CBSE QUESTION PAPER. MATHEMATICS,(1)1d

Similar documents
J{UV 65/2. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100. Series GBM

J{UV 65/3. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100. Series GBM

CBSE Question Paper. Mathematics Class-XII (set-1)

J{UV 65/1/C. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100. Series SSO

J{UV. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100. Series OSR/1/C H$moS> Z. 65/1/3

J{UV. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100. Series OSR/C H$moS> Z. 65/1

J{UV. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100. Series OSR/2 H$moS> Z. 65/2/3 Code No.

J{UV. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100. Series OSR/1/C H$moS> Z. 65/1/2 Code No.

J{UV. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100. Series OSR/1/C H$moS> Z. 65/1/1

J{UV 65/3. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100. Series SGN

J{UV 65/1. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100. Series SGN

J{UV. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100. Series OSR/2 H$moS> Z. 65/2/1 Code No.

J{UV 65/1/RU. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100. Series SSO

MT-03 June - Examination 2016 B.A. / B.Sc. Pt. I Examination Co-ordinate Geometry and Mathematical Programming Paper - MT-03

EMT December - Examination 2017 BAP Examination Elementary Mathematics Paper - EMT

CBSE QUESTION PAPER CLASS-X

MT-03 December - Examination 2016 B.A. / B.Sc. Pt. I Examination Co-ordinate Geometry & Linear Programming Paper - MT-03

g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 90 Time allowed : 3 hours Maximum Marks : 90

g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS

g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS

PH-02 June - Examination 2017 B.Sc. Pt. I Examination Oscillation and Waves. Paper - PH-02. Time : 3 Hours ] [ Max. Marks :- 50

{Magå V {dúwvj{vh$s VWm gmno{îmh$vm H$m {d{eîq> {gõmýv

J{UV (311) Time : 3 Hours ] [ Max i mum Marks : 100. Note : (i) This Question Paper consists of two Sections, viz., A and B.

g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS

g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 90 Time allowed : 3 hours Maximum Marks : 90

g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 90 Time allowed : 3 hours Maximum Marks : 90

MPH-03 June - Examination 2016 M.Sc. (Previous) Physics Examination Quantum Mechanics. Paper - MPH-03. Time : 3 Hours ] [ Max.

PH-03 December - Examination 2016 B.Sc. Pt. I Examination Electromagnetism. Paper - PH-03. Time : 3 Hours ] [ Max. Marks :- 50

g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 90 Time allowed : 3 hours Maximum Marks : 90

30/1/2 narjmwu H$moS> H$mo CÎma-nwpñVH$m Ho$ _win ð> na Adí` {bi & Candidates must write the Code on the title page of the answer-book.

{dúwv Mwpå~H$s {gõm V VWm ñnoñq >moñh$monr

30/1/3 narjmwu H$moS> H$mo CÎma-nwpñVH$m Ho$ _win ð> na Adí` {bi & Candidates must write the Code on the title page of the answer-book.

J{UV (Ho$db ZoÌhrZ narjm{w `m Ho$ {be) MATHEMATICS. g H${bV narjm II SUMMATIVE ASSESSMENT II. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 90.

Downloaded from g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS

g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS

g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 90 Time allowed : 3 hours Maximum Marks : 90

MSCPH-03 June - Examination 2017 MSC (Previous) Physics Examination Solid State Physics. Paper - MSCPH-03. Time : 3 Hours ] [ Max.

BMT June - Examination 2017 BSCP Examination Mathematics J{UV. Paper - BMT. Time : 3 Hours ] [ Max. Marks :- 80

II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS

g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS

MSCCH - 09 December - Examination 2015 M.Sc. Chemistry (Final) Examination Drugs and Pharmaceuticals Paper - MSCCH - 09

g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS

{Magå V {dúwvj{vh$s VWm gmno{îmh$vm H$m {d{eîq> {gõm V

g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 90 Time allowed : 3 hours Maximum Marks : 90

J{UV (311) Time : 3 Hours ] [ Max i mum Marks : 100. Note : (i) This Question Paper consists of two Sections, viz., A and B.

