Proton decay and neutrino astrophysics with the future LENA detector

Similar documents
Potential of the large liquid-scintillator detector LENA in particle and astrophysics

A multipurpose detector for low energy

Workshop Towards Neutrino Technologies July Prospects and status of LENA

Detectors for astroparticle physics

The LENA Neutrino Observatory

Solar Neutrinos: Status and Prospects. Marianne Göger-Neff

Other Physics with Geo-Neutrino Detectors

LENA. Investigation of Optical Scintillation Properties and the Detection of Supernovae Relic Neutrinos. M. Wurm. January 18, 2006 LENA. M.

Review of Solar Neutrinos. Alan Poon Institute for Nuclear and Particle Astrophysics & Nuclear Science Division Lawrence Berkeley National Laboratory

LOW ENERGY SOLAR NEUTRINOS WITH BOREXINO. Lea Di Noto on behalf of the Borexino collaboration

Results on geoneutrinos at Borexino experiment. Heavy Quarks and Leptons Yamagata Davide Basilico

arxiv:hep-ph/ v1 4 Oct 2006

Neutrino Applications

1. Introduction on Astroparticle Physics Research options

LENA Scintillator Development

Outline. (1) Physics motivations. (2) Project status

Astroparticle physics

Neutrino Physics with SNO+ Freija Descamps for the SNO+ collaboration

Liquid Scintillator Technology Tobias Lachenmaier Universität Tübingen

The Factors That Limit Time Resolution for Photon Detection in Large Cherenkov Detectors

Astroparticle physics

PHY326/426 Dark Matter and the Universe. Dr. Vitaly Kudryavtsev F9b, Tel.:

Astroparticle physics

Overview of Scintillation Systems

Low Energy Neutrino Astronomy and Results from BOREXINO

Monte Carlo Simulations for Future Geoneutrino Detectors

1. Neutrino Oscillations

Neutrino Oscillations

KamLAND. Studying Neutrinos from Reactor

Monte Carlo Study of the Fast Neutron Background in LENA

WHY DO SOLAR NEUTRINO EXPERIMENTS BELOW 1 MEV? a

Neutrino Oscillations

Neutrinos and Supernovae

Neutrino Sources in the Universe

arxiv: v1 [physics.ins-det] 14 Jan 2016

Background Neutron Studies for Coherent Elastic Neutrino-Nucleus Scattering Measurements at the SNS

Search for Sterile Neutrinos with the Borexino Detector

Neutrino Physics: Lecture 1

Oak Ridge National Laboratory, TN. K. Scholberg, Duke University On behalf of the COHERENT collaboration August 2, 2017 DPF 2017, Fermilab

Status of Solar Neutrino Oscillations

XMASS: a large single-phase liquid-xenon detector

Diffuse SN Neutrino Background (DSNB)

Scintillator phase of the SNO+ experiment

Observation of flavor swap process in supernova II neutrino spectra

Direct dark matter search using liquid noble gases

Supernova Neutrinos in Future Liquid-Scintillator Detectors

Neutrino Oscillations and the Matter Effect

Solar spectrum. Nuclear burning in the sun produce Heat, Luminosity and Neutrinos. pp neutrinos < 0.4 MeV

Introduction Core-collapse SN1987A Prospects Conclusions. Supernova neutrinos. Ane Anema. November 12, 2010

UNO: Underground Nucleon Decay and Neutrino Observatory

Neutrino Experiments: Lecture 2 M. Shaevitz Columbia University

Feasibility of a new polarized active detector for low-energy ν

11 Neutrino astronomy. introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1

Neutrino June 29 th Neutrino Probes of Extragalactic Supernovae. Shin ichiro Ando University of Tokyo

Solar Neutrinos in Large Liquid Scintillator Detectors

Paolo Agnes Laboratoire APC, Université Paris 7 on behalf of the DarkSide Collaboration. Dark Matter 2016 UCLA 17th - 19th February 2016

PoS(FPCP2017)024. The Hyper-Kamiokande Project. Justyna Lagoda

Overview about the Work with Liquid Scintillators

USING NEUTRINOS TO STUDY THE EARTH. Nikolai Tolich University of Washington

Metallicities in stars - what solar neutrinos can do

Neutrino Experiments with Reactors

Results from Borexino 26th Rencontres de Blois

Neutrino Physics: an Introduction

Neutrino mixing II. Can ν e ν µ ν τ? If this happens:

KamLAND. Introduction Data Analysis First Results Implications Future

Neutrinos: Yesterday, Today and Tomorrow. Stanley Wojcicki SLAC Summer Institute 2010 August 13, 2010

