Rapid determination of five arsenic species in polished rice using HPLC-ICP-MS

Similar documents
Rapid Screening and Confirmation of Melamine Residues in Milk and Its Products by Liquid Chromatography Tandem Mass Spectrometry

DISCLAIMER: This method:

Macrolides in Honey Using Agilent Bond Elut Plexa SPE, Poroshell 120, and LC/MS/MS

Analysis of Arsenic, Selenium and Antimony in Seawater by Continuous-Flow Hydride ICP-MS with ISIS

Determination of major, minor and trace elements in rice fl our using the 4200 Microwave Plasma- Atomic Emission Spectrometer (MP-AES) Authors

Enhancing the productivity of food sample analysis with the Agilent 7700x ICP-MS

Determination of trace elements in ultrapure semiconductor grade sulfuric acid using the Agilent 8900 ICP-QQQ in MS/MS mode

Determination of challenging elements in ultrapure semiconductor grade sulfuric acid by Triple Quadrupole ICP-MS

Quantification of growth promoters olaquindox and carbadox in animal feedstuff with the Agilent 1260 Infinity Binary LC system with UV detection

Determination of Chromium in Gelatin Capsules using an Agilent 7700x ICP-MS

Speciation of Bromine Compounds in Ozonated Drinking Water using Ion Chromatography and Inductively Coupled Plasma Mass Spectrometry

Aminoglycosides in Milk Using Agilent Bond Elut Plexa SPE, Agilent Poroshell 120, and LC/Tandem MS

High-Speed Environmental Analysis Using the Agilent 7500cx with Integrated Sample Introduction System Discrete Sampling (ISIS DS)

The ultratrace determination of iodine 129 in aqueous samples using the 7700x ICP-MS with oxygen reaction mode

Application Note. Gas Chromatography/Mass Spectrometry/Food Safety. Abstract. Authors

Simple, reliable analysis of high matrix samples according to US EPA Method 6020A using the Agilent 7700x/7800 ICP-MS

Simultaneous Arsenic and Chromium Speciation by HPLC/ICP-MS in Environmental Waters

Multi-Element Analysis of Petroleum Crude Oils using an Agilent 7900 ICP-MS

Authors: C. Derrick Quarles, Jr. *, Patrick Sullivan, M. Paul Field, Hwan Kim, and Daniel R. Wiederin

Determination of Hormones in Drinking Water by LC/MS/MS Using an Agilent InfinityLab Poroshell HPH Column (EPA 539)

Trace elemental analysis of distilled alcoholic beverages using the Agilent 7700x ICP-MS with octopole collision/ reaction cell

Analysis of domestic sludge using the Agilent 4200 MP-AES

High Sensitivity HPLC Analysis of Perchlorate in Tap Water Using an Agilent 6460 Triple Quadrupole LC/MS System

Ultra-fast determination of base metals in geochemical samples using the 5100 SVDV ICP-OES

Agilent 1200 Infinity Series HDR DAD Impurity Analyzer System for the Quantification of Trace Level of Genotoxic Impurity

The Agilent 7700x ICP-MS Advantage for Drinking Water Analysis

A Comparison of Three Methods for Arsenic Speciation in Biological Tissues. May Nguyen Brooks Rand Labs Seattle, WA

Rapid Analysis of High-Matrix Environmental Samples Using the Agilent 7500cx ICP-MS. Application. Author. Abstract. Introduction.

Direct Measurement of Metallic Impurities in 20% Ammonium Hydroxide by 7700s/7900 ICP-MS

Elemental analysis of river sediment using the Agilent 4200 MP-AES

Determination of Pb, Cd, Cr and Ni in Grains Based on Four Chinese National Methods via Zeeman GFAAS

LC/MS/MS qua ntitation of β-estradiol 17-acetate using an Agilent 6460 Triple Quadrupole LC/MS working in ESI negative ion mode

High Throughput Water Analysis using Agilent 7900 ICP-MS coupled with ESI prepfast

Using UHPLC-Triple Quadrupole MS/MS to Detect the Presence of Bark Extract and Yohimbine Adulteration in Dietary Supplements and Botanicals

Agilent 6460 Triple Quadrupole LC/MS System with an Agilent 1290 Infinity LC For Multi-Plant Growth Regulator Analysis in Grapes

LC/MS/MS Analysis of Pesticide Residues in Apples Using Agilent Chem Elut Cartridges

