Metal hydrides form halogen bonds: measurement of energetics of binding

Similar documents
Group 13 BN dehydrocoupling reagents, similar to transition metal catalysts but with unique reactivity. Part A: NMR Studies

Electronic Supplementary Information (ESI) for Chem. Commun.

Supporting Information

Supporting Information. 4-Pyridylnitrene and 2-pyrazinylcarbene

A Computational Model for the Dimerization of Allene: Supporting Information

Experimental Evidence for Non-Canonical Thymine Cation Radicals in the Gas Phase

Supporting Information

Supporting Information. O-Acetyl Side-chains in Saccharides: NMR J-Couplings and Statistical Models for Acetate Ester Conformational Analysis

SUPPLEMENTARY INFORMATION

SUPPORTING INFORMATION. Ammonia-Borane Dehydrogenation Promoted by a Pincer-Square- Planar Rhodium(I)-Monohydride: A Stepwise Hydrogen Transfer

CICECO, Departamento de Química, Universidade de Aveiro, Aveiro, Portugal

Two-Dimensional Carbon Compounds Derived from Graphyne with Chemical Properties Superior to Those of Graphene

Supporting Information For. metal-free methods for preparation of 2-acylbenzothiazoles and. dialkyl benzothiazole-2-yl phosphonates

Supporting Information. {RuNO} 6 vs. Co-Ligand Oxidation: Two Non-Innocent Groups in One Ruthenium Nitrosyl Complex

Supplementary Information:

Supporting Information

The Activation of Carboxylic Acids via Self Assembly Asymmetric Organocatalysis: A Combined Experimental and Computational Investigation

Non-Radiative Decay Paths in Rhodamines: New. Theoretical Insights

Supporting Information. Detection of Leucine Aminopeptidase Activity in Serum Using. Surface-Enhanced Raman Spectroscopy

Supporting Information

BINOPtimal: A Web Tool for Optimal Chiral Phosphoric Acid Catalyst Selection

Cationic Polycyclization of Ynamides: Building up Molecular Complexity

Supporting information

Supporting Information

Supplementary Information

Scalable synthesis of quaterrylene: solution-phase

Supplementary Material: 2D-IR Spectroscopy of an AHA Labelled Photoswitchable PDZ2 Domain

ELECTRONIC SUPPLEMENTARY INFORMATION

Department of Chemistry, School of life Science and Technology, Jinan University, Guangzhou , China b

SUPPORTING INFORMATION

Electronic Supplementary Information. Electron Mobility for All-Polymer Solar Cells

Ring expansion reactions of electron-rich boron-containing heterocycles. Supporting Information Contents

INTERNATIONAL JOURNAL OF RESEARCH IN COMPUTER APPLICATIONS AND ROBOTICS ISSN

Supplementary information

Supporting Information

Supporting Information Computational Part

Driving forces for the self-assembly of graphene oxide on organic monolayers

A dominant homolytic O-Cl bond cleavage with low-spin triplet-state Fe(IV)=O formed is revealed in the mechanism of heme-dependent chlorite dismutase

Electronic relaxation dynamics of PCDA PDA studied by transient absorption spectroscopy

DFT and TDDFT calculation of lead chalcogenide clusters up to (PbX) 32

Supplementary Information. Institut für Anorganische Chemie, Julius-Maximilians Universität Würzburg, Am Hubland, D Würzburg, Germany.

Electronic Supplementary Information (ESI)

Interfacial Hydration Dynamics in Cationic Micelles Using 2D-IR and NMR

A mechanistic study supports a two-step mechanism for peptide bond formation on the ribosome

Mechanism of Hydrogen Evolution in Cu(bztpen)-Catalysed Water Reduction: A DFT Study

Supporting Material Biomimetic zinc chlorin poly(4-vinylpyridine) assemblies: doping level dependent emission-absorption regimes

Planar Pentacoordinate Carbon in CAl 5 + : A Global Minimum

Table S1: DFT computed energies of high spin (HS) and broken symmetry (BS) state, <S 2 > values for different radical systems. HS BS1 BS2 BS3 < S 2 >

Supporting Information

Motooka, Nishi, Fukuoka , Japan.

3,4-Ethylenedioxythiophene (EDOT) and 3,4- Ethylenedioxyselenophene (EDOS): Synthesis and Reactivity of

Metal-Free Hydrogenation Catalysis of Polycyclic Aromatic Hydrocarbons

Supporting Information for. Acceptor-Type Hydroxide Graphite Intercalation Compounds. Electrochemically Formed in High Ionic Strength Solutions

Nucleophilicity Evaluation for Primary and Secondary Amines

Supporting Information

Out-Basicity of 1,8-bis(dimethylamino)naphthalene: The experimental and theoretical challenge

A Fluorescent Heteroditopic Hemicryptophane Cage for the Selective Recognition of Choline Phosphate

Decomposition!of!Malonic!Anhydrides. Charles L. Perrin,* Agnes Flach, and Marlon N. Manalo SUPPORTING INFORMATION

Supporting Information. Reactive Simulations-based Model for the Chemistry behind Condensed Phase Ignition in RDX crystals from Hot Spots

Supporting Information

Elucidating the structure of light absorbing styrene. carbocation species formed within zeolites SUPPORTING INFORMATION

