A Verified ODE solver and Smale s 14th Problem

Similar documents
The Existence of Chaos in the Lorenz System

11 Chaos in Continuous Dynamical Systems.

The Flow of ODEs. Fabian Immler and Christoph Traut. Institut für Informatik, Technische Universität München {immler,

Chap. 20: Initial-Value Problems

Chapter 6 - Ordinary Differential Equations

Introduction Knot Theory Nonlinear Dynamics Topology in Chaos Open Questions Summary. Topology in Chaos

Round-off Error Analysis of Explicit One-Step Numerical Integration Methods

Lorenz like flows. Maria José Pacifico. IM-UFRJ Rio de Janeiro - Brasil. Lorenz like flows p. 1

Simple ODE Solvers - Derivation

Euler s Method applied to the control of switched systems

Runge-Kutta Theory and Constraint Programming Julien Alexandre dit Sandretto Alexandre Chapoutot. Department U2IS ENSTA ParisTech SCAN Uppsala

Manifesto on Numerical Integration of Equations of Motion Using Matlab

Logistic Map, Euler & Runge-Kutta Method and Lotka-Volterra Equations

Differential Equations

Computed Chaos or Numerical Errors. Lun-Shin Yao

A short introduction with a view toward examples. Short presentation for the students of: Dynamical Systems and Complexity Summer School Volos, 2017

Edward Lorenz: Predictability

An Introduction to Differential Algebra

NUMERICAL SOLUTION OF ODE IVPs. Overview

Construction of Lyapunov functions by validated computation

On the numerical integration of variational equations

EE222 - Spring 16 - Lecture 2 Notes 1

Solving PDEs with PGI CUDA Fortran Part 4: Initial value problems for ordinary differential equations

High-Order Representation of Poincaré Maps

Lecture 1: Introduction, history, dynamics, nonlinearity, 1-D problem, phase portrait

Numerical Algorithms as Dynamical Systems

The Reflection Theorem

Maps and differential equations

Solving Ordinary Differential equations

THREE DIMENSIONAL SYSTEMS. Lecture 6: The Lorenz Equations

ODE Runge-Kutta methods

FORECASTING ECONOMIC GROWTH USING CHAOS THEORY

Synchronization, Chaos, and the Dynamics of Coupled Oscillators. Supplemental 1. Winter Zachary Adams Undergraduate in Mathematics and Biology

Two-Point Boundary Value Problem and Optimal Feedback Control based on Differential Algebra

PowerPoints organized by Dr. Michael R. Gustafson II, Duke University

The family of Runge Kutta methods with two intermediate evaluations is defined by

Ordinary Differential Equations. Monday, October 10, 11

Verification of analog and mixed-signal circuits using hybrid systems techniques

PowerPoints organized by Dr. Michael R. Gustafson II, Duke University

A Rigorous Implementation of Taylor Model-Based Integrator in Chebyshev Basis Representation 1

Numerical Methods - Initial Value Problems for ODEs

Differential Equations

Numerical Methods for ODEs. Lectures for PSU Summer Programs Xiantao Li

Taylor Model Range Bounding Schemes

Deterministic Global Optimization for Dynamic Systems Using Interval Analysis

Mini project ODE, TANA22

Is the Hénon map chaotic

4 Stability analysis of finite-difference methods for ODEs

Anti-synchronization of a new hyperchaotic system via small-gain theorem

Lecture 7. Please note. Additional tutorial. Please note that there is no lecture on Tuesday, 15 November 2011.

CHAPTER 10 PERMUTATION ENTROPY, MULTISCALE PERMUTATION ENTROPY AND WAVELET TRANSFORM ANALYSIS OF HEART RATE VARIABILITY

Poincaré Map, Floquet Theory, and Stability of Periodic Orbits

Modeling & Simulation 2018 Lecture 12. Simulations

Solving Zhou Chaotic System Using Fourth-Order Runge-Kutta Method

The Conley Index and Rigorous Numerics of Attracting Periodic Orbits

Introduction to fractal analysis of orbits of dynamical systems. ZAGREB DYNAMICAL SYSTEMS WORKSHOP 2018 Zagreb, October 22-26, 2018

Tuning PI controllers in non-linear uncertain closed-loop systems with interval analysis

The Big, Big Picture (Bifurcations II)

Towards a Mechanised Denotational Semantics for Modelica

WHAT IS A CHAOTIC ATTRACTOR?