Technical Procedure for Concentration Determination of Methamphetamine in Liquids via HPLC

Advances in Interference Removal for Accurate Arsenic Analysis in Food and Beverages

Simple and Reliable Soil Analysis using the Agilent 7800 ICP-MS with ISIS 3

Total elemental analysis of food samples for routine and research laboratories using the Thermo Scientific icap RQ ICP-MS

Accurate Analysis of Trace Mercury in Cosmetics using the Agilent 8900 ICP-QQQ

Characterization of Arsenic Species in Apple Juice using a NexSAR HPLC-ICP-MS Speciation Analysis Ready Solution

Sensitive Femtogram Determination of Aflatoxins B 1 , B 2 , G 1. and G 2. in Food Matrices using Triple Quadrupole LC/MS. Authors.

Samples compliant with the WATER

Lead isotope analysis: Removal of 204 Hg isobaric interference from 204 Pb using ICP-QQQ in MS/MS mode

Savillex Technical Note Performance of the DST-1000 Acid Purification System

Direct Measurement of Trace Metals in Edible Oils by 7500cx ICP-MS with Octopole Reaction System

Multi-Element Analysis of Cannabis using the Agilent 7800 ICP-MS

Using TOF for Screening and Quantitation of Sudan Red Colorants in Food Application

Direct Analysis of Trace Metal Impurities in High Purity Nitric Acid Using ICP-QQQ

Quantitative analysis of high purity metals using laser ablation coupled to an Agilent 7900 ICP-MS

The analysis of organic acid content of additives, premix, feed, and water.

Accurate analysis of neptunium 237 in a uranium matrix, using ICP-QQQ with MS/MS

Application note. Trace level analysis of sulfur, phosphorus, silicon and chlorine in NMP using the Agilent 8800 Triple Quadrupole ICP-MS

Determination of 17 Organotin Compounds in Beverages Using Triple Quadrupole GC-MS/MS System

Analysis of Phthalates in Body Wash using Solid-Supported Liquid-Liquid Extraction

High-Throughput Semiquantitative Screening of Ambient Air Samples by ORS-ICP-MS and Integrated Sample Introduction System (ISIS) Application

--> Buy True-PDF --> Auto-delivered in 0~10 minutes. GB Translated English of Chinese Standard: GB5009.

Analytical Approaches to Arsenic

Ultra trace measurement of potassium and other elements in ultrapure water using the Agilent 8800 ICP-QQQ in cool plasma reaction cell mode

Determination of Volatile Aromatic Compounds in Soil by Manual SPME and Agilent 5975T LTM GC/MSD

Total Elemental Analysis of Food Samples for Routine and Research Laboratories, using the Thermo Scientific icap RQ ICP-MS

Quantitative Analysis of Water-Soluble B-Vitamins in Cereal Using Rapid Resolution LC/MS/MS. Application. Authors. Abstract.

Application Note. Author. Abstract. Pharmaceutical QA/QC. Vinayak A.K Agilent Technologies Bangalore, India

Application Note. Abstract. Authors. Environmental

Determination of ultratrace elements in photoresist solvents using the Thermo Scientific icap TQs ICP-MS

Sensitive Detection of 2-MIB and Geosmin in Drinking Water

Identification and Quantitation of Pesticides in Chamomile and Ginger Extracts Using an Agilent 6460 Triple Quadrupole LC/MS system with Triggered MRM

Pesticides Analysis Using the Agilent 5977A Series GC/MSD

A Comparison of Arsenic Speciation

Semiquantitative Screening of Pharmaceutical Antiviral Drugs using the Agilent 7500ce ICP-MS in Helium Collision Mode

Application Note. Author. Abstract. Food Safety. Syed Salman Lateef Agilent Technologies, Inc. Bangalore, India

Analysis of Trace (mg/kg) Thiophene in Benzene Using Two-Dimensional Gas Chromatography and Flame Ionization Detection Application

Analysis of Stachydrine in Leonurus japonicus Using an Agilent ZORBAX RRHD HILIC Plus Column with LC/ELSD and LC/MS/MS

Limit-test of NDMA and NDEA in Sartans. by GC-MS (Liquid-direct-injection)

DEVELOPMENT AND VALIDATION OF A HPLC METHOD FOR IN-VIVO STUDY OF DICLOFENAC POTASSIUM

Real World Analysis of Trace Metals in Drinking Water Using the Agilent 7500ce ICP-MS with Enhanced ORS Technology. Application. Authors.

