Collective and non-flow correlations in event-by-event hydrodynamics

Similar documents
Collective Dynamics of the p+pb Collisions

arxiv: v2 [nucl-th] 24 Sep 2012

Beam energy scan using a viscous hydro+cascade model

Heavy Ions at the LHC: First Results

Predictions for hadronic observables from. from a simple kinematic model

Beam energy scan using a viscous hydro+cascade model: an update

Hadronic equation of state and relativistic heavy-ion collisions

Selected Topics in the Theory of Heavy Ion Collisions Lecture 1

Hints of incomplete thermalization in RHIC data

Selected Topics in the Theory of Heavy Ion Collisions Lecture 1

First results with heavy-ion collisions at the LHC with ALICE

Constraining the QCD equation of state in hadron colliders

p fluctuations Piotr Bożek with: W. Broniowski, arxiv: and S. Chatterjee in progress AGH University of Science and Technology, Kraków

Event-by-event distribution of azimuthal asymmetries in ultrarelativistic heavy-ion collisions

Heavy Ion Results from the ALICE Experiment

Review of collective flow at RHIC and LHC

Global and Collective Dynamics at PHENIX

Uncertainties in the underlying e-by-e viscous fluid simulation

In this chapter we will discuss the effect of shear viscosity on evolution of fluid, p T

Ultra-Relativistic Heavy Ion Collision Results

arxiv: v1 [nucl-th] 11 Aug 2013

Inclusive distributions at the LHC as predicted from the DPMJET-III model with chain fusion

Flow Harmonic Probability Distribution in Heavy Ion Collision

Anisotropic Flow: from RHIC to the LHC

arxiv: v1 [nucl-ex] 11 Jul 2011

Current Status of QGP hydro + hadron cascade approach

Predictions for 5.02A TeV Pb+Pb Collisions from A Multi-Phase Transport Model

Overview of flow results from ALICE experiment

Throwing triangles against a wall

Quark-Gluon Plasma Physics

Event anisotropy at RHIC

INITIAL ENERGY DENSITY IN P+P AND A+A COLLISIONS UNIVERSE 3 (2017) 1, 9 ARXIV: MANUSCRIPT IN PREPARATION

Nearly Perfect Fluidity: From Cold Atoms to Hot Quarks. Thomas Schaefer, North Carolina State University

Strongly interacting quantum fluids: Experimental status

Hydrodynamical description of ultrarelativistic heavy-ion collisions

Fluctuation and flow probes of early-time correlations in relativistic heavy ion collisions

Space-time evolution of the Quark Gluon Plasma. Klaus Reygers / Kai Schweda Physikalisches Institut University of Heidelberg

Perfect-fluid hydrodynamics for RHIC successes and problems

Extracting ˆq from single inclusive data at RHIC and at the LHC for different centralities: a new puzzle?

Sub-hadronic degrees of freedom in ultrarelativistic nuclear collisions at RHIC and beyond

Further development of the hydrokinetic model and description of the RHIC and LHC A+A femtoscopic data

Lattice based Equation(s) of State and its (their) effect(s) on the hydrodynamical evolution

arxiv: v1 [nucl-ex] 6 Dec 2011

arxiv: v2 [nucl-th] 11 Feb 2013

Soft Physics in Relativistic Heavy Ion Collisions

MIXED HARMONIC FLOW CORRELATIONS

HOT HADRONIC MATTER. Hampton University and Jefferson Lab

The Core Corona Model

Exploring quark-gluon plasma in relativistic heavy-ion collisions

arxiv: v1 [nucl-th] 29 Jun 2018

Azimuthal angle dependence of HBT radii with respect to the Event Plane in Au+Au collisions at PHENIX

Studying collective phenomena in pp and A-A collisions with the ALICE experiment at the LHC

Equation of state. Pasi Huovinen Uniwersytet Wroc lawski. Collective Flows and Hydrodynamics in High Energy Nuclear Collisions

Recent Results from RHIC: On the trail of the Quark-Gluon Plasma

Lambda-Lambda correlation from an integrated dynamical model

Alpha clustering from relativistic collisions

UNIVERSITÀ DEGLI STUDI DI CATANIA INFN SEZIONE DI CATANIA

NEW EXACT AND PERTURBTIVE SOLUTIONS OF RELATIVISTIC HYDRO A COLLECTION OF RECENT RESULTS

Lecture 12: Hydrodynamics in heavy ion collisions. Elliptic flow Last lecture we learned:

Particle correlations in such collision?! N=n(n-1)/2. azimuthal, back-to back, multiplicity... close velocity,

Soft physics results from the PHENIX experiment

Jet and bulk observables within a partonic transport approach

Intersections of nuclear physics and cold atom physics

Searches for Chiral Effects and Prospects for Isobaric Collisions at STAR/RHIC

HEAVY-ION SESSION: A (quick) INTRODUCTION

UNIVERSITÀ DEGLI STUDI DI CATANIA INFN-LNS. inziale nel plasma creato nelle collisioni ad energie ultra-relativistiche

Flow in p-pb collisions at 5 TeV?

Throwing triangles against the wall:

Experimental signatures of perfect fluidity at RHIC. Derek Teaney Arkansas State University

Glauber modelling in high-energy nuclear collisions. Jeremy Wilkinson

(Some) Bulk Properties at RHIC

Nuclear Geometry in High Energy Nuclear Collisions

CMS results on CME and CMW in ppb and PbPb

Dynamical equilibration of stronglyinteracting

Studies of QCD Matter From E178 at NAL to CMS at LHC

The Study of Flow and Non-flow Effects in Small Collision Systems

arxiv:nucl-ex/ v2 1 Mar 2007

Proton-lead measurements using the ATLAS detector

Ideal Hydrodynamics. Pasi Huovinen. JET Summer School. J. W. Goethe Universität. June 16, 2012, McGill University, Montreal, Canada

Collision Geometry and Flow in Uranium+Uranium Collisions

Correlations & Fluctuations in Large & Small Systems

Indications for a critical end point in the phase diagram for hot and dense nuclear matter

arxiv: v2 [nucl-ex] 15 Jun 2011

Initial state anisotropies in ultrarelativistic heavy-ion collisions from the Monte Carlo Glauber model

Magnetic field in heavy-ion collision and anisotropy of photon production

Monte Carlo Non-Linear Flow modes studies with AMPT

arxiv: v2 [nucl-th] 3 Apr 2018

Hagedorn States in Relativistic Heavy Ion Collisions

Collectivity in EPOS

arxiv: v2 [nucl-ex] 8 Sep 2016

Bulk matter formed in Pb Pb collisions at the LHC

Pion Transverse Momentum Spectrum, Elliptic Flow and Interferometry in the Granular Source Model in Ultra-Relativistic Heavy Ion Collisions

1992 Predictions for RHIC with HIJING

The unreasonable effectiveness of hydrodynamics in heavy ion collisions

Event geometrical anisotropy and fluctuation viewed by HBT interferometry

arxiv: v3 [nucl-th] 17 Jun 2015

30 years of Quark Gluon Plasma Studies lessons and perspectives

Relativistic Heavy-Ion Physics: A Minority Report. Lanny Ray UT Austin, April 7, 2014

Hydrodynamic response to initial state fluctuations

arxiv: v1 [hep-ph] 4 Jul 2007

Transcription:

Collective and non-flow correlations in event-by-event hydrodynamics Institute of Nuclear Physics Kraków WPCF 22-2.9.22

3 -D viscous hydrodynamics T T h /- v 3 [%] 25 2 5 5 2 5 5 2 5 5 ideal, e-b-e η/s=.8, e-b-e η/s=.6, e-b-e.5.5 2 2.5 3 p T [GeV] -5% central -2% central 3-4% central first 3D visc. : B.Schenke et al. c s 2.3.2. lqcd Wuppertal-Budapest dn/dη PS ] -2 dy) [GeV dp dn/(2 π p 6 5 4 3 2 Au-Au 2GeV 8 PHOBOS c=-6%,...,45-55% BRAHMS c=-5% 7-6 -4-2 2 4 6 3 - -3-5 η PS Au-Au 2GeV PHENIX data π -5% visc. hydro ideal fluid 2 4 6 8 T [MeV] lqcd Hadron Gas -7 ideal fluid visc. hydro 4-5% -9.5.5 2 2.5 3 p [GeV] T η/s =.8(.6)

Τ fmc high multiplicity p-pb event 5 4 3 2 4 2 2 4 y fm Event-by-event hydrodynamics Glauber initial conditions Au-Au 2GeV Cu-Au 2GeV p-pb 4.4TeV d-pb 3.3TeV

p-pb, d-pb @ LHC dn 8 dη PS 2 6 4 2 ALICE Pb-Pb 2.76TeV 7-8% 6-7% d-pb 3.TeV p-pb 4.4TeV d-pb 6.22TeV CMS 7TeV p-pb 8.8TeV 2 3 4 5 6 7 8 9 TeV s NN large multiplicity - large fireball - collective expansion?