Status and Neutrino Oscillation Physics Potential of the Hyper-Kamiokande Project in Japan

Lessons from Neutrinos in the IceCube Deep Core Array

Oklahoma State University. Solar Neutrinos and their Detection Techniques. S.A.Saad. Department of Physics

NEUTRINO OSCILLATION EXPERIMENTS AT NUCLEAR REACTORS

Coherent Neutrino-Nucleus Scattering Using the DAEdALUS Cyclotron(s) and a CLEAR-like Detector

Recent Discoveries in Neutrino Physics

Recent results from Super-Kamiokande

Neutrino bounds on dark matter. Alejandro Ibarra Technische Universität München

4p 4 He + 2e + +2ν e. (1)

Neutrinos in Astrophysics and Cosmology

PHYS 5326 Lecture #6. 1. Neutrino Oscillation Formalism 2. Neutrino Oscillation Measurements

Recent results from Borexino Gemma Testera INFN Genova TAUP 2015 September 7th, 2015

Gadolinium Doped Water Cherenkov Detectors

Modane underground laboratory (Fréjus)

PoS(NOW2016)003. T2K oscillation results. Lorenzo Magaletti. INFN Sezione di Bari

Correlated Background measurement in Double Chooz experiment

Damping signatures in future neutrino oscillation experiments

Search for Astrophysical Neutrino Point Sources at Super-Kamiokande

Analyzing Data. PHY310: Lecture 16. Road Map

Supernova Neutrino Detectors: Current and Future. Kate Scholberg, Duke University June 24, 2005

Astrophysical Nucleosynthesis

Neutrino oscillation experiments: Recent results and implications

MACRO Atmospheric Neutrinos

WbLS measurements at BNL

High-energy neutrino detection with the ANTARES underwater erenkov telescope. Manuela Vecchi Supervisor: Prof. Antonio Capone

The Double Chooz reactor neutrino experiment

UNIT1: Experimental Evidences of Neutrino Oscillation Atmospheric and Solar Neutrinos

Sterile Neutrinos with WbLS! detector. Jelena Maricic! University of Hawaii at Manoa! May 17, 2014

arxiv:hep-ex/ v1 15 Aug 2006

PoS(NEUTEL2015)009. Recent Results from Super-Kamiokande. Masayuki Nakahata for the Super-Kamiokande collaboration

Search for Lepton Number Violation at LHCb

Doojin Kim University of Wisconsin, WI November 14th, 2017

Probing New Physics with Astrophysical Neutrinos

Neutrino oscillation physics potential of Hyper-Kamiokande

Transcription:

Proton decay and neutrino astrophysics with the future LENA detector Teresa Marrodán Undagoitia tmarroda@ph.tum.de Institut E15 Physik-Department Technische Universität München Paris, 11.09.08

Outline 1 LENA physics and design 2 Proton decay and particle physics in LENA 3 Neutrino astronomy 4 Liquid scintillator measurements 5 Summary

Outline 1 LENA physics and design 2 Proton decay and particle physics in LENA 3 Neutrino astronomy 4 Liquid scintillator measurements 5 Summary

Low Energy Neutrino Astronomy

LENA Particle physics Neutrino astronomy Measurements Summary Pre-feasibility study: Pyhäsalmi site -> Talk by Guido Nuijten Studies for other sites: on-going within LAGUNA DS

Outline 1 LENA physics and design 2 Proton decay and particle physics in LENA 3 Neutrino astronomy 4 Liquid scintillator measurements 5 Summary

Proton decay Theoretically favored modes p e + π 0 p K + ν -> clear signature in liquid scintillators Predicted lifetimes: τ 10 34 y Super-Kamiokande best limits: τ(p e + π 0 ) 5.4 10 33 y (90% C.L.) τ(p K + ν) 2.3 10 33 y (90 % C.L.)

Free proton decay p K + ν T (K + ) = 105 MeV K + µ + ν µ 63.43% T (µ + ) = 152 MeV τ(k + ) = 12.8 ns K + π + π 0 21.13% T (π + ) = 108 MeV T (π 0 ) = 110 MeV

Free proton decay p K + ν T (K + ) = 105 MeV K + µ + ν µ 63.43% T (µ + ) = 152 MeV τ(k + ) = 12.8 ns K + π + π 0 21.13% T (π + ) = 108 MeV T (π 0 ) = 110 MeV

Background rejection Pulse-shape analysis on the risetime proton decay efficiency of 65%