Determination of Total Volatile Organic Compounds in Indoor Air Using Agilent 7667A mini TD and 7820A GC

Determination of iopromide in environmental waters by ion chromatography-icp-ms

Analysis of Low-Calorie Sweeteners by Liquid Chromatography-Tandem Mass Spectrometry

Thermo Scientific icap RQ ICP-MS: Typical limits of detection

Application of the Agilent 7900 ICP-MS with Method Automation function for the routine determination of trace metallic components in food CRMs

Supporting Information

Accurate Quantification of Cadmium, Chromium, Mercury and Lead in Plastics for RoHS Compliance using the Agilent 7500ce ICP-MS

Simultaneous, Fast Analysis of Melamine and Analogues in Pharmaceutical Components Using Q Exactive - Benchtop Orbitrap LC-MS/MS

Analysis of Trace Metal Impurities in High Purity Hydrochloric Acid Using ICP-QQQ

Determination of Alkaloids in Goldenseal Using Agilent Bond Elut Plexa Solid Phase Extraction Sorbent for Cleanup and HPLC-DAD Analysis

Analytical determination of testosterone in human serum using an Agilent Ultivo Triple Quadrupole LC/MS

VALIDATION OF A UPLC METHOD FOR A BENZOCAINE, BUTAMBEN, AND TETRACAINE HYDROCHLORIDE TOPICAL SOLUTION

Determination of Chlorinated Acid Herbicides in Soil by LC/MS/MS Application Note

Automated Sample Preparation in Quality Control of Eye-Drop Formulation

Determination of Butyltin Compounds in Environmental Samples by Isotope Dilution GC-MS. Application. Authors. Abstract. Introduction.

Determination of Off-Odor Compounds in Drinking Water Using an SPME Device with Gas Chromatography and Mass Spectrometry

Dartmouth Trace Element Analysis Core: Lab methods

materials analysis Solutions for Your Analytical Business Markets and Applications Programs

Comparing Collision/Reaction Cell Modes for the Measurement of Interfered Analytes in Complex Matrices using the Agilent 7700 Series ICP-MS

Anaylsis of Pesticide Residues in Rice Using Agilent Bond Elut QuEChERS AOAC Kit by LC-MS/MS Detection

LC/MS/MS of Fungicides and Metabolites in Apple Juice with Agilent Bond Elut Plexa and Poroshell 120

Thermo Scientific icap TQ ICP-MS: Typical limits of detection

Quantification of Furocoumarins

Transcription:

Rapid determination of five arsenic species in polished rice using HPLC-ICP-MS Application note Food safety Authors Bing Yue China National Center For Food Safety Risk Assessment, Beijing, China Juane Song, Ke Xie, Zhao-jun Yun and Jian-qiu Mi Agilent Technologies, Beijing, China Introduction Arsenic (As) is a well-known toxic element that can be present in the environment and foodstuffs. Consequently it is a highly regulated element that is widely monitored. However, As speciation analysis rather than total As analysis is important because its biological toxicity is highly dependent on its chemical form. For example, if a seaweed sample is known to contain a high level of As, but mainly in the form of AsB, then there is no potential risk from its consumption as AsB is non-toxic. Among the five major species of arsenic,, MMA, As(III) DMA and AsB, only the two inorganic forms (As(III) and ) are toxic. They are also carcinogenic to humans, so need to be measured, especially in foodstuffs. Arsenic in rice is of special concern in countries where it is consumed daily. Rice plants absorb As from soil and water. Since rice requires a lot of water to grow compared to other plants, the potential for arsenic accumulation is increased. In this study, we present a rapid method for the determination of the toxic As species in rice using an Agilent 1260 HPLC system equipped with an Agilent ZORBAX SB-Aq column coupled to an Agilent 7900 ICP-MS.

