Chapter 3. FET Amplifiers. Spring th Semester Mechatronics SZABIST, Karachi. Course Support

Similar documents
Chapter7. FET Biasing

CHAPTER 3: TRANSISTOR MOSFET DR. PHAM NGUYEN THANH LOAN. Hà Nội, 9/24/2012

FET Small-Signal Analysis

JFET Operating Characteristics: V GS = 0 V 14. JFET Operating Characteristics: V GS = 0 V 15

Chapter 6: Field-Effect Transistors

EE105 Fall 2014 Microelectronic Devices and Circuits

ECE 523/421 - Analog Electronics University of New Mexico Solutions Homework 3

6.012 Electronic Devices and Circuits Spring 2005

Lecture 11: J-FET and MOSFET

CLASS 12&13 JFET PARAMETERS AND BIASING

Homework Assignment 09

Chapter 5. BJT AC Analysis

Chapter 13 Small-Signal Modeling and Linear Amplification

ECE 546 Lecture 11 MOS Amplifiers

EE 330. Lecture 35. Parasitic Capacitances in MOS Devices

Circle the one best answer for each question. Five points per question.

SD2902. RF POWER TRANSISTORS HF/VHF/UHF N-CHANNEL MOSFETs

ECE-342 Test 3: Nov 30, :00-8:00, Closed Book. Name : Solution

Vidyalankar S.E. Sem. III [EXTC] Analog Electronics - I Prelim Question Paper Solution

Lecture 13 MOSFET as an amplifier with an introduction to MOSFET small-signal model and small-signal schematics. Lena Peterson

CHAPTER.4: Transistor at low frequencies

Chapter 4 Field-Effect Transistors

(Refer Slide Time: 1:49)

Lecture 10 MOSFET (III) MOSFET Equivalent Circuit Models

TPC8116-H TPC8116-H. High Efficiency DC/DC Converter Applications Notebook PC Applications Portable Equipment Applications CCFL Inverter Applications

Investigation of the Thermal Noise of MOS Transistors under Analog and RF Operating Conditions

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Homework Assignment 08

Lecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET:

Microelectronic Circuit Design 4th Edition Errata - Updated 4/4/14

Maximum Ratings, at T j = 25 C, unless otherwise specified Parameter Symbol Value Unit Continuous drain current I D. I D puls 0.68.

Lecture 18. Common Source Stage

AOP606 Complementary Enhancement Mode Field Effect Transistor

Lecture 24 Multistage Amplifiers (I) MULTISTAGE AMPLIFIER

Chapter 9 Frequency Response. PART C: High Frequency Response

ID # NAME. EE-255 EXAM 3 April 7, Instructor (circle one) Ogborn Lundstrom

Preliminary data. Maximum Ratings,at T j = 25 C, unless otherwise specified Parameter Symbol Value Unit Continuous drain current I D.

AO4620 Complementary Enhancement Mode Field Effect Transistor

DISCRETE SEMICONDUCTORS DATA SHEET. BLF246 VHF power MOS transistor Oct 21. Product specification Supersedes data of September 1992

Advanced Current Mirrors and Opamps

TOSHIBA Field-Effect Transistor Silicon P-Channel MOS Type SSM3J117TU. Characteristic Symbol Test Condition Min Typ. Max Unit

BSS123. Rev K/W. R thja

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (π-mosⅦ) TK6A50D

Monolithic N-Channel JFET Dual

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (π MOSIII) 2SK2610

DISCRETE SEMICONDUCTORS DATA SHEET. BLF245 VHF power MOS transistor

TrenchT2 TM Power MOSFET

Practice 3: Semiconductors

Lecture 12: MOSFET Devices

Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET)

EECS 105: FALL 06 FINAL

Lecture 37: Frequency response. Context

DISCRETE SEMICONDUCTORS DATA SHEET. BLF145 HF power MOS transistor

1/13/12 V DS. I d V GS. C ox ( = f (V GS ,V DS ,V SB = I D. + i d + I ΔV + I ΔV BS V BS. 19 January 2012

