Preparation of MnO 2 nanoparticles for the adsorption of environmentally hazardous malachite green dye

Similar documents
INTERNATIONAL JOURNAL OF CIVIL 17 19, July ENGINEERING. COLOR REMOVAL FROM TEXTILE WASTEWATER USING CuO NANO- PARTICLE COATED ON SAND, CINDER AND GAC

Equilibrium, kinetic and thermodynamic study of adsorption of rhodamine B from aqueous solution by activated carbon from Peltophorum Pterocarpum leaf

Adsorption of Methylene Blue on Mesoporous SBA 15 in Ethanol water Solution with Different Proportions

Preparation of Iron Oxide Nanoparticles Mixed with Calcinated Laterite for Arsenic Removal

Synthesis of nano sized TiO 2 and its application in photocatalytic removal of methylene blue

REMOVAL OF REACTIVE YELLOW DYE USING NATURAL COAGULANTS IN SYNTHETIC TEXTILE WASTE WATER

Preparation of Iron Oxide Nanoparticles Mixed with Calcinated Laterite for Arsenic Removal

International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March-2014 ISSN

PHOTOCATALYTIC DEGRADATION STUDIES OF POLYANILINE BASED ZnO-Al 2 O 3 NANOCOMPOSITE

Effect of Process Parameters on Adsorption of Methylene Blue from Synthetic Effluent Using Jack Fruit Seed Powder

Catalytic Decomposition of Formaldehyde on Nanometer Manganese Dioxide

Decolorized of Textile dye waste waters by Hydrogen peroxide, UV and Sunlight

The Study of Natural Nano-Composite Filter for Industrial Wastewater Treatment

3.30 TITANIUM DIOXIDE

(IJIRSE) International Journal of Innovative Research in Science & Engineering ISSN (Online)

Synthesis and Study of Magnesium Oxide and Cadmium Doped Magnesium Oxide Nanoparticles

CATALYTIC DECOMPOSITION OF HYDROGEN PEROXIDE ON MANGANESE DIOXIDE NANOPARTICLES AT DIFFERENT PH VALUES

Synthesis and photocatalytic activity of TiO2 Nanoparticles

BARIUM CHLORIDE MODIFICATION OF DIATOMITE FOR REMOVAL OF METHYLENE BLUE AND LEAD ION AQUEOUS SOLUTION

Fabrication and characterization of poly (ethylene oxide) templated nickel oxide nanofibers for dye degradation

PREPARATION, CHARACTERISATION AND PHOTOCATALYTIC ACTIVITY OF TERNARY GRAPHENE-Fe 3 O 4 :TiO 2 NANOCOMPOSITES

Adsorption of Humic acid on Powdered Activated Carbon (PAC)

-:Vijay Singh(09CEB023)

Adsorption Studies of Methylene Blue on TiO 2 Nanoparticles: Experimental and Mathematical Modeling

Supplementary Information for

ADSORPTION STUDIES OF CHROMIUM (VI) ON ACTIVATED CARBON DERIVED FROM CASURINA FRUIT

1997 P a g e. Keywords: Adsorption, banana peel, Colour removal, orange peel

ADSORPTION OF MALACHITE GREEN DYE ONTO ACTIVATED CARBON OBTAINED FROM THE NATURAL PLANT STEM

Removal of Fluoride from Synthetic Water Using Chitosan as an Adsorbent

Preparation of One-dimensional ZnO/Bi2O3 Heterostructures Nanomaterial for Visible Light Photocatalysis

Current World Environment Vol. 4(2), (2009)

A COMPARATIVE STUDY ON CHARACTERIZATION AND PHOTOCATALYTIC ACTIVITIES OF PbS AND Co DOPED PbS NANOPARTICLES

Received: 24 th April-2012 Revised: 07 th May-2012 Accepted: 10 th May-2012 Research article

International Journal of Pure and Applied Sciences and Technology

Studies on the Removal of Rhodamine B and Malachite Green from Aqueous Solutions by Activated Carbon

ADSORPTION OF METHYL RED AND METHYL ORANGE USING DIFFERENT TREE BARK POWDER

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November ISSN

RESULTS AND DISCUSSION Characterization of pure CaO and Zr-TiO 2 /CaO nanocomposite