SUPPLEMENTARY MATERIAL. Nitrogen Containing Ionic Liquids: Biodegradation Studies and

Highly sensitive detection of low-level water contents in. organic solvents and cyanide in aqueous media using novel. solvatochromic AIEE fluorophores

Observation of Guanidine-Carbon Dioxide Complexation in Solution and Its Role in Reaction of Carbon Dioxide and Propargylamines

Synthesis, electrochemical and theoretical studies of. V-Shaped donor-acceptor hexaazatriphenylene. (HAT) derivatives for second harmonic generation

Supplemental Material

SUPPORTING INFORMATION. In Search of Redox Noninnocence between a Tetrazine Pincer Ligand and Monovalent Copper

Aluminum Siting in the ZSM-5 Framework by Combination of

Supporting Information

How Large is the Elephant in the Density Functional Theory Room?

Unveiling the role of hot charge-transfer states. in molecular aggregates via nonadiabatic. dynamics

Two Spin-state Reactivity in the Activation and Cleavage of CO 2 by [ReO 2 ]

Supporting information for: Role of N7 protonation of guanine in determining structure, stability and function of RNA base pairs

Supporting Information

Atmospheric syn Vinyl Hydroperoxide Decay Mechanism. Austin Parsons and Liam Peebles (Kuwata; Macalester College)

Electronic Supporting Information

Detailed Syntheses. K 5H[Co II W 12O 40] 15H 2O (1). The synthesis was adapted from published methods. [1] Sodium tungstate

SUPPORTING INFORMATION

Electrochemical Reduction of Aqueous Imidazolium on Pt (111) by Proton Coupled Electron Transfer

Supporting Information. Synthesis, resolution and absolute configuration of chiral 4,4 -bipyridines

Organic photodiodes constructed from a single radial heterojunction. microwire

Ethynylene-linked Figure-eight. Octaphyrin( ): Synthesis and. Characterization of Its Two Oxidation States

Asymmetric Redox-Annulation of Cyclic Amines. Supporting Information

Infrared Spectra and Electronic Structure Calculations for the

Truong Ba Tai, Long Van Duong, Hung Tan Pham, Dang Thi Tuyet Mai and Minh Tho Nguyen*

Crystal structure landscape in conformationally flexible organo-fluorine compounds

Supporting Information (SI)

Supporting Information

Supporting Information

Magnesium-mediated Nucleophilic Borylation of Carbonyl Electrophiles

Electronic Supplementary Information

Journal of Chemical and Pharmaceutical Research, 2017, 9(2): Research Article

Supporting Information. for. Silylation of Iron-Bound Carbon Monoxide. Affords a Terminal Fe Carbyne

Supporting Information. Synthesis, Molecular Structure, and Facile Ring Flipping of a Bicyclo[1.1.0]tetrasilane

Supporting information. For. In-situ Identification of Intermediates of Benzyl. Coupled with DFT Calculation

Methionine Ligand selectively promotes monofunctional adducts between Trans-EE platinum anticancer drug and Guanine DNA base

Electronic Supplementary information

Ionic liquid electrolytes for reversible magnesium electrochemistry

A Key n π* Interaction in N-Acyl Homoserine Lactones

Electronic Supplementary Information for:

Transcription:

Metal hydrides form halogen bonds: measurement of energetics of binding Dan A. Smith, Lee Brammer,*, Christopher A. Hunter*, and Robin N. Perutz*, Department of Chemistry, University of York, Heslington, York, YO10 5DD, U.K. Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, U.K. Supplementary Information NMR spectroscopic measurements General procedures NMR data for Cp 2 Ta(H) 13 CO Standard method for titrations Additional methodology adopted for measuring highly reactive host-guest systems Composition of stock solutions Fitting of titration curves Titration curves and van t Hoff plots Stack plot of 1 H NMR spectra for the titration of Cp 2 TaH 3 vs Indole at 212K Interaction of Cp 2 Ta(H) 13 CO with AlMe 3 Calculations Cp 2 WH 2 and Cp 2 TaH 3 Cp 2 Ta(H)CO Summary of calculated energies Comparison of calculated metal-hydride distances and angles upon binding C 6 F 5 I Electrostatic potential plots for Cp 2 TaH 3, Cp 2 WH 2 and Cp 2 Ta(H)CO Reference 24 of text Cartesian coordinates and total energies for computed stationary points S2 S2 S2 S2 S2 S3 S4 S5 S10 S11 S12 S13 S16 S18 S19 S20 S21 S21 S1

