JFETs - MESFETs - MODFETs

Similar documents
JFET/MESFET. JFET: small gate current (reverse leakage of the gate-to-channel junction) More gate leakage than MOSFET, less than bipolar.

8. Schottky contacts / JFETs

Schottky diodes. JFETs - MESFETs - MODFETs

Avalanche breakdown. Impact ionization causes an avalanche of current. Occurs at low doping

Current mechanisms Exam January 27, 2012

MOS Capacitors ECE 2204

GaN based transistors

Typical example of the FET: MEtal Semiconductor FET (MESFET)

Institute of Solid State Physics. Technische Universität Graz. Exam. Feb 2, 10:00-11:00 P2

Technische Universität Graz. Institute of Solid State Physics. 11. MOSFETs

Field effect = Induction of an electronic charge due to an electric field Example: Planar capacitor

Integrated Circuits & Systems

Electronic Circuits 1. Transistor Devices. Contents BJT and FET Characteristics Operations. Prof. C.K. Tse: Transistor devices

Lecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET:

Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes

Memories Bipolar Transistors

Lecture 11: J-FET and MOSFET

ECE-305: Fall 2017 MOS Capacitors and Transistors

MOSFET Physics: The Long Channel Approximation

Problem 9.20 Threshold bias for an n-channel MOSFET: In the text we used a criterion that the inversion of the MOSFET channel occurs when V s = ;2 F w

MOS Transistors. Prof. Krishna Saraswat. Department of Electrical Engineering Stanford University Stanford, CA

MOS CAPACITOR AND MOSFET

Long Channel MOS Transistors

Chapter 6: Field-Effect Transistors

Physics of Semiconductors 8 th

Semiconductor Physics fall 2012 problems

Introduction to Power Semiconductor Devices

Appendix 1: List of symbols

Lecture 04 Review of MOSFET

Transistors - a primer

MOS Transistor I-V Characteristics and Parasitics

Metal-oxide-semiconductor field effect transistors (2 lectures)

Electronics Fets and Mosfets Prof D C Dube Department of Physics Indian Institute of Technology, Delhi

à FIELD EFFECT TRANSISTORS

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. EECS 130 Professor Ali Javey Fall 2006

12. Memories / Bipolar transistors

MOSFET. Id-Vd curve. I DS Transfer curve V G. Lec. 8. Vd=1V. Saturation region. V Th

EE105 - Fall 2005 Microelectronic Devices and Circuits

Lecture 12: MOS Capacitors, transistors. Context

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors

R. Ludwig and G. Bogdanov RF Circuit Design: Theory and Applications 2 nd edition. Figures for Chapter 6

MOS Transistor Properties Review

MOSFET: Introduction

Schottky Rectifiers Zheng Yang (ERF 3017,

Lecture 20: Semiconductor Structures Kittel Ch 17, p , extra material in the class notes

Erik Lind

N Channel MOSFET level 3

ECE 342 Electronic Circuits. 3. MOS Transistors

GATE SOLVED PAPER - EC

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices.

MOS Transistor Theory

1. The MOS Transistor. Electrical Conduction in Solids

Introduction and Background

Spring Semester 2012 Final Exam

13. Bipolar transistors

S.E. Sem. III [ETRX] Electronic Circuits and Design I

PHYSICAL ELECTRONICS(ECE3540) CHAPTER 9 METAL SEMICONDUCTOR AND SEMICONDUCTOR HETERO-JUNCTIONS

ELEC 3908, Physical Electronics, Lecture 23. The MOSFET Square Law Model

Operation and Modeling of. The MOS Transistor. Second Edition. Yannis Tsividis Columbia University. New York Oxford OXFORD UNIVERSITY PRESS

Nanoelectronics. Topics

MSE 310/ECE 340: Electrical Properties of Materials Fall 2014 Department of Materials Science and Engineering Boise State University

Section 12: Intro to Devices

6.012 Electronic Devices and Circuits

Surfaces, Interfaces, and Layered Devices

For the following statements, mark ( ) for true statement and (X) for wrong statement and correct it.

Lecture 6: 2D FET Electrostatics

1 Name: Student number: DEPARTMENT OF PHYSICS AND PHYSICAL OCEANOGRAPHY MEMORIAL UNIVERSITY OF NEWFOUNDLAND. Fall :00-11:00

ECE315 / ECE515 Lecture-2 Date:

Lecture 3: CMOS Transistor Theory

Fundamentals of the Metal Oxide Semiconductor Field-Effect Transistor

Lecture 11: MOS Transistor

5. EXPERIMENT 5. JFET NOISE MEASURE- MENTS

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

16EC401 BASIC ELECTRONIC DEVICES UNIT I PN JUNCTION DIODE. Energy Band Diagram of Conductor, Insulator and Semiconductor:

Chapter 13 Small-Signal Modeling and Linear Amplification

Lecture 17 Field-Effect Transistors 2

Lecture 12: MOSFET Devices

! PN Junction. ! MOS Transistor Topology. ! Threshold. ! Operating Regions. " Resistive. " Saturation. " Subthreshold (next class)

ECE 497 JS Lecture - 12 Device Technologies

1st Year-Computer Communication Engineering-RUC. 4- P-N Junction

An Overview of the analysis of two dimensional back illuminated GaAs MESFET

Field-Effect (FET) transistors

EE105 - Fall 2006 Microelectronic Devices and Circuits

PHYSICAL ELECTRONICS(ECE3540) CHAPTER 9 METAL SEMICONDUCTOR AND SEMICONDUCTOR HETERO-JUNCTIONS

Chapter 4 Field-Effect Transistors

The Devices: MOS Transistors

9. Semiconductor Devices /Phonons

ECE Branch GATE Paper The order of the differential equation + + = is (A) 1 (B) 2

Coherent Electron Focussing in a Two-Dimensional Electron Gas.

6.012 MICROELECTRONIC DEVICES AND CIRCUITS

ECE 546 Lecture 10 MOS Transistors

Transistor Noise Lecture 14, High Speed Devices

Semiconductor Physics Problems 2015

FIELD-EFFECT TRANSISTORS

Section 12: Intro to Devices

MMIX4B12N300 V CES = 3000V. = 11A V CE(sat) 3.2V. High Voltage, High Gain BIMOSFET TM Monolithic Bipolar MOS Transistor

Quantum Phenomena & Nanotechnology (4B5)

Practice 3: Semiconductors

1/13/12 V DS. I d V GS. C ox ( = f (V GS ,V DS ,V SB = I D. + i d + I ΔV + I ΔV BS V BS. 19 January 2012

Lecture 13 MOSFET as an amplifier with an introduction to MOSFET small-signal model and small-signal schematics. Lena Peterson

Transcription:

Technische Universität raz Institute of Solid State Physics JFETs - MESFETs - MOFETs

JFET n n-channel JFET S n-channel JFET x n 2 ( Vbi V) en S p-channel JFET 2 Pinch-off at h = x en n h Vp 2 V p = pinch-off voltage At Pinch-off, V = V bi -V p.

The drain is the side of the transistor that gets pinched off. JFET

http://lampx.tugraz.at/~hadley/psd/l9/gradual.php

JFET There is a long derivation to determine how the current depends on V and V. We will find a relatively simple formula (probably familiar to electrical engineers). Understanding the derivation is important for knowing when this formula is valid.

JFET dv I dr I dy Z( h x ( y)) n 1 1 1 ne N e dv I n n dy e N Z( h x ( y)) n n I is constant throughout the transistor I dy e N Z( h x ( y)) dv n n

JFET I dy e N Z( h x ( y)) dv n n V is a forward bias V(y) is a reverse bias. depletion width is a function of position x n 2 ( Vbi V( y) V ) ( y) en differentiate dx ( ) n y dv

JFET I dy e N Z( h x ( y)) dv n n V is a forward bias V(y) is a reverse bias. depletion width is a function of position x n 2 ( Vbi V( y) V ) ( y) en differentiate 1/2 dxn( y) 2 ( V ( ) ) 1 bi V y V 2 2 dv en en enxn( y) dv enx n dx n

JFET I dy e N Z( h x ( y)) dv n n from last slide dv enx n dx n dxn ( y) I dy en ennz( h xn( y)) xn( y) If I is known, this can be solved for x n (y).

JFET I dy e N Z( h x ( y)) dv n n dv enx I dy e N Z( hx ( y)) en xdx n n n n n dx n from a previous slide L xr en n ( n( )) n n 0 x I dy e N Z h x y xdx N Ze I h x x x x 2L 2 2 n R L R L L 2 2 2 3 3 3

JFET N Ze I h x x x x 2L 2 2 n R L R L 2 2 2 3 3 3 h 2Vp en x L 2 ( Vbi V ) en x R 2 ( Vbi V V ) en

JFET - drain current I V 2 Vbi V V 2Vbi V I p Vp 3 V p 3 V p 3/2 3/2 I p nn Ze h 2L 2 2 3 valid in the linear regime (until pinch-off)

JFET - Linear regime I V 2 Vbi V V 2Vbi V I p Vp 3 V p 3 V p 3/2 3/2 In the linear regime V << V sat. di dv

JFET - Linear regime I V 2 Vbi V V 2Vbi V I p Vp 3 V p 3 V p 3/2 3/2 In the linear regime V << V sat. di 1 1 Vbi V V I p dv Vp V p V p I p Vbi V I 1 V for V V Vp Vp sat variable resistor 1/2