ECE 342 Electronic Circuits. 3. MOS Transistors

TOSHIBA Field Effect Transistor Silicon P Channel MOS Type (U-MOS III) TPCF8102

Biasing the CE Amplifier

Preliminary data. Type Package Ordering Code Tape and Reel Information BSS 192 P SOT89 Q67042-S4168 -

Two-Port Noise Analysis

EE40 Lec 20. MOS Circuits

5. EXPERIMENT 5. JFET NOISE MEASURE- MENTS

AO3411 P-Channel Enhancement Mode Field Effect Transistor

EE105 - Fall 2006 Microelectronic Devices and Circuits. Some Administrative Issues

KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU - Control and Automation Dept. 1 7 DC BIASING FETS (CONT D)

TOSHIBA Field Effect Transistor Silicon P Channel MOS Type (U-MOSⅣ) TPC8114. DC (Note 1) I D 18 A Pulse (Note 1) I DP 72

AO V Dual P + N-Channel MOSFET

Preliminary data. Maximum Ratings,at T j = 25 C, unless otherwise specified Parameter Symbol Value Unit Continuous drain current I D. I D puls -2.

ECE-343 Test 2: Mar 21, :00-8:00, Closed Book. Name : SOLUTION

TrenchT2 TM Power MOSFET

Electronics II. Midterm #1

ECE315 / ECE515 Lecture 11 Date:

AON4605 Complementary Enhancement Mode Field Effect Transistor

TPCF8402 F6B TPCF8402. Portable Equipment Applications Mortor Drive Applications DC-DC Converter Applications. Maximum Ratings (Ta = 25 C)

TOSHIBA Field Effect Transistor Silicon N-Channel MOS Type (U-MOSⅤ-H) TPC8037-H

DISCRETE SEMICONDUCTORS DATA SHEET. BLF521 UHF power MOS transistor

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (U-MOSIII) TPC6004

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (U-MOS IV) TPC8028

Lecture 10 MOSFET (III) MOSFET Equivalent Circuit Models

IXTK5N250 IXTX5N250 = 2500V = 5A < 8.8Ω. High Voltage Power MOSFET w/ Extended FBSOA. Advance Technical Information. R DS(on)

2N5545/46/47/JANTX/JANTXV

Product Summary: BVDSS 30V RDSON (MAX.) 50mΩ 4.5A I D. Pb Free Lead Plating & Halogen Free EMB50P03J

TOSHIBA Field Effect Transistor Silicon N-Channel MOS Type (Ultra-High-speed U-MOSIII) TPCA8011-H

University of Toronto. Final Exam

Electronic Circuits Summary

1. (50 points, BJT curves & equivalent) For the 2N3904 =(npn) and the 2N3906 =(pnp)

PINNING - SOT404 PIN CONFIGURATION SYMBOL

Preliminary data. Type Package Ordering Code Tape and Reel Information BSP 317 P SOT-223 Q67042-S4167 -

FEATURES SYMBOL QUICK REFERENCE DATA

DISCRETE SEMICONDUCTORS DATA SHEET. BLF543 UHF power MOS transistor

ECE 546 Lecture 10 MOS Transistors

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (U-MOS IV) TPC8026

Fundamentals of the Metal Oxide Semiconductor Field-Effect Transistor

TPCS8209 查询 TPCS8209 供应商 TPCS8209. Lithium Ion Battery Applications Notebook PC Applications Portable Machines and Tools. Maximum Ratings (Ta = 25 C)

AO7401 P-Channel Enhancement Mode Field Effect Transistor

ECEN 326 Electronic Circuits

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type SSM3K17FU

TOSHIBA Field Effect Transistor Silicon P Channel MOS Type (U-MOSⅣ) TPCA8103

N-channel TrenchMOS transistor

TOSHIBA Field Effect Transistor Silicon P Channel MOS Type SSM3J16TE. DC I D 100 ma Pulse I DP 200