{dúwv Mwpå~H$s {gõm V VWm ñnoñq >moñh$monr

PH-06 June - Examination 2016 BSc Pt. II Examination Optics. àh$m{eh$s. Paper - PH-06. Time : 3 Hours ] [ Max. Marks :- 50

J{UV 65/2/1/F. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100. Series SSO/2

SUMMATIVE ASSESSMENT II J{UV MATHEMATICS

Set 1 30/1/1 narjmwu H$moS> H$mo CÎma-nwpñVH$m Ho$ _win ð> na Adí` {bi & Candidates must write the Code on the title page of the answer-book.

Downloaded from g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS


Set 3 30/1/3 narjmwu H$moS> H$mo CÎma-nwpñVH$m Ho$ _win ð> na Adí` {bi & Candidates must write the Code on the title page of the answer-book.

Downloaded from g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS

J{UVr ^m {VH$s VWm {Magå V m {ÌH$s

{ZX}e : h àíz-nì "A', "~' VWm "g' VrZ IÊS>m {d^m{ov h & àë oh$ IÊS> Ho$ {ZX}emZwgma àízm H$m CÎma Xr{OE&

àoau à^md {H$go H$hVo h?

J{UV MATHEMATICS. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 90 Time allowed : 3 hours Maximum Marks : 90 IÊS> A SECTION A

SET-I SECTION A SECTION B. General Instructions. Time : 3 hours Max. Marks : 100

Time allowed: 3 hours Maximum Marks: 90

This ques tion pa per con sists of 32 ques tions [Sec tion A (24) + Sec tion B (4+4)] and 12 printed pages. MATHEMATICS J{UV (311) 2...

Bg narjm _ {ZåZ{b{IV àíznì hm Jo

^m {VH$ {dkmz (g ÕmpÝVH$) 55/3/C. PHYSICS (Theory) {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70. Downloaded From:

J{UV 65/1/MT. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100. Series SSO

Series HRS/2 H$moS> Z. 31/2/2 Code No.

{dîm Am a à~ YZ na {díbofumë_h$

g[ Û œ t Æ *W 60 {_ZQ>

gm_mý` {ZX}e : àízm Ho$ CÎma {bizo h & (ii) g^r àíz A{Zdm` h & (iii) AmnH$mo ^mj A Am a ^mj ~ Ho$ g^r àízm Ho$ CÎma n WH²$-n WH²$ ^mj Ho$ AmYma na

J{UV (311) (narjm H$m {XZ d {XZmßH$) Signature of Invigilators 1... ({ZarjH$m Ho$ hòvmja) Bg ÌZ-nà nwpòvh$m Ho$ A VJ V 23 _w{ V n apple> h ü&

g[ Û œ t Æ *W Bg Am ZbmBZ narjm _ {ZåZmZwgma dñvw{zð> àh$ma H$s ~hþ{dh$ën àízmd{b`m hm Jr :

Downloaded from SET-1

Ord{dkmZ ({g m V) (314) Time : 3 Hours ] [ Max i mum Marks : 80. Note : (i) This Question Paper consists of two Sections, viz., A and B.

II SUMMATIVE ASSESSMENT II

g[ Û œ t Æ *W *Aä`Wu Ûmam {H$gr ^r àízmdbr _ àmßv A H$m H$mo g^r \$m _m] Ho$ A H$m Ho$ {dvau na {dmma H$aVo hþe ~og \$m _ go g_rh $V {H$`m OmVm h Ÿ&

^m {VH$ {dkmz (g ÕmpÝVH$) 55/3. PHYSICS (Theory) {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70. Series GBM

(ï) yvœ< Èœ W g -W g Æ Ê {[R [ ˆ[Û * à.3. `{X {ZåZ{b{IV du _mbm Ho$ Aja AnZm ñwmz Bg àh$ma ~Xb {H$ A, Z Ho$ ñwmz na Am OmE Am a Z, A Ho$ ñwmz na,

Series HRS H$moS> Z. 31/3 Code No. g H${bV narjm II SUMMATIVE ASSESSMENT II {dkmz SCIENCE

A H$ 1. VH $epšv H $ß`yQ>a kmz gm_mý` gmovvm A J«oOr ^mfm Am {H$H$ j_vm Hw$b

^m {VH$ {dkmz (g ÕmpÝVH$) PHYSICS (Theory) {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70. Series OSR H$moS> Z. 55/2/1 Code No.