NMR spectroscopic measurements General procedures All preparations were performed under argon using glove box or Schlenk line techniques. Solvents were dried and distilled over sodium and degassed prior to use. C 6 F 5 I and C 6 F 13 I were degassed and dried on 3Å molecular sieves. All chemicals and reagents were purchased from Aldrich. NMR spectra were collected on a Bruker AMX 500 MHz spectrometer. Complexes 1-5 were synthesised by known procedures or taken from laboratory stock. 1 The temperature of the NMR spectrometer was calibrated by using established methods. 2 NMR data for 5, Cp 2 Ta(H) 13 CO 1 H NMR (C 6 D 5 CD 3 ): δ 4.45 (10H, s, CH), 6.91 (1H, d, J CH 5.6 Hz, TaH). 13 C{ 1 H} NMR (C 6 D 5 CD 3 ): δ 261.3 (s), 82.5 (s). Standard method for titrations Stock solutions were prepared by recording the masses of host, guest and the solvent added. To Young s NMR tap tubes in a glove box were added approximately 400 μl of host stock solution and the exact mass recorded to allow a determination of the number of moles of host in the sample. Similarly the guest was added by syringe and the mass of the addition recorded. To standardise the volume of the samples solvent was added to give a volume of 600 μl. For the measurement the samples were kept in a cold bath at the approximate temperature of the spectrometer and allowed two minutes to equilibrate after insertion. Additional methodology adopted for measuring highly reactive host-guest systems Introduction of C 6 F 5 I into a solution of Cp 2 Ta(H)CO at RT resulted in immediate decomposition with no hydride resonances apparent by 1 H NMR spectroscopy and therefore the following procedure was used to prepare samples for low temperature (212 K) experiments. To a Young's tap NMR tube was added approximately 400 μl of host solution and the tube was weighed accurately. An additional volume of toluene was added so that upon addition of guest the volume 1 (a) Wilkinson, G.; Birmingham, J. M. J. Am. Chem. Soc. 1955, 77, 3421; (b) Green, M. L. H.; McCleverty, J. A.; Pratt, L.; Wilkinson, G. J. Chem. Soc. 1961, 4854; (c) Tebbe, F. N.; Parshall, G. W. J. Am. Chem. Soc. 1971, 95, 5412; (d) Baynham, R. F. G.; Chetwynd-Talbot, J.; Grebenik, P.; Perutz, R. N.; Powell, M. H. A. J. Organomet Chem. 1985, 284, 229. 2 Ammann, C.; Meier, P.; Merbach, A. E. J. Magn. Reson. 1982, 46, 319. S2

in all tubes totalled 600 μl. The mass of the sealed tube was then recorded and removed from the glove box. The tube was placed into a Schlenk-line adapter possessing both an inlet for inert gas and an open top to allow removal of the Young s cap. After cooling the samples to -78 C the guest solution was introduced by removal of the Young s cap under a strong flow of argon and injection by microsyringe. In all cases the samples were held below -50 C and the NMR experiments conducted within an hour of sample preparation. During the titration the tubes were inverted before insertion into the NMR machine to ensure mixing and checked for solubility of both host and guest components. After the measurement the total mass of the tube was recorded and from this subtracted the mass of the tube prior to guest addition therefore allowing the mass of guest added to be determined retrospectively. With these precautions only small quantities (1-2%) of decomposition were observed for 2, 3 and 5 in the NMR spectra by the presence of another cyclopentadienyl resonance. Titration samples of 4 were prepared analogously; however a greater degree of iodination of the metal hydride was observed (~10%) and consequently this was accounted for in the fitting analysis. Composition of stock solutions Table S1: Composition of stock solutions used for the preparation of samples for halogen and hydrogen bonding measurements by NMR spectroscopy. System studied Metal hydride / bond donor Metal hydride (host) stock m (MH) / mg solution m (solv) / mg Dilute Guest stock solution m (Guest) / mg m (solv) / mg Concentrated Guest stock solution m (Guest) / mg m (solv) / mg Cp 2 TaH 3 / C 6 F 5 I b 41.1 5531.8 103.7 635.8 417.3 328.8 Cp 2 TaH 3 / C 6 F 13 I b 42.3 5257.8 311 1540.8 500 0 Cp 2 TaH 3 / Indole a 52 6405 61 605 609 812 Cp 2 Ta(H) 13 CO / C 6 F 5 I a 20.6 3164.7 170.2 669 170.2 669 Cp 2 MoH 2 / C 6 F 5 I b 42 6307 227 503 500 0 Cp 2 WH 2 / C 6 F 5 I b 45.5 5528.5 126.8 940.5 399.5 308.6 Cp 2 WH 2 / Indole b 49.8 5160.8 59 603.8 406.2 842.1 Cp 2 ReH / C 6 F 5 I c 29.5 2714.6 0 0 500 0 a 100% toluene-d 8 b 33% toluene-d 8 / 67% toluene-h 8 c 50% toluene-d 8 / 50% toluene-h 8 S3

Fitting of titration curves The system involves the formation of the 1:1 adduct between the guest and the respective metal hydride, which takes place by R I H M halogen bonding or R H H M hydrogen bonding. In the scheme X-R is either a halogen or a hydrogen bond donor. There are two parameters to be fitted: the equilibrium constant K and the downfield shift from the signal of free metal hydride for the coordinated hydride of the adduct, Δδ H. The two parameters can be fitted for the whole range of temperatures without any restraints by using a Microsoft Excel macro programmed by Professor Christopher Hunter (University of Sheffield). ΔH 0 and ΔS 0 were determined from the van t Hoff plots of the equilibrium constants by linear regression. S4

Titration curves and van t Hoff plots Figure S1: Fit of the titration curves at different temperatures, showing observed values for δh vs. ratio of molar concentrations of C 6 F 5 I and Cp 2 TaH 3, (concentration of Cp 2 TaH 3 17 mmol dm -3 ). Figure S2: van t Hoff plot of the equilibrium constants from the NMR titration of C 6 F 5 I and Cp 2 TaH 3. S5