Transcription:

Chapter 3 Spring 2012 4 th Semester Mechatronics SZABIST, Karachi 2 Course Support humera.rafique@szabist.edu.pk Office: 100 Campus (404) Official: ZABdesk https://sites.google.com/site/zabistmechatronics/home/spring-2012/ecd ebooks: https://sites.google.com/site/zabistmechatronics/home/ebooks 1

Chapter Contents 3 J Small Signal Model Fixed Bias Configuration Self Bias Configuration Voltage Divider Configuration Common Gate Configuration Source Follower Configuration D and E type MOS Configurations Amplifier Network Design Cacade Configuration Applications 4 Small Signal Model 2

Small Signal Model 5 s Advantages: Excellent voltage gain High input impedance Low-power consumption Good frequency range Small Signal Model 6 Transconductance: The relationship of a change in I D to the corresponding change inv GS : g m I = V D GS 3

Small Signal Model 7 Mathematical Definition of g m : Where V GS =0V Where g m D G S D SS g m 1 VP g m 0 I = V 2I V = V 2I D S S = V g m = g m 0 1 g m = g m 0 1 P V V G S P V V G S P G S P Small Signal Model 8 Example 8-1: Determine the magnitude of g m for a J with I DSS = 8 ma and V P = 4 V at the following dc bias points: a. V GS = 0.5 V b. V GS = 1.5 V c. V GS = 2.5 V 4

Small Signal Model 9 Example 8-1: Determine the magnitude of g m for a J with I DSS = 8 ma and V P = 4 V at the following dc bias points: a. V GS = 0.5 V b. V GS = 1.5 V c. V GS = 2.5 V Small Signal Model 10 Example 8-2: For the J of Ex 8-1, find: a. g m (max) b. g m at each point of Ex 8-1 5

Small Signal Model 11 g m vs V GS : When V GS = V P, g m is zero When V GS = 0V, g m is maximum Small Signal Model 12 Example 8-3: Using J of Ex 8-1, plot g m vs V GS. 6

Small Signal Model 13 Example 8-3: Using J of Ex 8-1, plot g m vs V GS. g 2 I DSS m = V 1 P 2 I DSS g m 0 = V P V V GS P Small Signal Model 14 Effect of I D on g m : Shockley s equation: 1 V V GS P = I I D DSS V gm = gm0 1 V GS P g m = g m0 I I D DSS 7

Small Signal Model 15 Plot of of I D vs g m : g m = g m0 I I D DSS g = m 0 2 I V DSS P g m g mo I D I DSS 0.707 g mo I DSS /2 0.5 g mo I DSS /4 0 0 ma Small Signal Model 16 Example 8-4: Plot g m vs I D of Ex 8-1: 8

Example 8-4: Plot g m vs I D of Ex 8-1: Small Signal Model 17 G m I D g mo I DSS 0.707 g mo I DSS /2 0.5 g mo I DSS /4 0 0 ma Small Signal Model 18 J Z i : input impedance, Z i is sufficiently large. Usually in the range of 10 9 Ω (1000MΩ) Zi ( ) = Ω J Z o : output impedance, Zo is similar in magnitude to conventional BJTs. Output impedance appears as y os with units of µs where 1 Z o = rd = yos VDS r d = VGS = constant ID 9

Small Signal Model 19 Defining r d using J characteristics: Small Signal Model 20 Example 8.5: Determine the output impedance for the given J for V GS = 0 V and 2V at V DS = 8V. 10

Small Signal Model 21 J AC Equivalent: Small Signal Model 22 Example 8-6: Given y fs = 3.8 ms and y os = 20 µs. Sketch the ac equivalent model: Ω 11