`wzmbq>os> B {S>`m B í`moa g H $nzr {b{_q>os>

^m {VH$ {dkmz (g ÕmpÝVH$) PHYSICS (Theory) {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70. Series OSR H$moS> Z. 42/3 (SPL) Code No.

agm`z {dkmz (g ÕmpÝVH$) 56/1/G {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70 Series SSO

agm`z {dkmz (g ÕmpÝVH$) 56/2/G {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70 Series SSO

qhxr A{YH$mar H$s ^Vu {Z ešv OZm Ho$ {b`o {deof ^Vu hovw Am ZbmB Z narjm gymzm nwpñvh$m

{X Ý`y BpÝS>`m Eí`moaÝg H $nzr {b{_q>os>

gm_mý` A{YH$mar {Z ešv OZm Ho$ {b`o {deof ^Vu hovw Am ZbmB Z narjm gymzm nwpñvh$m

^m {VH$ {dkmz (g ÕmpÝVH$) 55/1/G. PHYSICS (Theory) {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70. Series SSO

{X Ý`y BpÝS>`m Eí`moaÝg H $nzr {b{_q>os>

ghm`h$ àemg{zh$ A{YH$mar (OZa{bñQ>) Ho$ M`Z ^Vu hovw Am Z-bmB Z narjm gymzm nwpñvh$m

~ H $ A m \ $ B { S > ` m

~ H $ A m \ $ ~ S > m X m

agm`z {dkmz (g ÕmpÝVH$) {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70 Series OSR/1/C H$moS> Z. 56/1/3 Code No.

1. _mz{gh$ `mo½`vm {_ZQ> 2. gm_mý` gmovvm {_ZQ> 3. A J«oOr ^mfm

Bg narjm _ {ZåZ{b{IV àíznì hm Jo. H ${f Ed J«m_rU {dh$mg

^m {VH$ {dkmz (g ÕmpÝVH$) 55/1/MT. PHYSICS (Theory) {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70. Series SSO

II SUMMATIVE ASSESSMENT II

agm`z {dkmz (g ÕmpÝVH$) 56/3 {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70 Series SGN

agm`z {dkmz (g ÕmpÝVH$) 56/1 {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70 Series SGN

agm`z {dkmz (g ÕmpÝVH$) 56/2 {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70 Series SGN

`wzmbq>os> B {S>`m B í`moa g H $nzr {b{_q>os>

Transcription:

CBSE QUESTION PAPER MATHEMATICS,()d Class-XII Ti me allowed : hours f.:mfftr'fffll: Maximum Marks: 00 'icfi: 00

gm_mý` {ZX}e : (i) (ii) (iii) (iv) (v) g^r àíz A{Zdm` h & Bg àíz nì _ 9 àíz h Omo Mma IÊS>m _ {d^m{ov h : A, ~, g VWm X & IÊS> A _ àíz h {OZ_ go àë`oh$ EH$ A H$ H$m h & IÊS> ~ _ 8 àíz h {OZ_ go àë`oh$ Xmo A H$ H$m h & IÊS> g _ àíz h {OZ_ go àë`oh$ Mma A H$ H$m h & IÊS> X _ 6 àíz h {OZ_ go àë`oh$ N>: A H$ H$m h & IÊS> A _ g^r àízm Ho$ CÎma EH$ eãx, EH$ dmš` AWdm àíz H$s Amdí`H$VmZwgma {XE Om gh$vo h & nyu àíz nì _ {dh$ën Zht h & {\$a ^r Mma A H$m dmbo àízm _ VWm N> A H$m dmbo àízm _ AmÝV[aH$ {dh$ën h & Eogo g^r àízm _ go AmnH$mo EH$ hr {dh$ën hb H$aZm h & H $bhw$boq>a Ho$ à`moj H$s AZw_{V Zht h & `{X Amdí`H$ hmo, Vmo Amn bkwjuh$s` gma{u`m± _m±j gh$vo h & General Instructions : (i) All questions are compulsory. (ii) The question paper consists of 9 questions divided into four sections A, B, C and D. Section A comprises of questions of one mark each, Section B comprises of 8 questions of two marks each, Section C comprises of questions of four marks each and Section D comprises of 6 questions of six marks each. (iii) (iv) (v) All questions in Section A are to be answered in one word, one sentence or as per the exact requirement of the question. There is no overall choice. However, internal choice has been provided in questions of four marks each and questions of six marks each. You have to attempt only one of the alternatives in all such questions. Use of calculators is not permitted. You may ask for logarithmic tables, if required.

