxy clusters : observations Physics and dynamics of CR in galaxy clusters Present constraints on CR protons **new** Physics of NT Mpc scale diffuse radio emission from galaxy clusters: Relics & Halos Shocks and turbulent acceleration in clusters **Future** at low radio frequencies & gamma rays

Clusters of galaxies: the largest gravitational structures in the Universe (M 10 14-10 15 M sun, R V 2-3 Mpc) Galaxy cluster mass: Coma Cluster Barions 10% of stars in galaxies 15-20% of hot diffuse gas Dark Matter 70%

Clusters of galaxies: the largest gravitational structures in the Universe (M 10 14-10 15 M sun, R V 2-3 Mpc) n 10-3 cm -3 Galaxy cluster mass: 30-300 galaxies Coma Cluster T 10 7-10 8 K Barions 10% of stars in galaxies 15-20% of hot diffuse gas Dark Matter 70%

Coma Cluster 1 Mpc Feretti +al.1998

Coma Cluster Bridge Radio Halo Radio Relic 1 Mpc Feretti +al.1998

Coma Cluster: high energy NT Wik et al. 2009 Radio Halo Radio Relic Fusco-Femiano et al.99 Rephaeli et al.99 Radio Relic Ajello et al. 2008; Fujita et al. 2009; Wik et al 2009; Eckert et al. 2008; Perez-Torres et al. 2009; Colafrancesco & Marchegiani 2009; Nevalainen et al 2009, Murgia et al 10, Wik et al 11

Inverse Compton Emission from GC?? Syn B IC ph (CMB) L rad -> (U e, U B ) -> K e B 2 L HE -> (U e, U ph ) -> K e U ph L rad /L HE U B /U ph _ -> B B > 0.1-0.2 μg

Govoni et al 05 Bonafede et al 2010 B in Galaxy Clusters (also Bruggen,Dolag,Neronov lectures) B few μg Λc few-50 kpc RM probe turbulent motions in the IGM Clarke et al 2001 Murgia et al 2004

Injection & Dynamics of CR in GC Cosmological Shocks (e.g. Sarazin 1999, Miniati et al. 2001, Blasi 2001, Gabici & Blasi 2003, Ryu et al. 2003, Pfrommer et al. 2006, 2008, Hoeft & Bruggen 2007, Skillman et al. 2008, Vazza, Brunetti, Gheller 2009, 2010, etc..) AGN, Galactic Winds (e.g. Ensslin et al. 1998; Voelk & Atoyan 1999) Reconnection (turbulent.. Lazarian & Vishniac 99) (e.g. Brunetti & Lazarian 2011, DeGouveia dal Pino et al 2011,.. )

Physics of CR Leptons (de/dt) / m e c 2 = b = rate of energy losses in units of m e c 2 Photon Collisions Particle Collisions

Physics of CR Leptons (de/dt) ~ E / Time ~ m e c 2 b The life-time of electrons depends on quantities that can be measured

Physics of CR Hadrons CR protons more energetics than thermal electrons: Coulomb scattering X m = like leptons Collisions between CR & thermal protons ~30 Gyrs!

Das Bild kann zurzeit nicht angezeigt werden. Physics of Cosmic Rays D(GeV) 10 28-10 29 cm 2 /s << 10 31 cm 2 /s (Schlickeiser +al 1987, Blasi+Colafrancesco 1999, GB +al 2011 ) Diffusion time CR are confined in GC Voelk et al 1996; Berezinsky, Blasi, Ptuskin 1997; CRe CRp CR protons are long living and accumulated Voelk et al 1996; Berezinsky, Blasi, Ptuskin 1997; Ensslin et al 1998; Blasi, Gabici, Brunetti 07 CR electrons are short living particles and accumulated at γ 100-300 Sarazin 1999; Petrosian 2001;

Acceleration & transport of CR : simulations Pfrommer et al. 2007, 08 : simulations of CR+IGM +CR transport/advection - Acceleration efficiency is the free parameter - Diffusion time >> advection time

Radiation from Cosmic Rays in GC B Syn Miniati 2003 CRe ph IC FERMI CRp

Radiation from Cosmic Rays in GC B Syn Wolfe +al 2008 CRe ph IC p-p p-γ CRp

Limits from gamma rays EGRET L γ,π ~ f(δ) <E CR > <E th /T> V γ Reimer +al. 2003; Pfrommer & Ensslin 2004 H.E.S.S. A 85 : Ecr/Eth < 6-15% (hard spectra) Coma : Ecr/Eth < 12% VERITAS (Perkins +al. 2008) Coma : Ecr/Eth < 5-10% (hard spectra) Aharonian + al. 2009 MAGIC (Aleksic +al. 2010) Perseus : Ecr/Eth < 4% (hard spectra)