Lectures on Periodic Orbits

The Big Picture. Discuss Examples of unpredictability. Odds, Stanisław Lem, The New Yorker (1974) Chaos, Scientific American (1986)

The integrating factor method (Sect. 1.1)

Lecture 42 Determining Internal Node Values

Numerical solution of ODEs

On the stability of the three classes of Newtonian three-body planar periodic orbits

NONLINEAR DYNAMICS AND CHAOS. Numerical integration. Stability analysis

Time-adaptive methods for the incompressible Navier-Stokes equations

Computational project: Modelling a simple quadrupole mass spectrometer

One dimensional Maps

Perturbation theory, KAM theory and Celestial Mechanics 7. KAM theory

Constructing a chaotic system with any number of equilibria

Propagation of Uncertainties in Nonlinear Dynamic Models

Persistent Chaos in High-Dimensional Neural Networks

The Chemical Kinetics Time Step a detailed lecture. Andrew Conley ACOM Division

Round-off Error Analysis of Explicit One-Step Numerical Integration Methods

What we ll do: Lecture 21. Ordinary Differential Equations (ODEs) Differential Equations. Ordinary Differential Equations

On rigorous integration of piece-wise linear systems

CS 450 Numerical Analysis. Chapter 9: Initial Value Problems for Ordinary Differential Equations

Modeling and nonlinear parameter estimation with Kronecker product representation for coupled oscillators and spatiotemporal systems

Ordinary differential equations - Initial value problems

Review Higher Order methods Multistep methods Summary HIGHER ORDER METHODS. P.V. Johnson. School of Mathematics. Semester

MATH 415, WEEK 12 & 13: Higher-Dimensional Systems, Lorenz Equations, Chaotic Behavior

H. Koçak - K. Palmer - B. Coomes SHADOWING IN ORDINARY DIFFERENTIAL EQUATIONS

Bifurcation and chaos in simple jerk dynamical systems

Certified Roundoff Error Bounds using Semidefinite Programming

ORBIT 14 The propagator. A. Milani et al. Dipmat, Pisa, Italy

Chaos in the Hénon-Heiles system

Hopf Bifurcation of a Nonlinear System Derived from Lorenz System Using Centre Manifold Approach ABSTRACT. 1. Introduction

Nonlinear Prediction for Top and Bottom Values of Time Series

THEODORE VORONOV DIFFERENTIABLE MANIFOLDS. Fall Last updated: November 26, (Under construction.)

Relational Interfaces and Refinement Calculus for Compositional System Reasoning

Chapter 11 ORDINARY DIFFERENTIAL EQUATIONS

Mathematical Foundations of Neuroscience - Lecture 7. Bifurcations II.

COMPARISON OF THE INFLUENCES OF INITIAL ERRORS AND MODEL PARAMETER ERRORS ON PREDICTABILITY OF NUMERICAL FORECAST

Scientific Computing: An Introductory Survey

Numerical Analysis II. Problem Sheet 12

Affine Arithmetic: Concepts and Applications

ACCELERATION OF RUNGE-KUTTA INTEGRATION SCHEMES

Graded Project #1. Part 1. Explicit Runge Kutta methods. Goals Differential Equations FMN130 Gustaf Söderlind and Carmen Arévalo

Transcription:

A Verified ODE solver and Smale s 14th Problem Fabian Immler Big Proof @ Isaac Newton Institute Jul 6, 2017 = Isabelle λ β α

Smale s 14th Problem A computer-assisted proof involving ODEs. Motivation for Formal Verification considered important 1 / 30

Smale s 14th Problem A computer-assisted proof involving ODEs. Motivation for Formal Verification considered important computer-assisted proof : additional value of formal proof 1 / 30

Smale s 14th Problem A computer-assisted proof involving ODEs. Motivation for Formal Verification final theorem considered important computer-assisted proof : additional value of formal proof risk of Mexican hat specific lemmas general purpose lemmas Mexican Hat [Geuvers, MAP 2004] via [Boldo, 2004] 1 / 30

Smale s 14th Problem A computer-assisted proof involving ODEs. Motivation for Formal Verification considered important computer-assisted proof : additional value of formal proof risk of Mexican hat HOL-Analysis 1 / 30

Smale s 14th Problem A computer-assisted proof involving ODEs. Motivation for Formal Verification considered important computer-assisted proof : additional value of formal proof risk of Mexican hat interesting mathematics (ODEs, dynamical systems) HOL-ODE HOL-Analysis 1 / 30