Fireball in p-pb ) part P(N.6 p-pb Glauber Monte-Carlo.4.2..8.6.4.2 8 N Part (32-49%) N Part (4-32%) 7 8 N Part (-4%) 5 5 2 25 3 N part ε.8.6.4.2 p-pb Glauber Monte-Carlo ε 2 ε 3 5 5 2 25 3 35 N part

v 2.2..8.6.4.2 p-pb 4.4TeV 8 N part N part 7 8 N part v 3.2..8.6.4.2 p-pb 4.4TeV 8 N part N part 7 8 N part.5.5 2 2.5 p [GeV].5.5 2 2.5 p [GeV] elliptic flow in p-pb triangular flow

d-pb v 2.25.2.5 d-pb 3.TeV dn 4 dη PS 2 8 6 4 2 d-pb 3.TeV large elliptic flow 27 6 N part N part N part 26 5 p-pb 8 N part -4-2 2 4 η PS y fm 3 2 2..5 27 N part 6 N part 26 5 N part.5.5 2 2.5 p [GeV] 3 32 2 3 x fm

v 2.2..8.6.4.2 ALICE Pb-Pb hydro p-pb hydro d-pb 2 4 6 8 2 4 dn/dη collective flow effects peripheral Pb-Pb can be observed p-pb (d-pb) is not p-p superposition only p-p as baseline PS

Au Au Au d d d Event by event Cu-Au@2 GeV 2.5 2.5.5 -.5 - -.5 F F F -F F F -5-4 -3-2 - 2 3 4 5 d-au (Bialas Czyz) fη.8.6.4.2 f Η fη f Η f Η f Η 5 2.5 2.5 5 Η dn ch dη PS 4 3 2 Cu-Au 2GeV -5% 2-3% -4-2 2 4 η PS

Directed flow Cu-Au@2GeV. (%) v -. -.2 -.3 Cu-Au 2GeV v {RP} η/s=.8 v {RP} η/s=.6-4 -2 2 4 η PS - odd and even component - even component from fireball asymmetry 6 (%) 5 Cu-Au 2GeV c=2-3% v 4 v {EP} 3 2 v {EP} η/s=.6 v {RP} (even) v {RP} (odd) -.5.5 2 p [GeV] T fluctutations increase v

Directed flow in Au-Au@2 GeV (%) v.5 STAR c=5-4% τ =.2fm/c τ u x = xp p ǫ = x(p 2 3 p ǫ η τ ) -.5 3D hydro η/s=.8 η/s=.6-4 -2 2 4 η PS τ Y = ηp τ(p ǫ) = η(p 4 3 τ(p ǫ) η τ ) pressure anisotropy

Size fluctuations p fluctuations - v 6 N w r 2 2 3.4fm p 563MeV 6 N w r 2 2 2.38fm p 622MeV y fm 3 y fm 3 3 a 3 b 6 6 6 3 3 6 6 3 3 6 x fm x fm proposed by Broniowski et al. Phys.Rev. C8 (29) 592 : two-shots calculation

> (GeV) <p T.7.68.66.64.62.6.58.56.54 N w w=.52 2 2.2 2.4 2.6 2.8 3 3.2 3.4 <r> (fm) (p i p )(p j p ) /2 p

PHENIX data vs. hydro. p Ti p Tj 2 pt 5 4 3 2 2 3 4 5 6 7 c p Ti p Tj 2 pt 3.5 3. 2.5 2..5..5..5..5 2. 2.5 3. 3.5 p max T GeV

HBT of fluctuating fireballs Τ fmc 7.5 5 2.5 single event smooth i.c. 7.5 5 2.5 2.5 5 7.5 x fm can the lumpy surface be observed?