23 J Configurations J Configurations 24 J Configurations: 1. Fixed bias (Common Source) 2. Self bias 3. Voltage-Divider bias 4. Common Gate 5. Source-Follower (Common Drain) Important Parameters of AC Analysis: 1. Input impedance 2. Output impedance 3. Voltage Gain 12

25 Fixed Bias Configuration J Fixed Bias 26 1. Fixed Bias Configuration (Common Source): 13

J Fixed Bias 27 Determining Z i : Substituting the J ac equivalent circuit unit into the fixed bias network J Fixed Bias 28 Determining Z i : ( ) Z = R i G Redrawn network 14

J Fixed Bias 29 Determining Z o : Set Vi = 0 Z Z o ( ) = r R o d D ( ) if r = R d 10R D D J Fixed Bias 30 Determining A V : A = V ( V ) m ( d D ) ( V ) ( ) v o i = -g r R A = V v o i = -g R when r 10R m D d D V = -g V V ( r R ) o m gs d D gs = V i ( ) V = -g V r R o m i d D Phase reversal 15

J Fixed Bias 31 Example 8-7: AC analysis of the fixed-bias configuration of Ex 7-1: If y os = 40 µs, than, determine: a. g m b. r d c. Z i d. Z o e. A v f. A v (ignoring the effects of r d ) I DQ =5.625mA; V GSQ = 2V y OS =40µS 32 Self Bias Configuration 16

J Self Bias 33 J Self Bias: Bypassed R S J Self Bias 34 J Self Bias: Fixed bias network following the substitution of the J ac equivalent 17

J Self Bias 35 J Self Bias: Redrawn network J Self Bias 36 J Self Bias: Unbypassed R S Z i = R Z G V o o = = I o R D 18

J Self Bias 37 J Self Bias: Unbypassed R S Including the effects of r d in the self bias J configuration J Self Bias 38 J Self Bias: Unbypassed R S R S 1 + g m RS + r d Z O = R RS R D 1 + g m RS + + rd rd D Z O R D A v V O g m R D g m R D = = V RS + R D 1+ g 1 g R m R + S + r i m S d 19

J Self Bias 39 Example 8-8: AC Analysis the self-bias configuration of Ex 7-2: If y os = 20 µs, then, determine: a. g m b. r d c. Z i d. Z o (with and without the effects of r d ). Compare the results. e. A v (with and without the effects of r d ). Compare the results. J Self Bias 40 Computer Analysis: 20

41 Voltage Divider Configuration J Voltage Divider Bias 42 Voltage Divider Bias: 21

J Voltage Divider Bias 43 Voltage Divider Bias: J Voltage Divider Bias 44 Voltage Divider Bias: Z = R R i 1 2 Z o R D A V = g R o v m D V i 22

45 Common-Gate Configuration J Common-Gate 46 Common Gate Configuration: 23

J Common-Gate 47 Common Gate Configuration: J Common-Gate 48 Common Gate Configuration: Z ' i R D 1 + r d 1 g m + rd Z i R Z S o 1 g R m D A R g v D m 24

J Common-Gate 49 Example 8-9: Determine: a. g m b. r d c. Z i d. Z o (with and without the effects of r d ). Compare the results. a. V o (with and without the effects of r d ). Compare the results. 50 Source-Follower (Common-Drain) Configuration 25

J Source-Follower (CD) 51 Source-Follower (CD): J Source-Follower (CD) 52 Source-Follower (CD): 26

J Source-Follower (CD) 53 Common-Follower (CD): J Source-Follower (CD) 54 Common-Follower (CD): Determining Z o 27

J Source-Follower (CD) 55 Common-Follower (CD): Z i = R G Z o R S 1 g m Av g m RS 1 + g R m S J Source-Follower (CD) 56 Example 8-10: AC analysis: V GSQ = 2.86 V and I DQ = 4.56 ma. Determine: a. g m b. R d c. Z i d. Z o with and without r d. Compare results. e. A v with and without r d. Compare results. 28