Smale s 14th Problem A computer-assisted proof involving ODEs. Motivation for Formal Verification considered important computer-assisted proof : additional value of formal proof risk of Mexican hat interesting mathematics (ODEs, dynamical systems) general purpose ODE solver Numerics HOL-ODE HOL-Analysis 1 / 30

Smale s 14th Problem A computer-assisted proof involving ODEs. Motivation for Formal Verification considered important computer-assisted proof : additional value of formal proof risk of Mexican hat interesting mathematics (ODEs, dynamical systems) general purpose ODE solver final theorem Numerics HOL-ODE HOL-Analysis 1 / 30

History 2 / 30

Lorenz Equations (1963, E.N. Lorenz) model atmospheric flows ẋ = 10(y x) ẏ = x(28 z) y ż = xy 8 3 z 3 / 30

Lorenz Equations (1963, E.N. Lorenz) model atmospheric flows ẋ = 10(y x) ẏ = x(28 z) y ż = xy 8 3 z numerical simulations finite precision, approximate computations 3 / 30

Lorenz Equations (1963, E.N. Lorenz) model atmospheric flows ẋ = 10(y x) ẏ = x(28 z) y ż = xy 8 3 z numerical simulations finite precision, approximate computations 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 11 3 / 30

Lorenz Equations (1963, E.N. Lorenz) model atmospheric flows ẋ = 10(y x) ẏ = x(28 z) y ż = xy 8 3 z numerical simulations finite precision, approximate computations 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 chaos, butterfly effect 11 11 3 / 30

Lorenz Attractor numerical observations: chaotic, strange, hyperbolic 4 / 30

Lorenz Attractor numerical observations: chaotic, strange, hyperbolic the number of man, woman, and computer hours spent on [the Lorenz equations] [... ] must be truly immense [Sparrow, 1982] 4 / 30

Lorenz Attractor numerical observations: chaotic, strange, hyperbolic the number of man, woman, and computer hours spent on [the Lorenz equations] [... ] must be truly immense [Sparrow, 1982] no proofs 4 / 30

Geometric Model (1979) G Σ L G Geometric Lorenz Attractor [Williams, Guckenheimer, Yorke, 1979] 5 / 30

Problem 14: Lorenz Attractor Is the dynamics of the ordinary differential equations of Lorenz that of the geometric Lorenz attractor of Williams, Guckenheimer, and Yorke? From Steve Smale (1998): Mathematical Problems for the Next Century 6 / 30

Tucker s Proof (1998) ( #$ '# '$ &# &$ %# %$ "# "$ # $!"#!"$!# $ # "$!# $ # "$ +, "#!"$ ) * Poincaré section Σ 7 / 30

Tucker s Proof (1998) ( #$ '# '$ &# &$ %# %$ "# "$ # $!"#!"$!# $ # "$!# $ # "$ +, "#!"$ ) * Poincaré section Σ rigorous numerics for global behavior 7 / 30

Tucker s Proof (1998) ( #$ '# '$ &# &$ %# %$ "# "$ # $!"#!"$!# $ # "$!# $ # "$ +, "#!"$ ) * Poincaré section Σ rigorous numerics for global behavior propagation of interval enclosures (100 cpu hours) 7 / 30

Tucker s Proof (1998) ( #$ '# '$ &# &$ %# %$ "# "$ # $!"#!"$!# $ # "$!# $ # "$ +, "#!"$ ) * Poincaré section Σ rigorous numerics for global behavior propagation of interval enclosures (100 cpu hours) analysis (normal form theory) locally around the origin 7 / 30

http://www2.math.uu.se/~warwick/main/pre_thesis.html 8 / 30

Verification 9 / 30

Overview: Verified Rigorous Numerics for ODEs High Level: Reachability Analysis Medium Level: Enclosures/Expressions Lowest Level: Numbers 10 / 30

High Level: Reachability Analysis 11 / 30

Rigorous Enclosure for Returns 1 1 1 ( #$ '# '$ &# &$ %# %$ "# "$ # $!"#!"$!# $ # "$!# $ # "$ +, "#!"$ ) * 1 1 1 1 1 1 1 1 1 1 1 12 / 30

Intermediate Poincaré Sections / Splitting ( #$ '# '$ &# &$ %# %$ "# "$ # $!"#!"$!# $ # "$!# $ # "$ +, "#!"$ ) * 13 / 30

Hyperbolicity 1 #$ '# '$ &# &$ ( %# 1 %$ "# "$ # $!"#!"$!# $ # "$!# $ # "$ +, "#!"$ ) * 1 1 14 / 30