HBT of fluctuating fireballs R out [fm] 6 4 (a) c=-5% Τ fmc 7.5 R side [fm] 6 4 Au-Au 2GeV STAR Data (b) 5 single event smooth i.c. 2.5 7.5 5 2.5 2.5 5 7.5 x fm can the lumpy surface be observed? R long [fm] R out /R side ev-by-ev average (c).5 (d).5.2.3.4.5 k T [GeV]

Charge balancing local charge conservation charge balance function _ p u _ p 2 Bass et al. (2)

Non-flow effect on v n v 2.4.2..8.6.4.2 v.22 2.2.8.6.4.2..8.6.4.2 PHENIX c=-% STAR v 2 v 2 ch. balan. hydro ch. balan. η/s=.6.2.4.6.8.2.4.6.8 2 p [GeV] T PHENIX c=3-4% STAR.2.4.6.8.2.4.6.8 2 p T a) hydro ch. bal. hydro b) hydro ch. balan. η/s=.6 [GeV] ] -3 [ v 2 n.9.8 (a) -5%.7.6.5.4.3.2. -2 -.5 - -.5.5.5 2 η (LS) 2 v 2 (CI)-v -3 7 6 STAR Data 5 4 3 2 hydro hydro ch. balan. hydro ch. balan. η/s=.6-2 3 4 5 6 7 8 dn/dη event-by-event

v - charge and momentum conservation transverse-momentum conservation lowers v 2 cos(φ φ 2 ) v 2 2..5..5 c 34 c 5 c 67x 3...2.4.6.8. P T tot GeV 3 2.5 (b) 3-4% 2.5.5 -.5 - -.5-2 -.5 - -.5.5.5 2 η comparison to the STAR data Borghini, Dinh, Ollitrault

CME signals cos(φ φ 2 ) cosαβ 3 5 4 3 2 PT not conserved STAR (-)-() Η s.6, T f 5 MeV Η s.6, T f 4 MeV Η s.8, T f 5 MeV Η s.8, T f 4 MeV 2 3 4 5 6 c LCC charge splitting C.I. - momentum conservation Pratt, Schlichting (2), Bzdak, Koch, Liao (2) cosαβ 3 cosαβ 3 6 5 4 3 2 PT not conserved charge indep. STAR Η s.6, T f 5 MeV Η s.6, T f 4 MeV Η s.8, T f 5 MeV Η s.8, T f 4 MeV 2 3 4 5 6 2.5 2..5..5. PT con served STAR c Η s.6, T f 5 MeV Η s.6, T f 4 MeV Η s.8, T f 5 MeV Η s.8, T f 4 MeV 2 3 4 5 6 c

CME signals cos(φ φ 2 2φ c ) cosαβ2γ 6 8 6 4 2 PT not conserved STAR Η s.6, T f 5 MeV Η s.6, T f 4 MeV Η s.8, T f 5 MeV Η s.8, T f 4 MeV 2 3 4 5 6 c LCC charge splitting charge indep.?? - momentum cons. for 3-part. - momentum cons. - part of the effect - flow cannot explain cos 2 (φ ) sin 2 (φ ) - η η 2 early correlations cosαβ2γ 6 cosαβ2γ 6 8 6 4 2 2 8 6 4 2 2 charge indep. PT not conserved STAR Η s.6, T f 5 MeV Η s.6, T f 4 MeV Η s.8, T f 5 MeV Η s.8, T f 4 MeV 2 3 4 5 6 PT c con served STAR Η s.6, T f 5 MeV Η s.6, T f 4 MeV Η s.8, T f 5 MeV Η s.8, T f 4 MeV 2 3 4 5 6 c

CME signals cos(2φ 2φ 2 4φ c ) 8 8 cosαβ2γ 6 6 4 2 PT not conserved STAR Η s.6, T f 5 MeV Η s.6, T f 4 MeV Η s.8, T f 5 MeV Η s.8, T f 4 MeV cos2α2β4γ 6 PT not conserved 6 Η s.6, T f 5 MeV Η s.6, T f 4 MeV Η s.8, T f 5 MeV Η s.8, T f 4 MeV 4 2 2 2 3 4 5 6 2 3 4 5 6 c c negligible charge splitting for the quadrangular observable

Summary Ev-by-ev hydro for ppb, CuAu, AuAu Flow coefficients : v, v, v 2, v 3... size matters, p fluctuations from size fluctuations v2, v 3 : hydro non-flow - non-flow increases v n - η dependence directed flow - v - (odd) early expansion, sensitive to pressure asymmetry - (even) fluctuations (AuAu); asymmetryfluct. (CuAu) - strong non-flow : momentum conservation LCC small effect on HBT ashbt CME signals - local charge conservation charge splitting - momentum conservation explains partly the magnitude Collectivity (FSI) in ppb@lhc