Figure S3: Fit of the titration curves at different temperatures, showing observed values for δh vs. ratio of molar concentrations of C 6 F 13 I and Cp 2 TaH 3, (concentration of Cp 2 TaH 3 17 mmol dm -3 ). Figure S4: van t Hoff plot of the equilibrium constants from the NMR titration of C 6 F 13 I and Cp 2 TaH 3. S6

Figure S5: Fit of the titration curves at different temperatures, showing observed values for δh vs. ratio of molar concentrations of indole and Cp 2 TaH 3, (concentration of Cp 2 TaH 3 20 mmol dm -3 ). Figure S6: van t Hoff plot of the equilibrium constants from the NMR titration of indole and Cp 2 TaH 3. S7

Figure S7: Fit of the titration curves at different temperatures, showing observed values for δh vs. ratio of molar concentrations of indole and Cp 2 WH 2, (concentration of Cp 2 WH 2 23 mmol dm -3 ). Figure S8: van t Hoff plot of the equilibrium constants from the NMR titration of indole and Cp 2 WH 2 S8

Figure S9: Fit of the titration curve at a single temperature, showing observed values for δh vs. ratio of molar concentrations of C 6 F 5 I and Cp 2 WH 2 (concentration of Cp 2 WH 2 17 mmol dm -3 ). Figure S10: Fit of the titration curve at a single temperature, showing observed values for δh vs. ratio of molar concentrations of C 6 F 5 I and Cp 2 MoH 2, (concentration of Cp 2 MoH 2 17 mmol dm -3 ). S9

Figure S11: Fit of the titration curve at 212 K, showing observed values for δh vs. ratio of molar concentrations of C 6 F 5 I and Cp 2 ReH, (concentration of Cp 2 ReH 32 mmol dm -3 ). Figure S12: Stack plot of the hydride region of the 1 H NMR spectra of Cp 2 TaH 3 at 212 K with increasing concentration of indole in toluene-d8. S10

Interaction of Cp 2 Ta(H) 13 CO with AlMe 3 IR and 1 H NMR spectra for hydride bound adducts of the type Cp(η 5 -C 5 R 5 )M(H)CO AlEt 3 (R = H, M = Nb; R = Me, M = Ta) are reported in the literature without 13 C NMR spectra. 3 Therefore, to complete the analysis of interaction of Cp 2 Ta(H)CO with strong Lewis acids we recorded the 13 C NMR spectra of isotopically labelled Cp 2 Ta(H) 13 CO as a function of AlMe 3 addition, showing that the reported upfield movement of the 1 H resonance is accompanied by a upfield shift of the 13 C resonance, see below. Figure S13: Plot of observed values for δh and δc vs. ratio of molar concentrations of AlMe 3 and Cp 2 Ta(H) 13 CO at 298 K. 3 (a) Tebbe, F. N. J. Am. Chem. Soc. 1973, 95, 5412. (b) McDade, C.; Gibson, V. C.; Santarsiero, B. D.; Bercaw, J. E. Organometallics 1988, 7, 1. S11

Calculations Calculations were performed by use of the Gaussian 09 series of programs 4 at the DFT level using the BHandHLYP functional. This functional has been shown to provide accurate energetics for noncovalently bonded systems. 5 The SDD effective core potential and associated basis sets was used for Ta, W and I. The 6-31G** basis set was used for C, H, F and O and diffuse functions were added to O and the hydrides. All the geometries were optimized without restraint and used an ultrafine grid together with tight optimization criteria. Energies and geometries were optimised for the separate components and for the adducts. Electrostatic potentials were plotted for the metallocene hydrides 1, 3 and 5 using the computational package GaussView 5. Interaction enthalpies were corrected for basis set superposition error (BSSE) using the counterpoise method. 6 In addition, the interaction energies were first calculated at the 6-31G* level with diffuse functions added to H and O and the differences between this level of theory and that with the additional polarisation function were 0.2 kj mol -1. 4 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven., T.; Montgomery, Jr., J. A. ; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Revision B.01; Gaussian Inc: Wallingford, CT, 2009. 5 (a) Csontos, J.; Palermo, N. Y.; Murphy, R. F.; Lovas, S. J. Comput. Chem. 2008, 29, 1344. (b) Ruiz, E.; Salahub, D. R.; Vela, A. J. Phys. Chem. 1996, 100, 12265. 6 Boys, S. F.; Bernardi, F. Mol. Phys. 1970, 19, 553. S12