Gamma rays : energy content of CRp Ackermann et al 2010

CRp: limits from Radio Reimer et al 04, Brunetti et al. 07,08 L γ,π ~ f γ (δ) <E CR > <E th /T> V γ L R ~ f R (δ)<e CR > <E th /T> <B δ/2+1 /(B 2 +B cmb2 )>V R δ=2.1 δ=2.9 Assuming that secondary particles are injected in the IGM, their synchrotron emission should be smaller than upper limits to the diffuse radio emission. limits on : (B, E CRp ), δ N(p)=K p -δ

CRp: limits from Radio Reimer et al 04, Brunetti et al. 07,08 L γ,π ~ f γ (δ) <E CR > <E th /T> V γ L R ~ f R (δ)<e CR > <E th /T> <B δ/2+1 /(B 2 +B cmb2 )>V R δ=2.1 δ=2.9 Assuming that secondary particles are injected in the IGM, their synchrotron emission should be smaller than upper limits to the diffuse radio emission. limits on : (B, E CRp ), δ N(p)=K p -δ

Energy content of CRp RM EGRET FERMI Reimer et al. (2003) Reimer et al. (2004) Pfrommer & Ensslin (2004) Perkins et al. (2006) Brunetti et al. (2007) Brunetti et al. (2008) Perkins et al. (2008) Aharonian et al. (2008 a,b) Aleksic et al. (2009) Ackermann et al (2010) ASKAP/EMU < > Gamma + Radio observations independently suggest that non-thermal components are dynamically NOT important (% level) Additional limits from cluster dynamics (e.g. Churazov et al. 2008; Lagana et al 2009) constrain E CR +E B +E turb below 10% ( < 30% ) Ethermal.

Non-thermal emission from GC Both Halos & Relics have steep spectrum, F(ν)=F o ν -, with 1.3 Abell 754 Henry et al. 2004 Abell 2163 Feretti et al. 2001 Abell 3376 Bagchi et al. 2005 Radio Relics Radio Halos

Non-thermal emission from GC Both Halos & Relics have steep spectrum, F(ν)=F o ν -, with 1.3 Unpolarised, follow the X-ray brightness (originate from cluster central regions) Polarised, no correlation with X-ray brightness (form in cluster outskirts) Abell 754 Henry et al. 2004 Abell 2163 Feretti et al. 2001 Abell 3376 Bagchi et al. 2005 Radio Relics Radio Halos

Connecting LSS formation and merger history of IGM NT-physics B? SHOCKS accelerate e ±, p cr clusters increase their mass via merger with smaller subclusters e ±, p TURBULENCE reaccelerates fossil e ± and secondaries e ± on Mpc scales (eg., Brunetti et al. 2001, 2004, 2009; Petrosian 2001; Miniati et al. 2001; Fujita et al. 2003; Ryu et al. 2003; Gabici & Blasi 2003; Berrington & Dermer 2003; Pfrommer & Ensslin 2004; Brunetti & Blasi 2005; Cassano & Brunetti 2005; Cassano et al. 2006; Brunetti & Lazarian 2007; Hoeft & Bruggen 2007; Pfrommer et al. 2008; Petrosian & Bykov 2008, ) p cr p th π 0 γ rays π ± e ±?

Connecting LSS formation and merger history of IGM NT-physics B Shocks: acceleration or reacceleration? e ±, p p cr p th SHOCKS accelerate e ±, p cr π 0 γ rays? clusters increase their mass via merger with smaller subclusters TURBULENCE reaccelerates fossil e ± and secondaries e ± on Mpc scales (eg., Brunetti et al. 2001, 2004, 2009; Petrosian 2001; Miniati et al. 2001; Fujita et al. 2003; Ryu et al. 2003; Gabici & Blasi 2003; Berrington & Dermer 2003; Pfrommer & Ensslin 2004; Brunetti & Blasi 2005; Cassano & Brunetti 2005; Cassano et al. 2006; Brunetti & Lazarian 2007; Hoeft & Bruggen 2007; Pfrommer et al. 2008; Petrosian & Bykov 2008, ) π ± e ±?

