MIDTERM EXAM [[ Dec IS 110 min

Similar documents
Circle the one best answer for each question. Five points per question.

ID # NAME. EE-255 EXAM 3 April 7, Instructor (circle one) Ogborn Lundstrom

ECE 523/421 - Analog Electronics University of New Mexico Solutions Homework 3

ECE 201 Fall 2009 Final Exam

ECE-342 Test 3: Nov 30, :00-8:00, Closed Book. Name : Solution

ECE-343 Test 2: Mar 21, :00-8:00, Closed Book. Name : SOLUTION

ECE Spring 2017 Final Exam

Keep this exam closed until you are told to begin.

ECE Spring 2015 Final Exam

Georgia Institute of Technology School of Electrical and Computer Engineering. Midterm-1 Exam (Solution)

ECE137B Final Exam. There are 5 problems on this exam and you have 3 hours There are pages 1-19 in the exam: please make sure all are there.

Chapter 13 Small-Signal Modeling and Linear Amplification

Biasing the CE Amplifier

ECE 6412, Spring Final Exam Page 1 FINAL EXAMINATION NAME SCORE /120

Scilab Textbook Companion for Microelectronic Circuits by A. S. Sedra And K. C. Smith 1

and V DS V GS V T (the saturation region) I DS = k 2 (V GS V T )2 (1+ V DS )

CARLETON UNIVERSITY. FINAL EXAMINATION December DURATION 3 HOURS No. of Students 130

Vidyalankar S.E. Sem. III [EXTC] Analog Electronics - I Prelim Question Paper Solution

EECS 105: FALL 06 FINAL

University of Pittsburgh

Sinusoidal Steady State Analysis (AC Analysis) Part II

Electronics II. Final Examination

Quick Review. ESE319 Introduction to Microelectronics. and Q1 = Q2, what is the value of V O-dm. If R C1 = R C2. s.t. R C1. Let Q1 = Q2 and R C1

1/13/12 V DS. I d V GS. C ox ( = f (V GS ,V DS ,V SB = I D. + i d + I ΔV + I ΔV BS V BS. 19 January 2012

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s

ECE 4213/5213 Test 1. SHOW ALL OF YOUR WORK for maximum partial credit! GOOD LUCK!

ECE137B Final Exam. Wednesday 6/8/2016, 7:30-10:30PM.

4 4 N v b r t, 20 xpr n f th ll f th p p l t n p pr d. H ndr d nd th nd f t v L th n n f th pr v n f V ln, r dn nd l r thr n nt pr n, h r th ff r d nd

EE 321 Analog Electronics, Fall 2013 Homework #8 solution

K E L LY T H O M P S O N

RIB. ELECTRICAL ENGINEERING Analog Electronics. 8 Electrical Engineering RIB-R T7. Detailed Explanations. Rank Improvement Batch ANSWERS.

APPH 4200 Physics of Fluids

The Physical Structure (NMOS)

ECE 546 Lecture 11 MOS Amplifiers

University of Pennsylvania Department of Electrical and Systems Engineering ESE 319 Microelectronic Circuits. Final Exam 10Dec08 SOLUTIONS

GEORGIA INSTITUTE OF TECHNOLOGY School of Electrical and Computer Engineering

i;\-'i frz q > R>? >tr E*+ [S I z> N g> F 'x sa :r> >,9 T F >= = = I Y E H H>tr iir- g-i I * s I!,i --' - = a trx - H tnz rqx o >.F g< s Ire tr () -s

(tnaiaun uaejna) o il?smitfl?^ni7wwuiinuvitgviisyiititvi2a-a a imaviitjivi5a^ qw^ww^i fiaa!i-j?s'u'uil?g'ijimqwuwiijami.wti. a nmj 1,965,333.

PHYS 232 QUIZ minutes.

Final Exam. 55:041 Electronic Circuits. The University of Iowa. Fall 2013.