Cp 2 WH 2 and Cp 2 TaH 3 For the complexes Cp 2 WH 2 and Cp 2 TaH 3 two possible modes of binding with C 6 F 5 I were explored; a bifurcated interaction bridging two hydrides and side-on interaction with a single hydride (Figure 1). In order to investigate these modes, three starting geometries for Cp 2 WH 2 IC 6 F 5 adducts were investigated (a) an approach of C 6 F 5 I along the bisector of the W-H bonds and (b) W-H I configurations with angles in the metal hydride plane of ~170 and ~190. The initial orientation of the plane of the arene was perpendicular to the WH 2 plane. Optimisations gave minima for Cp 2 WH 2 IC 6 F 5 adducts both for a bifurcated (Figure S14a) and a side-on (Figure S14b) mode with the bifurcated mode found to be more stable by 1.3 kj mol -1. The counterpoise corrected binding energies for the bifurcated adduct are calculated to be -13.4 kj mol -1 and for the side on adduct - 12.1 kj mol -1. The optimised geometries are shown in Figure S15 and Figure S16. For the bifurcated interaction, optimizations were also started from co-planar and perpendicular orientations of the arene relative to the WH 2 plane and converged to minima without rotation of the arene. The perpendicular geometry was calculated to be more stable by 0.3 kj mol -1. The starting geometries for Cp 2 TaH 3 IC 6 F 5 adducts were from a linear Ta-H central -I configuration and from Ta-H lateral -I configurations with angles in the metal hydride plane of ~170 and ~190. The initial orientation of the plane of the arene was perpendicular to the TaH 3 plane. Optimisations of these Cp 2 TaH 3 IC 6 F 5 adducts led to the location of a minimum for a bifurcated interaction (Figure S14c) with a counterpoise-corrected binding energy of -14.3 kj mol -1. Attempts to locate a minimum of a side-on interaction (Figure S14d) using tight convergence criteria were unsuccessful. The optimised geometries are shown in Figure S17. Figure S14: Investigated binding modes of the halogen bond donor C 6 F 5 I with Cp 2 TaH 3 and Cp 2 WH 2 where only the metal hydride plane is shown. S13

Figure S15: Optimised minima for the side-on adduct of C 6 F 5 I with Cp 2 WH 2 with cyclopentadienyl rings omitted for clarity. The colours for atoms are as follows; W blue, H light grey, C dark grey, I purple, F green.c I H 171.2. Figure S16: Optimised minima for the bifurcated adduct of C 6 F 5 I with Cp 2 WH 2 with cyclopentadienyl rings omitted for clarity. The colours for atoms are as follows; W blue, H light grey, C dark grey, I purple, F green. C I H 159.5. S14

Figure S17: Optimised minimum for the adduct of C 6 F 5 I with Cp 2 TaH 3 with cyclopentadienyl rings omitted for clarity. The colours for atoms are as follows; Ta blue, H light grey, C dark grey, I purple, F green. C I H central 173.5. C I H lateral 152.4. S15

Cp 2 Ta(H)CO The geometries for the calculations on Cp 2 Ta(H)CO IC 6 F 5 adducts were started from linear Ta-H I and C O I configurations. The initial orientation of the plane of the arene was perpendicular to the Ta(H)CO plane. Optimisation led to the location of two minima of interaction: (a) iodine bound to hydride and (b) iodine bound to oxygen (Figure S18). The interaction energy with the hydride site was greater than that of the oxygen site by 6.0 kj mol -1. The counterpoise-corrected energy calculated for binding the hydride was -14.3 kj mol -1 compared with the energy calculated for binding the carbonyl oxygen of -8.3 kj mol -1. The optimised geometries are shown in Figure S19 and Figure S20. Figure S18: Investigated binding modes of the halogen bond donor C 6 F 5 I with Cp 2 Ta(H)CO where only the metal hydride plane is shown. Figure S19: Optimised minimum for the hydride bound adduct of C 6 F 5 I with Cp 2 Ta(H)CO with cyclopentadienyl rings omitted for clarity. The colours for atoms are as follows; Ta blue, H light grey, C dark grey, I purple, F green, O red. C I H 171.5. S16

Figure S20: Optimised minimum for the oxygen bound adduct of C 6 F 5 I with Cp 2 Ta(H)CO with cyclopentadienyl rings omitted for clarity. The colours for atoms are as follows; Ta blue, H light grey, C dark grey, I purple, F green, O red. C I H 179.7. S17

Summary of calculated energies Table S2: Calculated counterpoise corrected binding energies of C 6 F 5 I with the metallocenes studied in kj mol -1 with BSSE energies listed in brackets. Mode of interaction Bifurcated Single site / side-on Cp 2 Ta(H)CO hydride bound Cp 2 Ta(H)CO oxygen bound n/a -14.3(5.8) n/a -8.3(3.3) Cp 2 TaH 3-13.4(5.3) No minima located Cp 2 WH 2-13.4(5.6) -12.1(5.9) S18

Comparison of calculated metal-hydride distances and angles upon binding C 6 F 5 I Table S3: Comparison of calculated metal-hydride bond distances upon binding of C 6 F 5 I M-H Distances (Å) Metallocene Metallocene + C 6 F 5 I Cp 2 Ta(H)CO hydride bound 1.758 1.772 Cp 2 TaH 3 Ta-H central, Ta-H side 1.758, 1.747 Ta-H central, Ta-H side: interacting side: non-interacting, Ta-H 1.766, 1.747, 1.745 Cp 2 WH 2 (bifurcated) 1.694 1.695 Cp 2 WH 2 (side) 1.694 W-H side: interacting side: non-interacting, W-H 1.692, 1.700 Table S4: Comparison of calculated metal-hydride angles upon binding of C 6 F 5 I H-M-X (X = H, CO) Angles ( ) Metallocene Metallocene + C 6 F 5 I Cp 2 Ta(H)CO hydride bound 91.06 92.64 Cp 2 TaH 3 63.08 Ta-H central-side: interacting central-side: non-interacting, Ta-H 64.59, 62.48 Cp 2 WH 2 (bifurcated) 77.22 80.70 Cp 2 WH 2 (side) 77.22 76.30 S19