Connecting LSS formation and merger history of IGM NT-physics B Shocks: acceleration or reacceleration? e ±, p p cr p th SHOCKS accelerate e ±, p cr π 0 γ rays? clusters increase their mass via merger with smaller subclusters TURBULENCE reaccelerates fossil e ± and secondaries e ± on Mpc scales Turbulence? (eg., Brunetti et al. 2001, 2004, 2009; Petrosian 2001; Miniati et al. 2001; Fujita et al. 2003; Ryu et al. 2003; Gabici & Blasi 2003; Berrington & Dermer 2003; Pfrommer & Ensslin 2004; Brunetti & Blasi 2005; Cassano & Brunetti 2005; Cassano et al. 2006; Brunetti & Lazarian 2007; Hoeft & Bruggen 2007; Pfrommer et al. 2008; Petrosian & Bykov 2008, ) π ± e ±?

Connecting LSS formation and merger history of IGM NT-physics B Shocks: acceleration or reacceleration? e ±, p p cr p th SHOCKS accelerate e ±, p cr π 0 γ rays? clusters increase their mass via merger with smaller subclusters TURBULENCE reaccelerates fossil e ± and secondaries e ± on Mpc scales Turbulence? (eg., Brunetti et al. 2001, 2004, 2009; Petrosian 2001; Miniati et al. 2001; Fujita et al. 2003; Ryu et al. 2003; Gabici & Blasi 2003; Berrington & Dermer 2003; Pfrommer & Ensslin 2004; Brunetti & Blasi 2005; Cassano & Brunetti 2005; Cassano et al. 2006; Brunetti & Lazarian 2007; Hoeft & Bruggen 2007; Pfrommer et al. 2008; Petrosian & Bykov 2008, ) π ± e ± Relevance of secondary particles??

Vazza et al 2009 Cosmological Shocks Natural consequence of the hierarchical process of LSS formation

Shocks in Galaxy Clusters Miniati et al. 2001; Ryu et al. 2003; Pfrommer et al. 2006,08; Hoeft & Bruggen 2007; Skillman et al. 2008,11 Vazza et al. 2009, 11 Vazza, Brunetti, Gheller 2009

Shocks in Galaxy Clusters Shocks are responsible for the heating of the IGM Markevitch et al 05

Shock Relic connection Bagchi+al. 2002, Science van Weeren+al. 2010, Science Abell 3667

Shock Acceleration: Radio Relics (Ensslin et al 1998, Roettiger et al. 1999, Sarazin 1999, ) Abell 3667 -δ l R V d τe(ν) 100 kpc time/distance Log N(γ) Log(γ)

Width of Relics & constraints on B Markevitch et al 2005 γ c syn (ν/b) 1/2 Width of Relic V d c s M(M 2 +3)/4M 2

Van Weeren et al., 10 From Heft, conference in Bangalore Diffuse Relativistic Plasmas: RRI

Mach numbers in galaxy clusters Vazza, Brunetti, Gheller 2009 Semi-analytics : Gabici & Blasi 2003 Berrington & Dermer 2003 some agreement Pfrommer et al. 2008

Uncertainties in CR acceleration Vazza, Brunetti, Gheller 2009 Kang & Jones 2007 Pfrommer et al. 2006, 08 SN

CR acceleration or REacceleration? Kang & Jones 2007 Merger shocks have M=1.5-3. Reacceleration of pre-existing relativistic electrons at these shocks is efficient (eg. Kang & Ryu 11) Galaxy clusters are unique labs Kang & Jones 2002 to study particle acceleration at weak & LS shocks

Radio Halos as labs for CR acceleration in GC Abell 2163 Feretti et al. 2001 L 2 ~ D x t 1 Mpc diffusion (Mpc) T diff (~10 10 yr) >> T cool (~10 8 yr) (eg. Jaffe 1977) in situ (re)acceleration or injection of CR electrons electrons

Statistics of Radio Halos Cassano et al 08 NVSS GMRT 1/10 1/3? Cassano et al.2008 NVSS data (from Giovannini et al. 1999) and deep GMRT observations. 0.41±0.11 for L x >10 44.9 erg/s 0.08±0.04 for L x <10 44.9 erg/s 1/3 1/10 (Venturi et al. 2007, 2008; Cassano et al.2008)