ECE 2210 Final given: Spring 15 p1

UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences

Insulated Gate Bipolar Transistor (IGBT)

Chapter 5. BJT AC Analysis

IRGP30B60KD-EP V CES = 600V I C = 30A, T C =100 C. t sc > 10µs, T J =150 C. V CE(on) typ. = 1.95V. Absolute Maximum Ratings. Thermal Resistance

EE-201 Review Exam I. 1. The voltage Vx in the circuit below is: (1) 3V (2) 2V (3) -2V (4) 1V (5) -1V (6) None of above

ECE2210 Final given: Spring 08

n r t d n :4 T P bl D n, l d t z d th tr t. r pd l

Executive Committee and Officers ( )

ECE Circuit Theory. Final Examination. December 5, 2008

EECE 2150 Circuits and Signals Final Exam Fall 2016 Dec 16

I-1. rei. o & A ;l{ o v(l) o t. e 6rf, \o. afl. 6rt {'il l'i. S o S S. l"l. \o a S lrh S \ S s l'l {a ra \o r' tn $ ra S \ S SG{ $ao. \ S l"l. \ (?

ELECTRIC CURRENT IN CONDUCTORS CHAPTER - 32

Module 4. Single-phase AC Circuits

A L A BA M A L A W R E V IE W

0 t b r 6, 20 t l nf r nt f th l t th t v t f th th lv, ntr t n t th l l l nd d p rt nt th t f ttr t n th p nt t th r f l nd d tr b t n. R v n n th r

55:041 Electronic Circuits The University of Iowa Fall Final Exam

DEPARTMENT OF ECE UNIT VII BIASING & STABILIZATION AMPLIFIER:

EEC 118 Spring 2010 Midterm

University of Toronto. Final Exam

IRGR3B60KD2PbF INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE. n-channel. Absolute Maximum Ratings Parameter Max.

CLASS TEST GRADE 11. PHYSICAL SCIENCES: CHEMISTRY Test 4: Matter and materials 1

APPENDIX F WATER USE SUMMARY

~,. :'lr. H ~ j. l' ", ...,~l. 0 '" ~ bl '!; 1'1. :<! f'~.., I,," r: t,... r':l G. t r,. 1'1 [<, ."" f'" 1n. t.1 ~- n I'>' 1:1 , I. <1 ~'..

C 0 U R S E A N. Problems

55:041 Electronic Circuits The University of Iowa Fall Exam 2

ECE 342 Solid State Devices & Circuits 4. CMOS

46 D b r 4, 20 : p t n f r n b P l h tr p, pl t z r f r n. nd n th t n t d f t n th tr ht r t b f l n t, nd th ff r n b ttl t th r p rf l pp n nt n th

4 8 N v btr 20, 20 th r l f ff nt f l t. r t pl n f r th n tr t n f h h v lr d b n r d t, rd n t h h th t b t f l rd n t f th rld ll b n tr t d n R th

IRGIB15B60KD1P INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE. n-channel. Absolute Maximum Ratings

8. Relax and do well.

Chemistry 1 First Lecture Exam Fall Abbasi Khajo Levine Mathias Mathias/Ortiz Metlitsky Rahi Sanchez-Delgado Vasserman

Electronics II. Midterm #1

=25 C Avalanche Energy, single pulse 65 I C. C Soldering Temperature, for 10 seconds 300, (0.063 in. (1.6mm) from case)

ECE 6412, Spring Final Exam Page 1

General Description DTS27X X -X X X -X. Lead. 27X coil1. R1 = R2 = 470Ω C1 = C2 = 2.2 μ F The R, C value need to be fine tuned base on coils design.

CMOS Analog Circuits

Read each question and its parts carefully before starting. Show all your work. Give units with your answers (where appropriate). 1 / 3 F.

2. (2pts) What is the major difference between an epitaxial layer and a polysilicon layer?

UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING BENG (HONS) ELECTRICAL & ELECTRONICS ENGINEERING EXAMINATION SEMESTER /2018

Dynamic operation 20

Lecture 37: Frequency response. Context

Whereas the diode was a 1-junction device, the transistor contains two junctions. This leads to two possibilities:

ACADAMIC CHAPTER OF SWECHA September- 2010

Chapter 2. - DC Biasing - BJTs

Chapter 7. Chapter 7

Two charges are spaced by 40 cm as shown in the diagram. The left charge is Q1 = -3 C ( C). The right charge is Q2 = -5 C ( C).

I n t e r n a t i o n a l E l e c t r o n i c J o u r n a l o f E l e m e n t a r y E.7 d u, c ai ts is ou n e, 1 V3 1o-2 l6, I n t h i s a r t

Integrated II: Unit 2 Study Guide 2. Find the value of s. (s - 2) 2 = 200. ~ :-!:[Uost. ~-~::~~n. '!JJori. s: ~ &:Ll()J~

ESE319 Introduction to Microelectronics. Output Stages

IRGB8B60KPbF IRGS8B60KPbF IRGSL8B60KPbF C

OPERATIONAL AMPLIFIER ª Differential-input, Single-Ended (or Differential) output, DC-coupled, High-Gain amplifier

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM. COURSE: ECE 3084A (Prof. Michaels)

CHAPTER 15 CMOS DIGITAL LOGIC CIRCUITS

IRGPS40B120UP INSULATED GATE BIPOLAR TRANSISTOR UltraFast IGBT

PR D NT N n TR T F R 6 pr l 8 Th Pr d nt Th h t H h n t n, D D r r. Pr d nt: n J n r f th r d t r v th tr t d rn z t n pr r f th n t d t t. n

ECE2210 Final given: Fall 13

Electronics II. Midterm #2

Absolute Maximum Ratings Parameter Max. Units

IRGB30B60KPbF IRGS30B60KPbF IRGSL30B60KPbF

Transcription:

izmir UNVERSTY OF ECONOMCS Department of Electronics and Communication Engineering EEE 331 Analog Electronics Fall 2015/2016 SOLL(r Ol.J$ MDTERM EXAM [[ Dec 26. 20S 110 min NSTRUCTONS W W.ll til W Read all of the instructions and all of th e questions before beginning the exam. There are 4 questions on this exa m, Totaling 100 points. The credit for each problem is given 10 help you allocate your {ime accordingly. Do not spend all your tim e on one problem and on one part and anempt to sol ve all of them. Cal culators are allowed, but borrowing is not allowed. Your mobile phones must be turned off during the exam. w Turn in the entire exam, including this cover sheet. You must show your wo rk for all problems to receive full credit; simply providing answers will result in only partial credit, even jf the answers are correct. Please indicate the number of page where yo ur work is 10 be continued. Put your name on any additional malerial that you submit. Be sure 10 provide units where necessary. Last Name............. Name................... Question J 2 Points 35 25 Grade Section......... J 25 Student No............ 4 TOTA L 15 100 The basic equations of the output characteristics of an NMOS transistor Ves Vos 10 i) VGS < Vln - 0 ii) VGS > Vrn wherek = K' ' (W) -. 11 2 L a) VDS < VGS - VTn Kn [2 (VGS - VTJVO~ - V~sl b) VGS - VTn 5 VDS Kn (Vcs - VTJ' and K:, = ~l n Cox