Electrostatic potential plots for Cp 2 TaH 3, Cp 2 WH 2 and Cp 2 Ta(H)CO Figure S21: Electrostatic potential plot of Cp 2 TaH 3 in the TaH 3 plane. Contours are labelled in kj mol -1. Negative contours in red; positive contours in yellow. Figure S22: Electrostatic potential plot of Cp 2 WH 2 in the WH 2 plane. Contours are labelled in kj mol -1. Negative contours in red; positive contours in yellow. S20

Figure S23: Electrostatic potential plot of Cp 2 Ta(H)CO in the Ta(H)CO plane. Contours are labelled in kj mol -1. Negative contours in red; positive contours in yellow. Reference 24 of text Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven., T.; Montgomery, Jr., J. A. ; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Revision B.01; Gaussian Inc: Wallingford, CT, 2009. Cartesian coordinates and total energies for computed stationary points Cp 2 Ta(H)CO E = -557.638646434 au C 1.895176531300 0.650047980646 0.614788008979 C 1.675290708842-0.662016885816 1.094188011368 C 2.233544846393 0.538248441018-0.768774247817 C 1.903076777224-1.572739926853 0.024626124968 C 2.255709139066-0.830163356556-1.112183154166 H 1.880929689170 1.552690447482 1.193175826691 H 1.431142964020-0.929432345351 2.104531999147 H 2.479862968119 1.350218629396-1.425379801764 H 1.822446228403-2.642268839310 0.076874661577 H 2.467143377749-1.228668263548-2.084509401473 C -2.093249303822 0.188012953779 0.698029696398 S21

C -1.559800015843-1.036784144730 1.161703112122 C -2.453786185833-0.004746904593-0.670945196860 C -1.617279643448-1.980550921472 0.098092404153 C -2.176773439046-1.343635097310-1.019676986891 H -2.261854960985 1.072770964897 1.279643238052 H -1.219623475284-1.236513014349 2.159852610640 H -2.905956578459 0.726309763904-1.312971006909 H -1.292293090566-3.003092020266 0.141872793349 H -2.331399710886-1.784543303843-1.984363149338 Ta -0.050908613450-0.200756305327-0.477754326989 H -0.032516962832-0.665281876226-2.173555976101 C -0.292317951183 1.791466670854-0.986562155901 O -0.426911348163 2.915075647306-1.198708676110 Cp 2 Ta(CO)H IC 6 F 5 Hydride bound. Counterpoise corrected binding energy = -1296.4592483266 au, BSSE = 0.002208677 au C 1.888544947545 0.656599281048 0.596083235080 C 1.667518258783-0.649005295883 1.091873796886 C 2.233098455267 0.527279150284-0.784695118191 C 1.901600568917-1.573808507650 0.035879620546 C 2.259129111202-0.846141395266-1.108727563699 H 1.871297253874 1.566777837797 1.162581548449 H 1.419713906983-0.903168864440 2.104708740042 H 2.485138393655 1.330206500402-1.450302829350 H 1.822856800320-2.642686711379 0.102253673393 H 2.476955494726-1.257546300078-2.074500328153 C -2.089075027941 0.195821510409 0.679104407366 C -1.555316561559-1.022342278523 1.159149019098 C -2.451509367910-0.015407631963-0.686916359524 C -1.615141268401-1.981199532552 0.109295528151 C -2.176314106114-1.359966453162-1.016140323908 H -2.256970159418 1.088551954558 1.248741518639 H -1.214502684092-1.208311495788 2.159699934708 H -2.907550703656 0.705488724893-1.337750311310 H -1.291553791876-3.003469485361 0.167278891920 H -2.333936103546-1.814871169235-1.974073642645 Ta -0.050490223239-0.207468589209-0.494687937066 H -0.027465636308-0.711138298406-2.186764130115 C -0.292066013896 1.786985413319-0.999189513559 O -0.426504504876 2.910744585500-1.203164011041 I -0.191759084423 0.238478534659-4.787474151187 C -0.287377238153 0.692335047599-6.849420827185 C -1.496938526575 0.710098196154-7.519118140240 C 0.857487715540 0.982845047056-7.568264841011 C 0.803492630894 1.282963276038-8.915611430497 C -0.413941127066 1.295477732926-9.565372669495 C -1.568483745513 1.008183405757-8.866098371640 F 2.045244775253 0.981431514206-6.984964057538 F 1.911832959371 1.557518137550-9.584594811981 F -0.473916827156 1.581112042136-10.853404315921 F -2.736819473590 1.018998379639-9.487558010807 F -2.627889097025 0.440075736964-6.887416218214 S22