Cluster mergers - radio halos connection Venturi et al 2007,08 Brunetti et al 2007,09 Cassano et al 2010 ApJ 721 L82 The radio bimodality has a correspondence in terms of dynamical segregation

Das Bild kann zurzeit nicht angezeigt werden. Origin of Radio Halos: turbulence? REacceleration models (eg Brunetti et al 01, Petrosian 01, ) A mechanisms distributed on Mpc scales channels a fraction of the gravitational energy dissipated during mergers into high energy particles Turbulence?? Brunetti et al 2007 Venturi et al 2007,08 protons electrons

Radio Halos : are they generated by inefficient mechanism of CRe acceleration? (ν) Schlickeiser +al. 1987 (Coma) Thierbach et al. 2003

Radio Halos : are they generated by inefficient mechanism of CRe acceleration? (ν) Schlickeiser +al. 1987 (Coma) Evidence of break in the spectrum of the emitting electrons at energies of few GeV τ acc τ loss Re-acceleration Thierbach et al. 2003 acceleration losses

Radio Halos : are they generated by inefficient mechanism of CRe acceleration? (ν) Schlickeiser +al. 1987 (Coma) Acceleration time-scale 10 8 years Re-acceleration Thierbach et al. 2003 acceleration losses

Radio Halos : are they generated by inefficient mechanism of CRe acceleration? (ν) Schlickeiser +al. 1987 (Coma) Acceleration time-scale 10 8 years eg., classical Fermi II Thierbach et al. 2003 > 10 7 yrs

Second order Fermi Mechanisms (Fermi 1949) u u + - λ Frequency of collisions: Energy gain per collisions:

transport diffusion

Stochastic particle acceleration due to particle-mode coupling (Book reviews : Melrose 1980, Berezinskii et al 1990, Schlickeiser 2002) Acceleration is sensitive to our model of turbulence Stochastic acceleration of fast particles diffusing in turbulence (Ptuskin 1988)

Stochastic particle acceleration due to particle-mode coupling (Book reviews : Melrose 1980, Berezinskii et al 1990, Schlickeiser 2002) Gyroresonance Acceleration is sensitive to our model of turbulence Stochastic acceleration of fast particles diffusing in turbulence (Ptuskin 1988) Transit Time Damping (TTD) ω-k // v // =0 Interaction btw magnetic moment of particle and parallel gradient of B Suitable for IGM! Isotropic fast modes (Cassano & Brunetti 05, Yan et al 10, Brunetti & Lazarian 07, 11)

Das Bild kann zurzeit nicht angezeigt werden. Waves spectra Primary electrons Proton spectra Secondary electrons

Das Bild kann zurzeit nicht angezeigt werden. Spectra of radio halos & turbulence Steepening frequency Χ 1/τ acc less efficient Mergers between M<10 15 M sun Big jumps = major mergers Small jumps = minor mergers Mergers between M>10 15 M sun more efficient 0.3 1.4 GHz

Observed spectra of radio halos & turbulence Cassano, GB, Setti (2006) Steepening frequency Χ 1/τ acc less efficient Radio Halos with very steep spectrum in the classical radio band must exist 0.3 1.4 GHz

Radio Power Turbulent acceleration? GMRT 240 MHz Brunetti +al 2008, Nature 455, 944 =1.9 N(E)=k E -4.8 =1.5 E e =3-5 GeV Acceleration time-scale 2.5 x 10 8 years Frequency Dallacasa et al 2009

LOFAR Cassano et al 2010

Gamma rays : energy content of CRp & origin of Radio Halos Jeltema & Profumo 2010 RM L γ,π ~ f γ (δ) <E CR > <E th /T> V γ < > L R ~ f R (δ)<e CR > <E th /T> <B δ/2+1 /(B 2 +B cmb2 )>V R L R / L γ,π -> <B δ/2+1 /(B 2 +B cmb2 )> Also Donnert et al 10, Brunetti et al

Bonafede et al 2010 Turbulent models and Coma SED E tur 10 % E th E CR = 3 % E th @k -1 ~100 kpc (flat profile) Suzaku Brunetti & Lazarian 11 NHXM, ASTRO-H turbulence EGRET FERMI CTA secondaries

UHEp-γ Inoue et al 05 Additional processes Suzaku NHXM, ASTRO-H EGRET FERMI Pinzke & Pfrommer 10 CTA If B is smaller than that estimated from RM (reasonable?) more gamma rays