Q1. (35 pts) Consider the Class B output stage shown in the figure (V cc = 15 V). Assume the transis tors are ideal with Vnc! =V CB2 =0 V VCEsn tl =VECsal2 = 0 V. The input v,(t), is a sinusoidal waveform v,(t) =V p sin root volts Vee i) Determine the average power dissipation over the load as a function ofvp. ii) iii) iv) Determine the total average power drawn from the sources as a function of Vp. Determine the average power dissipation over one transistor as a function ofvp. Determine the power efficiency as a function ofvp. v) What is the power efficiency and the power dissipation P T over each transistor when Vp =10 V. vi) For which value ofvp, the power efficiency 11 is maximum? What is the maximum power efficiency 11",,, then? vii) For which value ofvp, the power dissipation over any transistor is maximum? What is the maximum power PT(,""l over any transistor then? viii) f the ambient temperature TA = 25 C. The thermal resistances of the transistor are e,c = 20 0 CjW (junctionto-case) and eea = 50 0 CjW (case-to-ambient), determine the maximum junction temperature T, of the transistor, for maximum PT. ix) Nowa heat sink is placed over the transistor with e CH = 5 CjW (case-to-heat sink) and eha = 1 OOCjW (heat sink-to-ambient), what will be the junction temperature T, then? x) Assuming the transistors are not ideal (Le. VBE = VC02 = 0.8 V and Vee,,,! = VCC,,,2 = 0 V), draw the output signal waveform Vo. i) V S (+\::. \lp S/~ ln~+. p., S Ve., =- V T;..f!.,. : 0\/ Vo -:=. Ve; :: Vf' S'~ LN, t-, ----rhq. S;S~ O"Q.r ~ L. is; S;f\v:,,,:c<ai',, n 2. p~ _ v~ 2. RL ) lo-kj. fl!>wer 0\ rw.u (\ e,...,... -\v..o J;:<:>.1ft ~ l 2

iii) PD<4 r \)"'~ o(\1c ~,-o,...-. tv) P-r:::. PCco - P L =.1 ( J,..\(J/cc" :l.. '2-7i fl' VP~2-a1.. -._ " V('. LVfv~X '-t VeL Till... (v) VU,-::::1)V Vp : OV, 1Z... =bjl tfl", ~, ~ ~;,)2.3;. S'"2. 3%, dpr -::: :> dlif Vp=-.2.vc..c. _ l.j.,.'\';: 0, )\ ~ V,, - 7( 1i (v; ~ i ) ejc:;:20"c/w -rc.,.j - 7",:. p it """,\ ( G-jc. +Sell) Ti- 2rc=-l'?>, ~) (1-0 c/.. ) f",-.:t'2.foc 7fT"'t,,,\..r ~~ b,.rn31 owt!.9-c~::?9t./w 7" '/,,2.;- C J &,,,:, = 10 </...,; )(), Vf' ~l'o.1'..-- 0.3" T<- ',-:.2\'+ (3./l)( 3f) 9<1" ': lot ", f=-.;j)~ "c LT" "lr 0c. +~\y,.b~ ~\)'~+-O' s~%. 'r ~m';'f

Q2. (25 pts) Consider the amplifier with active load given below. (a) Derive the small signal voltage gain, A,,= Vo/Vi Determine the values ofa, for (b) RL = 10 K (c) RL =100 K (d) RL =rt) Vi ( r " Q2,, - C co t Vee, Q l ( :4t { J, R, - Cvrr~('\~ (,{\,aor Circu it Pa rameters Vee = 15 V R J = 150 K Transjstor parameters {J = 60 VBEON} = 0 V Vr = 26 mv V Aln" n} = 80 V VAlpop}= 120 V -Vee Vce - V e (?,.J) - ( - V Ce ) ~ :: O.2.",A {'0 k. fl. ~ J-c 0 = Loti = 0, 2..",,~. 1 ", 100 c. 0 4 ~9M"; \T\;, S'Tlo -.,. eo 1"0 Q.... ~ ro:l -\ ~ 0-;,:: l- j\v\ V,,)( \'0/1 R.. '- /1 r:>1) -5""

e '> O,l.... A - - - '-0 V~("(>") gov O.OcQ) ""g - - ;' D. CD - b'}- ",S; ~ co O.2{'t\A r'0:z. fr (""' ) 12011 6) 0.1 O. '2.rn -irn ~(j + 10 (3) 1lJ" c) ~L ~ ioo(..l 0 1 13 0. 1 '3