Cp 2 Ta(H)CO IC 6 F 5 Oxygen bound. Counterpoise corrected binding energy = -1296.456983428 au, BSSE = 0.0012722825 au C 3.983536222384-2.015078589030-1.058673358235 C 5.282686222369-1.633706233321-0.653267065244 C 3.259521087917-2.359415780484 0.123587049793 C 5.367053495558-1.769666334864 0.760682386505 C 4.125969235403-2.225435893800 1.229872121340 H 3.626773234118-2.095636136433-2.066567039982 H 6.084397944946-1.342199186198-1.304610627357 H 2.247384047265-2.713126086196 0.163146847681 H 6.230336387169-1.562832468402 1.364968731950 H 3.866871560670-2.406354863364 2.254082632175 C 3.983368311228 2.015089120881-1.058722849105 C 5.282549834255 1.633843147017-0.653302236051 C 3.259317613133 2.359393811648 0.123526202807 C 5.366899426823 1.769843159935 0.760643534984 C 4.125771742165 2.225513612572 1.229817625062 H 3.626598106497 2.095580500481-2.066619271663 H 6.084287400792 1.342381650961-1.304634398267 H 2.247151758861 2.713023474448 0.163071183704 H 6.230199330297 1.563104878066 1.364938225732 H 3.866649904466 2.406421234879 2.254024680705 Ta 3.779324240178 0.000008846040 0.212594608975 H 3.102267371794-0.000090058242 1.833677131821 C 1.896521715908-0.000072773824-0.627723165684 O 0.874249525440-0.000116024569-1.166275023848 C -4.323208839142-0.000019492541-0.114079644086 C -5.019417834413-1.186922383548 0.026814939460 C -6.373366973172-1.194353730434 0.300738481526 C -7.051024025421 0.000057842127 0.437867171341 C -6.373304563070 1.194430992895 0.300712345218 C -5.019355837665 1.186922830176 0.026789003027 F -7.021407118711-2.340120285049 0.431822402403 F -8.344965082683 0.000094543196 0.699697988241 F -7.021284775776 2.340234346980 0.431771131204 F -4.408161825183 2.352536981637-0.096847976515 F -4.408284750666-2.352571097846-0.096796579040 I -2.262297203995-0.000077372398-0.530249100254 Cp 2 TaH 3 E = -445.535453128 au C -2.139164 0.030226 1.145221 C -1.694326 1.292387 0.709812 C -2.387942-0.763048 0.000001 C -1.694325 1.292389-0.709801 C -2.139164 0.030231-1.145214 H -2.260872-0.281367 2.163305 H -1.424769 2.117723 1.341408 H -2.726459-1.780109-0.000001 H -1.424768 2.117728-1.341393 H -2.260870-0.281358-2.163300 S23

C 2.139162 0.030206 1.145219 C 1.694333 1.292370 0.709811 C 2.387933-0.763070-0.000001 C 1.694332 1.292373-0.709803 C 2.139160 0.030211-1.145216 H 2.260869-0.281388 2.163303 H 1.424784 2.117708 1.341407 H 2.726442-1.780134-0.000003 H 1.424781 2.117714-1.341394 H 2.260865-0.281379-2.163302 Ta -0.000003-0.301685 0.000003 H -0.000002-1.092474-1.557658 H -0.000002-1.092492 1.557656 H 0.000000-2.060019-0.000008 Cp 2 TaH 3 IC 6 F 5 bifurcated interaction. Counterpoise corrected binding energy = -1184.3557096063 au, BSSE = 0.0020143235 au C -2.332519-0.223827 0.309980 C -1.958110 1.128632 0.416805 C -2.170756-0.615276-1.040247 C -1.590566 1.586163-0.876249 C -1.739672 0.514077-1.776192 H -2.671956-0.852180 1.109076 H -1.972724 1.717185 1.314599 H -2.364039-1.591228-1.439955 H -1.279104 2.582041-1.128903 H -1.554469 0.542481-2.831348 C 1.760379-0.024314 1.535270 C 1.271480 1.286444 1.381544 C 2.400733-0.394652 0.328879 C 1.634481 1.741655 0.086413 C 2.346445 0.709956-0.554097 H 1.659820-0.639725 2.406906 H 0.739502 1.851341 2.123524 H 2.866198-1.339339 0.127783 H 1.426336 2.711864-0.323418 H 2.768457 0.748217-1.538423 Ta 0.053464-0.074614-0.219382 H 0.559502-0.312231-1.872925 H -0.244947-1.310666 0.978430 H 0.299055-1.735069-0.766706 C 1.111206-8.597381 0.656714 C -1.090517-7.231341-0.266664 C -0.035479-9.289977 0.325155 C 1.143641-7.222937 0.521923 C -1.140805-8.605823-0.138206 C 0.047806-6.517008 0.059869 F 2.172409-9.251095 1.101463 F -2.173230-6.615635-0.714641 F -0.075026-10.604119 0.451129 F 2.263495-6.599058 0.851262 I 0.111222-4.419298-0.142531 S24