Experimental Instrumentation An Agilent 1260 HPLC system comprising a quaternary pump, autosampler and vacuum degasser was coupled to an Agilent 7900 CP-MS. The column exit was simply connected to the nebulizer of the ICP-MS using PFA tubing. The Agilent ZORBAX SB-Aq (part number 880975-914, 4.6 mm id x 250 mm, 5 μm) reversed phase column was maintained at room temperature throughout the analysis. The mobile phase was 20 mm citric acid and 5 mm sodium hexane sulfonate, adjusted to ph = 4.3 with sodium hydroxide. Two injection volumes, 5 μl or 100 μl, were evaluated. HPLC and ICP MS parameters are given in Table 1. The Agilent 7900 ICP-MS with the Octopole Reaction System (ORS 4 ) collision/reaction cell (CRC) provides sensitive and specific analysis of As in the presence of multiple interferences. In some regulatory guidance, food samples must be extracted using HCl to simulate gastric conditions. In this case, the formation of polyatomic ions based on ArCl and CaCl may cause spectral interferences on the sole isotope of As at m/z 75. However, operating the 7900 ICP-MS ORS 4 in helium mode effectively removes these matrix-based polyatomic interferences on As. Table 1. Operating conditions of the Agilent 1260 HPLC and 7900 ICP-MS ICP-MS parameters RF power Sampling depth Carrier gas Makeup gas Cell gas KED Isotopes monitored Dwell time HPLC parameters Mobile phase Column Flow rate Temperature Injection volume Run time 1550 W 8 mm 0.6 L/min 0.5 L/min He at 4 ml/min 3 V 75 As, 35 Cl 1.0 s/ 75 As; 0.1 s/ 35 Cl Isocratic, 20 mm C 6 H 8 O 7 and 5 mm C 6 H 13 NaO 3 S, adjusted to ph 4.3 with NaOH Agilent ZORBAX SB-Aq 1.2 ml/min Ambient 5 μl or 100 μl 4 min Chemicals and reagents Stock standards of, MMA, As(III), DMA and AsB were purchased from NIMC (National Institute of Metrology China, Beijing, China). High purity citric acid ( 99.5%), sodium hexane-sulfonate ( 98%) and sodium hydroxide ( 99.99%) were purchased from Sigma Aldrich Chemicals (UK). Ultra-pure grade HNO 3 (Sigma Aldrich, UK) was used for the sample preparation. Sample preparation The polished rice samples were obtained from different locations in the following provinces of China: Jiangsu, Fujian, Liaoning, Chongqing and Jiangxi. The polished rice samples were crushed and sieved through a 30 mesh strainer to make rice flour. 1.00 g of the rice flour sample was weighed into a polypropylene centrifuge tube (50 ml). 15 ml of 0.15 M HNO 3 was added and the sample was vortexed for 30 seconds. The tightly capped tube was left to stand overnight at room temperature; it was then placed in an oven at 90 C for 2.5 hours where it was agitated for 30 seconds, every 30 minutes. After the extraction had finished, the sample was cooled in a refrigerator at 4 C. The cooled rice flour suspension was centrifuged at 8000 rpm for 15 minutes and then the supernatant was passed through a 0.22 μm polyether sulphide (PES) filter. The filtrate was stored at 4 C and analyzed within 24 hours to minimize any species inter-conversion. Results and discussion Separation and quantification Calibration standard solutions containing the five As species at different concentrations (1 ppb, 5 ppb, 10 ppb, 50 ppb, 100 ppb and 200 ppb) were prepared and analyzed. The chromatogram for the 10 ppb calibration standard (5 μl injection) shows the five As species are well separated in 4 minutes (Figure 1). The results were used to create calibration curves for the As species, as shown in Figure 2. 2

Table 2. Detection limits (ppb) for, MMA, As(III), DMA and AsB with 5μL and 100 μl injections Injection volume MMA As(III) DMA AsB (μl) 5 0.106 0.121 0.187 0.267 0.667 100 0.010 0.012 0.025 0.028 0.042 Figure 1. Chromatogram of a 10 ppb As (conc. as As element) species mixture standard (5 μl injection) Figure 3 shows the chromatograph of a 50 ppt As species standard mixture (100 μl injection) demonstrating the ultra-trace analysis capability of the method. Figure 3. Chromatogram of 50 ppt As species mixture (100 μl injection) Certified Reference Material (CRM) analysis The method was applied to the analysis of two rice flour CRMs; NIST 1568a and NIST 1568b. Though only total As content is certified for NIST 1568a, (290 ± 30 ppb), the CRM has been well-characterized in the literature. The two CRMs were extracted following the aforementioned sample preparation method and analyzed for the five As species. Figure 2. Calibration graphs for, MMA, As(III),DMA and AsB showing excellent linearity. Detection limits Detection limits (DLs) for each arsenic species were calculated as the concentration equivalent to three times the peak-to-peak baseline noise (S/N) of the standard chromatogram. The results are summarized in Table 2. As shown, the DL of the five As species were between 0.106 ppb and 0.667 ppb with a 5 μl injection and 0.010 ppb and 0.042 ppb with a 100 μl injection. Tables 3 and 4 summarize the quantified results of the inorganic As species, MMA, DMA and the total As content in the two CRMs, the certified values or reported values in the literature. For this study, total As was calculated from the sum of inorganic As, MMA, DMA and AsB. As shown, the quantified inorganic As (ias) in NIST 1568b and total As in both CRMs are in good agreement with the certified values and within the standard deviation. The quantified results for each species are also in good agreement with reported values in the literature [1-4]. 3