QJ. (25 ps) Consider the differential amplifier given below. TO indicates the small signal resistance of th e current source 1 0, (a) Determine the DC values of the transistors when Vi =Vz =O. Check whether the transistors are in forward active region or not. (b) Find the differential-mode gain. (c) Find the common-mode gain. (d) Find CMRR. (el f V, = 3 sin(2n*50tj + 0.03 sin (2n*200t) volts, and vz = 3 sin (2n*50t) - 0.03 sin (2n*200t) volts, then find Vo = Vcl - vcz. Re Vee vel Ve2 10, TO Rc Circuit Parameters Vee =18 V Rc= 2 K Ra= 10 K 10 = lorna TO = 50 K Transistor Parameters fj = 100 V ac(on) = 0.7 V V T = 26 mv VA = CJ) - Vee 0,+ - ~(j. (AO'(.) = -O, ~ -(r;ot)( 10k) = -O,:}-o.('= -1,21 fl "6 - { - {, 2J = '.2v? V(.(i, (~M) =,) Forw-evtl cmiw..( b)! "V c= 0,010 5,;' (vn){lqjt- ) J. J-Ol-< ~ "1-1- (J-,... = V,t ll 2. = 35,;' (2 7i.~ 5?+-) v, 2 -'-O r u _ tj"...... - -, 6

c J r fe, l b l r2c. c r (~...) v. (1. jm~ r 'i, 1 "" L '~,-:, ~ -== (i R(,-+ rn d-f(311rd ~ 7 2ro u, ==- {)Clf, - t{e,::o 0 ~ Ac-. ~ " ArJ". J '= Aq.O'~(O~ - <0 ""ce) 19Q -=- \ t.., lj.,l"" + V rjc._ = ({'f, 01/.(0)) (0,ob) 5.~ (1 7i ~ 2..<>.:11-) o!'!. 4,1~ ){(O'l S. ~ ('2l\2!>:rtJ V~tt~ -----r

Q4. (S pis) Consider the feedback amplifier given below. + v, R, + v" Circuit Parameters AM" = 10' w, = 10 5 rad/sec R, = 100 kq Ro = 200 Q /3= 0.03 a) dentify the type of feedback. b) Derive the percentage variation in closed loop voltage gain t1g,/g" c) Determine the percentage variation in closed loop voltage gain if open loop voltage gain AMB = 10. d) Derive the closed loop voltage gain G,Ciw) and determine the bandwidth if A v (j co ) = A Ṃ " 1+.lW Ole e) Find and compare the gain-bandwidth products of the basic amplifier and the feedback amplifier. 0) S'c:ui e.,. _ ':::~, ~ -~re <) e.- ~e.cl bc.j.:.... b) A....1c.-, C-r = CA~S"M'i P' S Mr ~~~ '\ v!-t- ft~ -= dl Ac.) dpr c.l 11<. 1-+ ~~ " - ( 1-+ '1(1) - 0,~ -::. = ~ Av (-+~r-) C!+ A,~)2- ~r--; "Tk" tl G." d p,,, 6&" 6Av ::.:?)." fi." (1-'~f") (::;" /'V -"A,~ A./ f.. A;l G:- " G" ( :AVf} t:.a"" -10~- A.,~ \D~ ~O = qr,'j.q 8

~) &,, (1"') := - A s;v""~ Av(iw ) p i S 1"..Nf~.0~rd ~ +A~{jwl ~ l-,.,a """ A+ 1-- A""1.3 ~"' 1+1" ""t. W",A""e, -p, U 1+ -1+ 1-'" A 'l "'6, vel (,.t. 1-+ 1- r~ W t 1-+ 1 ' Wl t.v. A "(j e) &..;.,- baru>iw't.lfh f'~ A" ~ ~r 1tn(3' lvc =- -folt,40 ) = 10 1