57 Depletion-Type MOSs MOS Configurations 58 MOS Configurations: D-MOS: 1. Voltage Divider E-MOS: 1. Drain Feedback 2. Voltage Divider 29

59 D-MOS D-MOS Configurations 60 D-MOS Equivalent Model: 30

D-MOS Configurations 61 Example 8-11: AC analysis (Ex 7-8): V GSQ = 0.36 V and I DQ = 7.6 ma. Determine: a. g m and compare to g mo. b. r d c. Z i d. Z o e. A v f. Sketch the ac equivalent D-MOS Configurations 62 Example 8-11: 31

63 E-MOS E-MOS Configurations 64 Equivalent Circuit: 32

65 E-MOS Drain-Feedback E-MOS Configurations 66 Drain Feedback: 33

E-MOS Configurations 67 Drain Feedback: E-MOS Configurations 68 Drain Feedback: Determining Z o 34

E-MOS Configurations 69 Drain Feedback: A v = g m (R F r d R D ) A v = g m R D E-MOS Configurations 70 Example 8-12: The E-MOS of Fig. 8-41 was analyzed in Example 7.11, with the result that k = 0.24 x 10 3 A/V 2, V GSQ = 6.4 V, and I DQ = 2.75 ma. Determine gm. a) Find r d. b) Calculate Z i with and without r d. Compare results. c) Find Z o with and without r d. Compare results. d) Find A v with and without r d. Compare results. 35

71 E-MOS Voltage Divider E-MOS Configurations 72 Voltage Divider: 36

E-MOS Configurations 73 Voltage Divider: E-MOS Configurations 74 Voltage Divider: 37

75 Designing Amplifier Network Amplifier Network Designing 76 Example 8-13: Design the fixed-bias network of Fig. 8-44 to have an ac gain of 10. That is determine the value of R D. 38

Amplifier Network Designing 77 Example 8-14: With a relatively high level of g m, select the values of R D and R S for the given network, that will result in a gain of 8. For the device V GSQ = ¼ V P. Amplifier Network Designing 78 Example 8-15: With a relatively high level of g m, select the values of R D and R S for the given network, that will result in a gain of 8. For the device V GSQ = ¼ V P. Now bypass capacitor has been removed. 39

Summary Table 79 Summary Table 80 40

Summary Table 81 Summary Table 82 41

83 Effect of R L and R sig R L and R sig 84 Effect of R L and R sig :. 42

R L and R sig 85 Effect of R L and R sig : R L and R sig 86 Effect of R L and R sig :. 43

87 Cascade Configuration Cascade Configuration 88 Cascade Configuration: V i1 A v1 V O1 =V i2 A v2 V O2 A = A... 1A 2 v v v 44

Cascade Configuration 89 Cascade Configuration: Cascade Configuration 90 Example 8-16: Calculate the dc bias, voltage gain, input impedance, output impedance and resulting output voltage for the cascade amplifier shown in Fig. 8.49. Calculate the load voltage if a 10-k load is connected across the output. 45

Cascade Configuration 91 Example 8-17: For the cascade amplifier of Fig. 8-50, use the dc bias calculated in Example 8-15 and 8-16 to calculate the input impedance, output impedance, voltage gain, and resulting output voltage. 92 Practical Applications 46

Practical Applications 93 1. Three channel audio mixer Practical Applications 94 2. Phase Shift network 47

Home Task 95 Reading: 1. Summary 2. Equations 3. Computer analysis Problems: 1. Sec 8.2: (odd) 2. Sec 8.3: 17,18 3. Sec 8.4: 19,21 4. Sec 8.5:23,25 5. Sec 8.6: 27,29 6. Sec 8.7: 31 7. Sec 8.8: 33,35,37 8. Sec 8.10: 39,41 9. Sec 8.11: 43 10. Sec 8.12: 45 11. Sec 8.14: 47 12. Sec 8.15: 49 Refernces 96 1. Bolestad 2. Paynter CH 13 48