Table 3. Quantification of As species in NIST 1568b Rice Flour a This study Certified Value MMA As(III) DMA ias b Total As 62.0 ± 5.1 10.6 ± 1.3 36.8 ± 5.8 179 ± 7 98.8 ± 3.6 288.4 11.6 ± 3.5 180 ± 12 92 ± 10 285±14 a value is mean ± SD of ten injections, b inorganic arsenic: sum of As(III) and Table 4. Comparison of quantified As species in NIST 1568a Rice Flour determined in this study compared to values from the literature a. The certified total As content of NIST 1568a is 290 ± 30 ppb. MMA As(III) DMA ias b Total As Ref. [1] 44±2 12±0.8 52±1 173±2 100 281±2 Ref. [2] 50.3±2.9 14.9±3.9 63.4±3.5 144±4.5 113.7 272.8±9.9 Ref. [3] 53.7±3.3 14.8±1.8 54.7±1.4 165±8 108.4 288.2 Ref. [4] 13.6±2.5 168.0±2.2 104.3±4.4 286.1±3.8 This 64±5 14±2 57±4 140±4 121 275±4 study a value is mean ± SD of ten injections, b inorganic arsenic: sum of As(III) and Spiked sample recovery Spiked sample recovery was checked for the five As species. A mixture of, MMA, As(III), DMA and AsB was spiked into three rice sample extracts at 1 ppb, 5 ppb and 10 ppb. Three replicates were prepared (spike 1, 2 and 3). As shown in Table 5, good recoveries ranging from 85% to 110% were achieved for all species, at all concentrations, in each of the spiked solutions. Precision Precision of the method was checked by repeatedly analyzing a rice sample, with ten separate injections. Table 6 shows the concentration results for all the As species, indicating the excellent reproducibility for the ten separate analyses. The %RSDs for all As species were less than 4%, and less than 2% for inorganic As. Table 6. Results of reproducibility of rice # 4 (n = 10) with 5 μl injection Sample MMA As(III) DMA AsB ias 4-1 56.10 N.D. 107.32 22.29 N.D. 163.42 4-2 55.23 N.D. 110.39 24.74 N.D. 165.62 4-3 56.97 N.D. 107.30 23.10 N.D. 164.27 4-4 57.68 N.D. 108.51 24.19 N.D. 166.18 4-5 57.16 N.D. 108.46 23.64 N.D. 165.62 4-6 56.10 N.D. 108.52 24.82 N.D. 164.62 4-7 56.43 N.D. 108.89 23.96 N.D. 165.32 4-8 57.27 N.D. 107.90 22.37 N.D. 165.17 4-9 56.18 N.D. 109.56 22.70 N.D. 165.73 4-10 56.71 N.D. 108.76 23.35 N.D. 165.47 Average 56.58 108.56 23.52 165.14 % RSD 1.3% 0.9% 3.9% 0.5% Table 5. Results of spiked sample recovery with 5 μl injection Sample name Spike Conc. MMA As(III) DMA AsB Conc.(ppb) Rec.(%) Conc.(ppb) Rec.(%) Conc.(ppb) Rec.(%) Conc.(ppb) Rec.(%) Conc.(ppb) Rec.(%) 1 0.48 N.D. 4.60 0.48 N.D. Spike 1 1.38 89.2% 1.02 101.5% 5.65 105.6% 1.54 106.1% 1.03 103.2% Spike 2 1 ppb 1.43 94.5% 0.96 96.2% 5.51 90.8% 1.42 93.9% 1.07 106.5% Spike 3 1.47 98.1% 0.95 94.3% 5.52 92.2% 1.45 97.4% 0.98 98.4% 2 1.14 N.D. 5.82 1.32 N.D. Spike 1 5.52 87.6% 4.96 99.2% 10.98 103.2% 6.23 98.3% 4.82 96.3% Spike 2 5 ppb 5.65 90.1% 4.77 95.3% 10.88 101.3% 6.45 102.6% 4.97 99.4% Spike 3 5.77 92.5% 4.34 86.7% 11.35 110.6% 6.62 106.1% 5.13 102. % 3 0.28 N.D. 3.44 0.73 N.D. Spike 1 9.65 93.7% 9.68 96.8% 13.35 99.1% 9.72 89.9% 8.91 89.1% Spike 2 10 ppb 9.89 96.1% 10.08 100.8% 12.97 95.3% 10.29 95.6% 9.54 95.4% Spike 3 9.53 92.5% 10.62 106.2% 13.10 96.6% 10.65 99.2% 10.48 104.8% 4