IÊS> A SECTION A àíz g»`m go VH$ àë`oh$ àíz A H$ H$m h & Question numbers to carry mark each.. `{X {H$gr dj Amì`yh A Ho$ {be, A(adj A) = {b{ie & 8 0 0 8 h, Vmo A H$m _mz If for any square matrix A, A(adj A) = of A. 8 0 0, then write the value 8. k H$m _mz kmv H$s{OE {OgHo$ {be {ZåZ{b{IV \$bz x = na g VV h : f(x) = (x ) 6 x k,, x x Determine the value of k for which the following function is continuous at x = : f(x) = (x ) 6 x k,, x x

. kmv H$s{OE : sin x cos x sin x cos x Find : sin x cos x sin x cos x. g_vbm x y + z = 5 VWm 5x. 5y + 5z = 0 Ho$ ~rm H$s Xÿar kmv H$s{OE & Find the distance between the planes x y + z = 5 and 5x. 5y + 5z = 0. IÊS> ~ SECTION B àíz g»`m 5 go VH$ àë`oh$ àíz Ho$ A H$ h & Question numbers 5 to carry marks each. 5. `{X A H$mo{Q> H$m EH$ {df_-g_{_v Amì`yh h, Vmo {gõ H$s{OE {H$ det A = 0. If A is a skew-symmetric matrix of order, then prove that det A = 0. 6. \$bz f(x) = x x, [, 0] Ho$ {be amobo Ho$ à_o` Ho$ à`moj go c H$m _mz kmv H$s{OE & Find the value of c in Rolle s theorem for the function f(x) = x x in [, 0]. 7. EH$ KZ H$m Am`VZ 9 KZ go_r/go. H$s Xa go ~ T> ahm h & O~ KZ H$s ^wom 0 go_r h, Vmo CgHo$ n ð>r` joì\$b _ ~ T>moVar H$s Xa kmv H$s{OE & The volume of a cube is increasing at the rate of 9 cm /s. How fast is its surface area increasing when the length of an edge is 0 cm?

8. Xem BE {H$ \$bz f(x) = x x + 6x 00, na dy _mz h & Show that the function f(x) = x x + 6x 00 is increasing on. 9. q~xþam P(,, ) VWm Q(5,, ) H$mo {_bmzo dmbr aoim na pñwv EH$ q~xþ H$m x-{zx}em H$ h & CgH$m z-{zx}em H$$kmV H$s{OE & The x-coordinate of a point on the line joining the points P(,, ) and Q(5,, ) is. Find its z-coordinate. 0. EH$ nmgm, {OgHo$ \$bh$m na A H$,, bmb a J _ {bio h VWm, 5, 6 hao a J _ {bio h, H$mo CN>mbm J`m & _mzm KQ>Zm A h : àmßv g»`m g_ h VWm KQ>Zm B h : àmßv g»`m bmb h & kmv H$s{OE {H$ Š`m A VWm B ñdv Ì KQ>ZmE± h & A die, whose faces are marked,, in red and, 5, 6 in green, is tossed. Let A be the event number obtained is even and B be the event number obtained is red. Find if A and B are independent events.. Xmo XOu, A VWm B, à{v{xz H«$_e: < 00 VWm < 00 H$_mVo h & A EH$ {XZ _ 6 H$_rµO VWm n Q> {gb gh$vm h O~{H$ B à{v{xz 0 H$_rµOo VWm n Q>o {gb gh$vm h & `h kmv H$aZo Ho$ {be {H$ H$_-go-H$_ 60 H$_rµO o VWm n Q> {gbzo Ho$ {be àë`oh$ {H$VZo {XZ H$m` H$ao {H$ l_ bmjv H$_-go-H$_ hmo, a {IH$ àmoj«m_z g_ñ`m Ho$ ê$n _ gyì~õ H$s{OE & Two tailors, A and B, earn < 00 and < 00 per day respectively. A can stitch 6 shirts and pairs of trousers while B can stitch 0 shirts and pairs of trousers per day. To find how many days should each of them work and if it is desired to produce at least 60 shirts and pairs of trousers at a minimum labour cost, formulate this as an LPP.. kmv H$s{OE : Find : 5 8x x 5 8x x 5