Program Verification Framework (Automatic) Refinement in Isabelle/HOL [Lammich] nondeterministic result monad datatype α nres = FAIL RES (α set) 15 / 30

Program Verification Framework (Automatic) Refinement in Isabelle/HOL [Lammich] nondeterministic result monad datatype α nres = FAIL RES (α set) RES S RES T S T 15 / 30

Program Verification Framework (Automatic) Refinement in Isabelle/HOL [Lammich] nondeterministic result monad datatype α nres = FAIL RES (α set) RES S RES T S T return x := RES {x} 15 / 30

Program Verification Framework (Automatic) Refinement in Isabelle/HOL [Lammich] nondeterministic result monad datatype α nres = FAIL RES (α set) RES S RES T S T return x := RES {x} spec P := RES {x. P x} 15 / 30

Program Verification Framework (Automatic) Refinement in Isabelle/HOL [Lammich] nondeterministic result monad datatype α nres = FAIL RES (α set) RES S RES T S T return x := RES {x} spec P := RES {x. P x} program correctness: x. P x = f x spec (λy. Q y) 15 / 30

Program Verification Framework (Automatic) Refinement in Isabelle/HOL [Lammich] nondeterministic result monad datatype α nres = FAIL RES (α set) RES S RES T S T return x := RES {x} spec P := RES {x. P x} program correctness: x. P x = f x spec (λy. Q y) transfer rules for refinement, e.g., (λ x. return ( f x), f ) R r S nres r 15 / 30

Inference Algorithm (à la Shankar) Operations: split-spec X := spec (λ(a, B). X A B) 16 / 30

Inference Algorithm (à la Shankar) Operations: split-spec X := spec (λ(a, B). X A B) flow-spec X t := spec (λr. φ(x, t) R) 16 / 30

Inference Algorithm (à la Shankar) Operations: split-spec X := spec (λ(a, B). X A B) flow-spec X t := spec (λr. φ(x, t) R) poincare-spec X Σ := spec (λi. P Σ (X ) I ) 16 / 30

Inference Algorithm (à la Shankar) Operations: split-spec X := spec (λ(a, B). X A B) flow-spec X t := spec (λr. φ(x, t) R) poincare-spec X Σ := spec (λi. P Σ (X ) I ) Invariant: x 0 X 0. t 0.φ(x 0, t) X P Σ (x 0 ) I 16 / 30

Medium Level: Enclosures and Rigorous Numerics 17 / 30

Enclosures not intervals: 18 / 30

Enclosures not intervals: but zonotopes: {l 0 + i ε i l i ε i [ 1; 1]} 18 / 30

Enclosures not intervals: but zonotopes: {l 0 + i ε i l i ε i [ 1; 1]} (l, {l 0 + i ε i l i ε i [ 1; 1]}) zonotope r 18 / 30

Enclosures not intervals: but zonotopes: {l 0 + i ε i l i ε i [ 1; 1]} (l, {l 0 + i ε i l i ε i [ 1; 1]}) zonotope r e.g., (split-zonotope, split-spec ) zonotope r r zonotope r r zonotope r nres r 18 / 30

Rigorous Numerics aexp = Add aexp aexp Mult aexp aexp Minus aexp Inverse aexp Num R Var N... [[Add a b]] vs = [[Mult a b]] vs = [[Minus a]] vs = [[Inverse a]] vs = [[Num r]] vs = [[Var i]] vs =... [[a]] vs + [[b]] vs [[a]] vs [[b]] vs [[a]] vs 1/[[a]] vs r vs! i Rigorous Numerics: approx-spec aexp X = spec (λr. x X. [[aexp ]] x R) Refinement: (approx, approx-spec ) Id r zonotope r r zonotope r nres r 19 / 30

Runge-Kutta methods x 0 ϕ O(h 2 ) h f (x 0 ) 0 h ODE: φ(t) = f (φ(t)) 20 / 30

Runge-Kutta methods ϕ O(h 2 ) h f (x 0 ) x 0 0 h ODE: φ(t) = f (φ(t)) Expressions: [[Euler aexp]] x0,h,ξ x 0 + h f (x 0 ) + O(h 2 ) [[RK aexp]] x0,h,ξ x 0 + h + O(h 3 ) 20 / 30

Runge-Kutta methods ϕ O(h 2 ) h f (x 0 ) x 0 0 h ODE: φ(t) = f (φ(t)) Expressions: [[Euler aexp]] x0,h,ξ x 0 + h f (x 0 ) + O(h 2 ) [[RK aexp]] x0,h,ξ x 0 + h + O(h 3 ) Mathematics: φ(x 0, h) x 0 + h f (x 0 ) O(h 2 ) φ(x 0, h)... O(h 3 ) 20 / 30