F -2.241707-9.267575-0.456691 Cp 2 WH 2 E = -454.98949983 au C -3.862637531727 1.807797784572-1.159543375908 C -4.655860481128 1.554448001796 0.000000773471 C -2.589450167588 2.228708930071-0.703727218249 C -3.862638208288 1.807796260010 1.159545731171 C -2.589450560606 2.228707827584 0.703731070105 H -4.181528484848 1.757776909284-2.181679308102 H -5.691413180196 1.274802268131 0.000000284528 H -1.752645790215 2.475357750609-1.326592821930 H -4.181529686466 1.757773591808 2.181681418467 H -1.752646500923 2.475355590519 1.326597541464 C -3.862637098138-1.807796995242-1.159544754855 C -4.655860558999-1.554447963737-0.000000800760 C -2.589449959558-2.228708549763-0.703728263808 C -3.862638807106-1.807796999637 1.159544353516 C -2.589450983746-2.228708299355 0.703730025697 H -4.181527599012-1.757775530930-2.181680797515 H -5.691413245915-1.274802185111-0.000001572832 H -1.752645313930-2.475357052212-1.326593626592 H -4.181530727303-1.757774879100 2.181679930696 H -1.752647212130-2.475356447100 1.326596738109 W -3.009788775593-0.000000011116-0.000000139309 H -1.686256696298-0.000000376557 1.056967248890 H -1.686257430289 0.000000386456-1.056968427520 Cp 2 WH 2 IC 6 F 5 side on interaction, Counterpoise corrected binding energy = -1193.809268202477 au, BSSE = 0.002229908943 au C -2.471603809541-1.733075212270 0.912165097489 C -3.824830791458-1.423649423697 1.241521692458 C -2.469330856168-2.183178024550-0.431929103536 C -4.641541988890-1.672064243689 0.097439954229 C -3.787124864570-2.149301339310-0.924925331040 H -1.625230544037-1.705017885373 1.569232838492 H -4.177226645893-1.109578413179 2.204659789085 H -1.602818429026-2.476576755864-0.991014261367 H -5.707806893578-1.579976607098 0.035554159912 H -4.087012480628-2.408958633244-1.920779743532 C -2.397926574243 1.911884579601 0.824657748030 C -3.762226137591 1.673519012450 1.167166059746 C -2.378780995814 2.296536216051-0.539476981240 C -4.569347625145 1.899550096371 0.011694281450 C -3.697345581076 2.292299804080-1.031557678583 H -1.552739999677 1.881218273178 1.483134903737 H -4.126084514911 1.420498108865 2.143918808749 H -1.501668752859 2.527543445126-1.111152212106 H -5.638521243162 1.847738328559-0.046736422516 H -3.987467599973 2.515788376310-2.039011187994 W -3.189913416409 0.075788098751-0.334566921176 H -3.699093656705 0.047353550102-1.947669664077 S25

H -1.736180685002 0.025269368995-1.214871847041 C 5.180971625804 1.115793635475 0.256105483349 C 3.766503937033-1.240801834055 0.111370141571 C 5.840847857973-0.089462306620 0.385534816480 C 3.814413059503 1.130237438323 0.054557482657 C 5.132725807520-1.271908248281 0.313317864021 C 3.087338630441-0.043559286866-0.020717312238 F 5.858007084837 2.250165183041 0.325705791235 F 3.125632754421-2.396325570603 0.048885786275 F 7.146601271637-0.111217366382 0.578719698857 F 3.220655409180 2.306374918306-0.063796839212 I 1.000487513993-0.008882840688-0.333318764133 F 5.763479134011-2.428054441814 0.437801871969 Cp 2 WH 2 IC 6 F 5 bifurcated interaction, Counterpoise corrected binding energy = -1193.8097703908 au, BSSE = 0.0021497169 au C -3.857140917924 1.805650098367-1.159180880886 C -4.649342187173 1.549171799971-0.000004151863 C -2.585669029912 2.231697173327-0.703796244952 C -3.857135862914 1.805660229115 1.159166837720 C -2.585666109440 2.231703342189 0.703773239667 H -4.175281813377 1.752826510889-2.181416372900 H -5.684097795262 1.266806572016-0.000000719959 H -1.750008752397 2.482867326879-1.326683431683 H -4.175272273524 1.752845119032 2.181404047134 H -1.750003212365 2.482878846524 1.326654553071 C -3.857140352916-1.805660633768-1.159165155006 C -4.649342263175-1.549171730075 0.000008732023 C -2.585668809598-2.231703562170-0.703776062777 C -3.857136609941-1.805649639451 1.159182559325 C -2.585666556883-2.231697024620 0.703793417572 H -4.175280686474-1.752846288513-2.181401165725 H -5.684097853277-1.266806445511 0.000009141810 H -1.750008271064-2.482879440660-1.326660370999 H -4.175273577720-1.752825267822 2.181419244645 H -1.750003951566-2.482866881690 1.326677605517 W -2.996854934295-0.000000009767-0.000001464983 H -1.690742979144 0.000005081324 1.080282679938 H -1.690748664259-0.000005173065-1.080292354746 I 1.199266142094-0.000000022973 0.000003290741 C 5.402038567612 1.194190607740 0.000023616748 C 4.020665268424-1.185649558654-0.000021205683 C 6.093742800642 0.000000004477 0.000000444414 C 4.020665253021 1.185649551660 0.000024154053 C 5.402038581760-1.194190597875-0.000022057783 C 3.308857301696 0.000000000113 0.000001849246 F 6.063306839517 2.340316817502 0.000045914897 F 3.397458028590-2.352673120642-0.000043116772 F 7.414252815424 0.000000016552 0.000000042993 F 3.397457998563 2.352673106490 0.000047138643 F 6.063306867256-2.340316799024-0.000044567726 S26