IÊS> g SECTION C àíz g»`m go VH$ àë`oh$ àíz Ho$ A H$ h & Question numbers to carry marks each.. `{X tan x x tan x x h, Vmo x H$m _mz kmv H$s{OE & If tan x x tan x x, then find the value of x.. gma{uh$m Ho$ JwUY_m] H$m à`moj H$a, {gõ H$s{OE {H$ a a a a a (a ) AWdm Amì`yh A kmv H$s{OE {H$ 0 A 9 8 Using properties of determinants, prove that a a a a a (a ) OR 6

Find matrix A such that 0 A 9 8 5. `{X x y + y x = a b h, Vmo dy kmv H$s{OE & AWdm `{X e y (x + ) = h, Vmo Xem BE {H$ If x y + y x = a b dy, then find. d y dy. OR If e y (x + ) =, then show that d y dy. 6. kmv H$s{OE : Find : cos ( sin ) (5 cos ) cos ( sin ) (5 cos ) d d 7. _mz kmv H$s{OE : 0 x tan x sec x tan x AWdm 7

_mz kmv H$s{OE : x x x Evaluate : x tan x sec x tan x 0 OR Evaluate : x x x 8. AdH$b g_rh$au (tan x y) = ( + x ) dy H$mo hb H$s{OE & Solve the differential equation (tan x y) = ( + x ) dy. 9. Xem BE {H$ q~xþ A, B, C {OZHo$ pñw{v g{xe H«$_e: ^i ^j + ^k, ^i ^j 5^k VWm ^i ^j ^k h, EH$ g_h$mou {Ì^wO Ho$ erf h & AV: {Ì^wO H$m joì\$b kmv H$s{OE & Show that the points A, B, C with position vectors ^i ^j + ^k, ^i ^j 5^k and ^i ^j ^k respectively, are the vertices of a right-angled triangle. Hence find the area of the triangle. 0. H$m _mz kmv H$s{OE Vm{H$ Mma q~xþ {OZHo$ pñw{v g{xe ^i + 6 ^j + 9^k, ^i + ^j + ^k, ^i + ^j + ^k VWm ^i + 6 ^j + ^k g_vbr` h & Find the value of, if four points with position vectors ^i + 6 ^j + 9^k, ^i + ^j + ^k, ^i + ^j + ^k and ^i + 6 ^j + ^k are coplanar. 8

. H$mS> h {OZ na g»`me±,, 5 VWm 7 A {H$V h, EH$ H$mS> na EH$ g»`m & Xmo H$mS> à{vñwmnzm {H$E {~Zm `mñàn>`m {ZH$mbo JE & _mzm X {ZH$mbo JE Xmo H$mS>m] na {bir g»`mam H$m `moj\$b h & X H$m _mü` VWm àgau kmv H$s{OE & There are cards numbered,, 5 and 7, one number on one card. Two cards are drawn at random without replacement. Let X denote the sum of the numbers on the two drawn cards. Find the mean and variance of X.. EH$ {dúmb` Ho$ {dúm{w `m Ho$ {be kmv h {H$ 0% {dúm{w `m H$s 00% CnpñW{V h VWm 70% {dúmwu A{Z`{_V h & {nn>bo df Ho$ n[aum_ gy{mv H$aVo h {H$ CZ g^r {dúm{w `m, {OZH$s CnpñW{V 00% h, _ go 70% Zo dm{f H$ narjm _ A J«oS> nm`m VWm A{Z`{_V {dúm{w `m _ go 0% Zo A J«oS> nm`m & df Ho$ A V _, {dúmb` _ go EH$ {dúmwu `mñàn>`m MwZm J`m VWm `h nm`m J`m {H$ CgH$m A J«oS> Wm & àm{`h$vm Š`m h {H$ Cg {dúmwu H$s 00% CnpñW{V h? Š`m {Z`{_VVm Ho$db {dúmb` _ Amdí`H$ h? AnZo CÎma Ho$ nj _ VH $ Xr{OE & Of the students in a school, it is known that 0% have 00% attendance and 70% students are irregular. Previous year results report that 70% of all students who have 00% attendance attain A grade and 0% irregular students attain A grade in their annual examination. At the end of the year, one student is chosen at random from the school and he was found to have an A grade. What is the probability that the student has 00% attendance? Is regularity required only in school? Justify your answer.. Z = x + y H$m A{YH$V_rH$aU H$s{OE {ZåZ AdamoYm Ho$ A VJ V x + y 00 x y 0 x + y 00 x, y 0 Cn`w º$ a {IH$ àmoj«m_z g_ñ`m H$mo AmboI H$s ghm`vm go hb H$s{OE & Maximise Z = x + y subject to the constraints x + y 00 x y 0 x + y 00 x, y 0 Solve the above LPP graphically. 9