Runge-Kutta methods ϕ O(h 2 ) h f (x 0 ) x 0 0 h ODE: φ(t) = f (φ(t)) Expressions: [[Euler aexp]] x0,h,ξ x 0 + h f (x 0 ) + O(h 2 ) [[RK aexp]] x0,h,ξ x 0 + h + O(h 3 ) Mathematics: φ(x 0, h) x 0 + h f (x 0 ) O(h 2 ) φ(x 0, h)... O(h 3 ) Rigorous: approx-spec (RK aexp) (X, t) flow-spec X t 20 / 30

Derivatives w.r.t. initial value 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 21 / 30

Derivatives w.r.t. initial value 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 21 / 30

Derivatives w.r.t. initial value 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 21 / 30

Derivatives w.r.t. initial value 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 21 / 30

Derivatives w.r.t. initial value ODE f : R n R n : ẋ(t) = f (x) 22 / 30

Derivatives w.r.t. initial value ODE f : R n R n : Variational Equation: ẋ(t) = f (x) W (t) = Df (x(t)) W (t) 22 / 30

Derivatives w.r.t. initial value ODE f : R n R n : Variational Equation: ẋ(t) = f (x) W (t) = Df (x(t)) W (t) W (t) :: R n2 22 / 30

Derivatives w.r.t. initial value ODE f : R n R n : Variational Equation: ẋ(t) = f (x) W (t) :: R n2 W (t) = Df (x(t)) W (t) Algorithmic: variational equation on the level of expressions 22 / 30

Derivatives w.r.t. initial value ODE f : R n R n : ẋ(t) = f (x) Variational Equation: W (t) :: R n2 W (t) = Df (x(t)) W (t) Algorithmic: variational equation on the level of expressions Mathematics: W (t) = φ(x, t) x :: (R n l R n ) 22 / 30

Lowest Level 23 / 30

Numbers Software Floating Point Numbers m 2 e, m, e Z Explicit Rounding p (x) := x 2 p log 2 x 2 p log 2 x 24 / 30

Computations 25 / 30

Overview ( #$ '# '$ &# &$ %# %$ "# "$ # $!"#!"$!# $ # "$!# $ # "$ +, "#!"$ ) * 26 / 30

Computation 300 initial rectangles 27 / 30

Computation 300 initial rectangles with a 20 core machine: 27 / 30

Computation 300 initial rectangles with a 20 core machine: 155h cpu time 27 / 30

Computation 300 initial rectangles with a 20 core machine: 155h cpu time factor 17 27 / 30

Computation 300 initial rectangles with a 20 core machine: 155h cpu time factor 17 9h elapsed time 27 / 30

Computation 300 initial rectangles with a 20 core machine: 155h cpu time factor 17 9h elapsed time without C 1 : speedup of factor 10 27 / 30

50 40 10 30 5 20 0 10-5 0-15 -10-5 0 5 10 15-10 -15-10 -5 0 5 10 15 28 / 30

50 40 10 30 5 20 0 10-5 0-15 -10-5 0 5 10 15-10 -15-10 -5 0 5 10 15 28 / 30

50 40 10 30 5 20 0 10-5 0-15 -10-5 0 5 10 15-10 -15-10 -5 0 5 10 15 28 / 30

50 40 10 30 5 20 0 10-5 0-15 -10-5 0 5 10 15-10 -15-10 -5 0 5 10 15 28 / 30

50 40 10 30 5 20 0 10-5 0-15 -10-5 0 5 10 15-10 -15-10 -5 0 5 10 15 28 / 30

28 / 30

28 / 30

28 / 30

50 40 10 30 5 20 0 10-5 0-15 -10-5 0 5 10 15-10 -15-10 -5 0 5 10 15 28 / 30

50 40 10 30 5 20 0 10-5 0-15 -10-5 0 5 10 15-10 -15-10 -5 0 5 10 15 28 / 30

50 40 10 30 5 20 0 10-5 0-15 -10-5 0 5 10 15-10 -15-10 -5 0 5 10 15 28 / 30

by eval 29 / 30

Thank You. 30 / 30

Conclusion Many compromises: intervals/zonotopes/taylor models Euler/Runge-Kutta/Taylor series (linear) variational equation with generic solver software/hardware floating point numbers But modular and good enough. 31 / 30