JFET - Saturation regime I V 2 Vbi V V 2Vbi V I p Vp 3 V p 3 V p 3/2 3/2 set di /dv = 0 to find V sat 1/2 di 1 1 Vbi V V I p dv Vp V p V p 0 di /dv = 0 when Vbi V V 1 V Vsat Vp Vbi V p Substitute V sat into the equation at the top to find I sat

JFET - Saturation regime Vsat Vp Vbi V I V 2 Vbi V V 2Vbi V I p Vp 3 V p 3 V p 3/2 3/2 I sat 1 Vbi V 2Vbi V I p 3 Vp 3 V p 3/2 No V dependence Voltage controlled current source

JFET - transconductance In the saturation regime, I sat 1 Vbi V 2Vbi V I p 3 Vp 3 V p transconductance (describes how good the voltage controlled current source is) 3/2 g m di I p V V 1 dv V p Vp sat bi g m disat 2ZneN h Vbi V 1 dv L V p

JFET

High frequencies i in 2 fcv i out gmv for gain: i in i out average capacitance: f C gm 2C ZL x n f T f T is the frequency where the gain drops below 1 f T nenh 2 2 L 2

For velocity saturation, the approximation Ohm's law assumes v d = E f T vs L dv I dy Z( h x ( y)) n is not valid

JFET/MESFET JFET: small gate current (reverse leakage of the gate-to-channel junction) More gate leakage than MOSFET, less than bipolar. JFET has higher transconductance than the MOSFET. Used in low-noise, high input-impedance op-amps and sometimes used in switching applications. MESFET: usually constructed in compound semiconductor technologies lacking high quality surface passivation such as aas, InP, or SiC, and are faster but more expensive than silicon-based JFETs or MOSFETs. Production MESFETs are operated up to approximately 30 Hz, and are commonly used for microwave frequency communications and radar. Majority carrier device (like Schottky diode).

MOFET (HEMT) Modulation doped field effect transistor (MOFET) High electron mobility transistor (HEMT) Modulation doped field effect transistor High electron mobility transistor V T = Threshold voltage = voltage where charge is depleted

Heterostructure pn junction formed from two semiconductors with different band gaps

MOFET/HEMT undoped channel HEMT: HEMT devices are found in cell phones, electronic warfare systems, microwave and millimeter wave communications, radar, and radio astronomy. Ph Thesis Sergey Smirnov http://www.iue.tuwien.ac.at/phd/smirnov/node71.html

MOFET (HEMT) j nev ne E d n y I jzt Ze n E n s y t is the thickness of the 2E n s is the sheet charge at the interface in C/cm 2. n n s t V V( y) is the voltage between the gate and the 2E n s = 0 when V V( y) V T gate y 2E q CV en ( y) C V V ( y) V s g T

MOFET (HEMT) en ( y) C V V ( y) V s g B T The charge is zero when V V ( y) V is the charge on the 2E at point y B T solve for n s n s ( y) C V V ( y) V g B T e Substitute this in Ohm's law: I jzt Ze n E n s y

MOFET (HEMT) n s I jzt Ze n E ( y) n s y substitute n s in the top equation and substitute C V V( y) V g T e E y dv ( y) dy I Z C V V V( y) n T dv ( y) dy integrate along the length of the channel L V 0 0 Idy Z C V V V ( y) dv n T 2 Z V L I nc V VT V 2

MOFET (HEMT) 2 Z V n T L I C V V V di dv Z nc V VT V L 2 0 Set the derivative = 0 to find saturation voltage V V V sat T Substitute the saturation voltage into the formula at the top to find saturation current Z I C V V 2L 2 sat n T

MOFET/HEMT HEMT: HEMT devices are found in many types of equipment ranging from cell phones and BS receivers to electronic warfare systems, microwave and millimeter wave communications, radar, and radio astronomy. 600 Hz

an-hemt Source: Oliver Hilt, Bauteile aus an, ET Tagung Bad Nauheim 2011

Quantized conduction R K = h/e 2 = 25812.807557(18) Quantized conductance of point contacts in a two-dimensional electron gas, B. J. van Wees, H. van Houten, C. W. J. Beenakker, J.. Williamson, L. P. Kouwenhoven,. van der Marel, and C. T. Foxon, Phys. Rev. Lett. 60, 848-850 (1988).

Quantized conduction R K = h/e 2 = 25812.807557(18) Formation and Manipulation of a Metallic Wire of Single old Atoms, A. I. Yanson,. Rubio Bollinger, H.E. van den Brom, N. Agraït, J.M. van Ruitenbeek, Nature Oct. 1998.

Quantum Hall Effect Bz xy ne v 1, 2,3 h ve 2 Shubnikov-e Haas oscillations Resistance standard 25812.807557(18)

Technische Universität raz Institute of Solid State Physics MOSFETs functions as a switch ~ 1 billion /chip n - channel p - channel