0 IÊS> X SECTION D àíz g»`m go 9 VH$ àë`oh$ àíz Ho$ 6 A H$ h & Question numbers to 9 carry 6 marks each.. JwUZ\$b 5 7 kmv H$s{OE VWm BgH$m à`moj g_rh$au {ZH$m` x y + z =, x y z = 9, x + y + z = H$mo hb H$aZo _ H$s{OE & Determine the product 5 7 and use it to solve the system of equations x y + z =, x y z = 9, x + y + z =. 5. f : R, Omo f(x) = x x Ûmam àxîm h, na {dmma H$s{OE & Xem BE {H$ f EH $H$s VWm AmÀN>mXH$ h & f H$m à{vbmo_ \$bz kmv H$s{OE & AV: f (0) kmv H$s{OE VWm x kmv H$s{OE Vm{H$ f (x) =. AWdm _mzm A = VWm * A na EH$ {ÛAmYmar g {H«$`m h Omo (a, b) * (c, d) = (ac, b + ad) Ûmam n[a^m{fv h, g^r (a, b), (c, d) A Ho$ {be & kmv H$s{OE {H$ Š`m * H«$_{d{Z_o` VWm ghmmar h & V~, A na * Ho$ gmnoj (i) A _ VËg_H$ Ad`d kmv H$s{OE & (ii) A Ho$ ì`wëh«$_ur` Ad`d kmv H$s{OE &

Consider f : R given by f(x) = x x. Show that f is bijective. Find the inverse of f and hence find f (0) and x such that f (x) =. OR Let A = and let * be a binary operation on A defined by (a, b) * (c, d) = (ac, b + ad) for (a, b), (c, d) A. Determine, whether * is commutative and associative. Then, with respect to * on A (i) Find the identity element in A. (ii) Find the invertible elements of A. 6. Xem BE {H$ EH$ ~ X KZm^, {OgH$m AmYma djm H$ma h VWm Am`VZ {X`m J`m h, H$m n ð>r` joì\$b Ý`yZV_ hmojm, O~ `h EH$ KZ h & Show that the surface area of a closed cuboid with square base and given volume is minimum, when it is a cube. 7. g_mh$bz {d{y Ho$ à`moj go Cg {Ì^wO ABC H$m joì\$b kmv H$s{OE {OgHo$ erfm] Ho$ {ZX}em H$ A (, ), B (6, 6) VWm C (8, ) h & AWdm gab aoim x y + = 0 VWm nadb` y = x Ho$ ~rm {Kao joì H$m joì\$b kmv H$s{OE & Using the method of integration, find the area of the triangle ABC, coordinates of whose vertices are A (, ), B (6, 6) and C (8, ). OR Find the area enclosed between the parabola y = x and the straight line x y + = 0. dy 8. AdH$b g_rh$au (x y) = (x + y) H$m {d{eîq> hb kmv H$s{OE, {X`m J`m h {H$ y = 0 O~ x = h & Find the particular solution of the differential equation dy (x y) = (x + y), given that y = 0 when x =.

9. Cg q~xþ Ho$ {ZX}em H$ kmv H$s{OE Ohm± q~xþam (,, 5) VWm (,, ) go hmoh$a OmVr aoim, q~xþam (,, ), (,, ) VWm (0,, ) Ûmam ~Zo g_vb H$mo H$mQ>Vr h & AWdm EH$ Ma g_vb, Omo _yb-q~xþ go p H$s AMa Xÿar na pñwv h, {ZX}em H$ Ajm H$mo A, B, C na H$mQ>Vm h & Xem BE {H$ {Ì^wO ABC Ho$ Ho$ÝÐH$ H$m q~xþnw x h & y z p Find the coordinates of the point where the line through the points (,, 5) and (,, ), crosses the plane determined by the points (,, ), (,, ) and (0,, ). OR A variable plane which remains at a constant distance p from the origin cuts the coordinate axes at A, B, C. Show that the locus of the centroid of triangle ABC is. x y z p