Energy spectrum (180 pe/mev) Two peaks: Kaon + Muon: 257 MeV Kaon + Pions: 459 MeV Efficiency: ε E = 0.995 Included: protons from 12 C Potential of LENA (10 y measuring time) For Superkamiokande current limit: τ = 2.3 10 33 y o About 40 events in LENA and 1 background Limit at 90% (C.L) for no signal in LENA: o τ > 4.1 10 34 y with ɛ = 65% Phys. Rev. D 72, 075014 (2005)

Proton decay p e + π 0 First calculation: Good energy resolution of LS (< 1%) Narrow energy cut: B < 1 event/y Low efficiency (ɛ =12%) Achievable sensitivity in 1 year: τ few 10 32 y Possible improvement: background discrimination via tracking fast scintillator and electronics required

Reactor neutrinos with LENA S. T. Petcov and T. Schwetz, Phys. Lett. B642, 487 (2006) Determination of θ 12 and m 2 12 For the Fréjus location After one year measuring time, 3σ precision on oscillation parameters: 20% on θ 12 and 3% on m 2 12 J. Kopp et al., JHEP 01, 053 (2007) Using a mobile ν e source (e.g. a nuclear powered ship) For an underwater detector location sin 2 2θ 13 < 0.004 after about 3 years

Indirect dark matter search S. Palomares-Ruiz and S. Pascoli, Phys. Rev. D 77, 025025 (2008) Annihilation of light WIMPs χχ νν ν e energy spectrum in 10 y Clear signature of ν e in liquid scintillator Background from reactor, atmospheric and diffuse supernove neutrinos

Outline 1 LENA physics and design 2 Proton decay and particle physics in LENA 3 Neutrino astronomy 4 Liquid scintillator measurements 5 Summary

Supernova detection 8 M (3 10 53 erg) at D = 10 kpc (galactic center) In LENA detector: 15000 events Possible reactions in liquid scintillator ν e + p n + e + ; n + p d + γ 7 500-13 800 ν e + 12 C 12 B + e + ; 12 B 12 C + e + ν e 150-610 ν e + 12 C e + 12 N; 12 N 12 C + e + + ν e 200-690 ν x + 12 C 12 C + ν x ; 12 C 12 C + γ 680-2 070 ν x + e ν x + e (elastic scattering) 680 ν x + p ν x + p (elastic scattering) 1 500-5 700 Diploma thesis by J.M.A. Winter (TU München)

Diffuse Background of Supernovae Neutrinos ν e -neutrino spectrum In LENA detector: (44 kt f.v.) ν e + p n + e + Event rate in 10 y: LL: 110 events TBP: 60 events (discrimination power at > 2 σ ) M. Wurm et al., Phys. Rev. D75 023007 (2007) Information about Star Formation Rate for (0 < z < 1)

Solar neutrinos Rates of solar neutrino events In the LENA fiducial volume: 18 10 3 m 3 Borexino experiment -> First 7 Be neutrino measurement 7 Be ν s: 5400 d 1 Small time fluctuations pep ν s: 150 d 1 Information about the pp-flux Solar luminosity in ν s CNO ν s: 210 d 1 Important for heavy stars 8 B ν s: CC on 13 C: 360 y 1

Geoneutrinos Unexplained source of heat flow on Earth Unknown contribution of natural radioactivity How are 238 U, 232 Th distributed in core, mantle and crust? In liquid scintillator: ν e + p n + e + K. Hochmuth et al., Astropart. Phys. 27 (2007) 21 In LENA detector: (400-4000) events/y (Scaling KamLAND results) 238 U/ 232 Th separation due to spectral form

Outline 1 LENA physics and design 2 Proton decay and particle physics in LENA 3 Neutrino astronomy 4 Liquid scintillator measurements 5 Summary

Fluorescence decay-time measurements Motivation: PD identification Photon counting method 54 Mn source: 834 kev γ s PMT s time jitter: σ = 0.9 ns

LENA Particle physics Neutrino astronomy Measurements Summary Scintillator spectra: UV-Lamp UV-radiation: D2 lamp Spectroscopy of the emitted light Ocean optics spectrometer

Light propagation Scattering length λ s 15 m Angle dependence of the scattered light Study of polarized and unpolarized light Attenuation length λ 10 m Effects of absorption and scattering in the propagation 1 λ = 1 λ s + 1 λ a Planned measurement: Scintillator quenching R&D on liquid scintillators -> Talk by Christian Buck

Outline 1 LENA physics and design 2 Proton decay and particle physics in LENA 3 Neutrino astronomy 4 Liquid scintillator measurements 5 Summary

Summary Lena physics Good sensitivity for proton decay via p K + ν Reactor neutrinos and indirect DM search Supernova neutrinos Solar neutrino measurements Liquid scintillator developments Experiments to light production: fluorescence and spectroscopy Study of light propagation: scattering and attenuation lengths