Commercial rice sample analysis The As concentration was determined in the 20 different commercial rice samples and the results are summarized in Table 7. As shown,, As(III) and DMA were found in all 20 rice samples. The inorganic As and DMA content varied significantly among the rice samples, likely reflecting the As concentration in the growing environment of the original plant. Although the concentration of toxic inorganic As varied among the samples, all of the rice samples contained lower limit than the upper level of 0.2 mg/kg recommended by Codex Alimentarius Commission. Table 7. Quantitative results (μg/kg) for all five As species in 20 rice samples Sample MMA As(III) DMA AsB ias name 1 7.27 N.D. 68.97 7.16 N.D. 76.24 2 17.15 N.D. 87.23 19.77 N.D. 104.38 3 4.26 N.D. 51.57 10.93 N.D. 55.83 4 56.10 N.D. 107.32 22.29 N.D. 163.42 5 17.31 N.D. 147.2 26.38 N.D. 164.73 6 12.52 N.D. 75.82 8.79 N.D. 88.35 7 7.14 N.D. 53.84 2.67 N.D. 68.94 8 14.4 N.D. 106.14 27.27 N.D. 120.54 9 14.49 N.D. 72.24 29.51 N.D. 86.73 10 13.73 N.D. 101.68 39.41 N.D. 115.41 11 20.50 N.D. 87.04 285.21 N.D. 107.55 12 22.78 N.D. 70.94 160.77 N.D. 93.72 13 23.74 N.D. 122.19 34.53 N.D. 145.94 14 13.85 N.D. 59.79 361.82 N.D. 73.64 15 16.38 N.D. 91.34 83.42 N.D. 125.38 16 18.48 N.D. 110.58 32.25 N.D. 129.06 17 10.83 N.D. 61.56 6.69 N.D. 72.39 18 16.96 N.D. 105.14 209.49 N.D. 122.1 19 36.04 N.D. 97.17 176.12 N.D. 133.22 20 16.35 N.D. 74.55 587.49 N.D. 90.9 Conclusions The separation of five arsenic species in polished rice was carried out using an Agilent 1260 Infinity LC coupled to an Agilent 7900 ICP-MS. The method is rapid - all five species including the toxicologically relevant inorganic forms As(III) and were determined in 4 minutes, with excellent sensitivity, accuracy and precision. Any potential interferences on As, such as ArCl +, were removed by the ORS 4 cell operating in helium mode. Inorganic arsenic and DMA species were detected in all of the twenty rice samples at various concentrations. However, none of the samples contained more than Codex Alimentarius Commission s recommended limit of 0.2 mg/kg. The validated methodology outlined here is suitable for the rapid determination of, MMA, As(III), DMA and AsB at trace levels in rice and other food samples. References 1. Narukawa T., Inagaki K., Kuroiwa T., Chiba K, The extraction and speciation of arsenic in rice flour by HPLC-ICP-MS [J], Talanta 77, 2008, 427-432 2. Huang J H, Ilgen G, Blank value, adsorption, preconcentration, and preservation for arsenic speciation of the environmental water samples [J]. Analytica Chimica Acta, 2004, 512:1-10. 3. Caruso J.A, B Hymer C, Heitkemper D.T., An evaluation of extraction techniques for arsenic species from freeze-dried apple sample [J]. Analyst, 2001, 126: 136-140. 4. Toni LIorente-Mirandes et al., A fully validated method for the determination of arsenic species in rice and infant cereal products, Pure Appl. Chem., 2012, vol. 84, No. 2, 225-238 5

www.agilent.com Agilent shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance or use of this material. Information, descriptions, and specifications in this publication are subject to change without notice. Agilent Technologies, Inc. 2015 Published July 15, 2015 Publication number: 5991-5933EN