Techniques for effluent treatment. Lecture 5

CE 370. Disinfection. Location in the Treatment Plant. After the water has been filtered, it is disinfected. Disinfection follows filtration.

driving agent and study of photocatalytic activity Mohammad Salehi Department of Chemistry, Iran University of Science and Technology, Narmak, Tehran

MOF-76: From Luminescent Probe to Highly Efficient U VI Sorption Material

Activated Carbon from Sugar Waste Bagasse is used for Removal of Colour from Dye Solution

Photolytic Degradation of Rhodamine B in Water Using H 2 O 2 /UV System

Research Article. Removal of toxic metal chromium(vi) from industrial wastewater using activated carbon as adsorbent

Photo catalytic degradation of methylene blue in aqueous solutions using TiO2 nanoparticles

Malachite Green Dye Removal Using the Seaweed Enteromorpha

Facile synthesis of nanostructured CuCo 2 O 4 as a novel electrode material for high-rate supercapacitors

DEGRADATION OF REACTIVE RED 2 BY FENTON AND PHOTO-FENTON OXIDATION PROCESSES

Contributing factors on the removal of Azo-dyes from industrial wastewater: A comparison of the efficiency of sonocataysis and photocatalysis process

Removal efficiency on magnetite (Fe 3 O 4 ) of some multicomponent systems present in synthetic aqueous solutions

Research Article. Removal of nickel(ii) using lotus stem powder as adsorbent

Application of Fe 2 O 3 nanoparticles in Heavy Metal Removal

Adsorption behavior of methylene blue onto gellan gum-bentonite composite beads for bioremediation application

Preparation of New Photocatalyst for Removal of Alizarin Red-S from Aqueous Solution

Study of some Effecting Factors on the Removal of Phenol from Aqueous Solutions by Adsorption onto Activated Carbon

FORM 4 CHEMISTRY - SUMMER REVISION WORK

Titanium dioxide nanoparticles as a highly active photocatalytic material

A Tunable Process: Catalytic Transformation of Renewable Furfural with. Aliphatic Alcohols in the Presence of Molecular Oxygen. Supporting Information

Adsorption Studies of Astrozon Blue Dye onto Acrylic Resin

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: Vol.7, No.7, pp , 2015

Separation and recovery of mangenese- and cobalt catalysts from wastewater of PTA unit

Adsorption Studies of Organic Pollutants onto Activated Carbon

Acid Orange 7 Dye Biosorption by Salvinia natans Biomass

Nickel ferrite nanoparticle as a magnetic catalyst: Synthesis and dye degradation

CHAPTER 4. SYNTHESIS, CHARACTERIZATION OF TiO 2 NANOTUBES AND THEIR APPLICATION IN DYE SENSITIZED SOLAR CELL

Nano α-al 2 O 3 for removal of Hg(II) from water: Adsorption and desorption studies

Growth of silver nanocrystals on graphene by simultaneous reduction of graphene oxide and silver ions with a rapid and efficient one-step approach

Adsorption of chromium from aqueous solution by activated alumina and activated charcoal

Available online at I-SEEC Proceeding - Science and Engineering (2013) 89 94

How can oxidation be done

ELIMINATION OF NICKEL (I) FROM SYNTHETIC WASTE WATER USING BAGASSE PITH WITH COLUMN STUDIES

Deposition of Titania Nanoparticles on Spherical Silica

Sriperumbudur , INDIA

SYNTHESIS OF CADMIUM SULFIDE NANOSTRUCTURES BY NOVEL PRECURSOR

Adsorption of Eriochrome black-t azo Dye from Aqueous solution on Low cost Activated Carbon prepared from Tridax procumbens

Synthesis of MnO 2 nanowires and its adsorption property to lead ion in water

Quantitative chemistry Atomic structure Periodicity

Classifying Chemical Reactions Analyzing and Predicting Products

Sacrifical Template-Free Strategy

Effect of Electrolyte Concentration during Solution Plasma on Copper Nanoparticle Size

ENVIRONMENTAL ENGINEERING. Chemical Engineering department

International Conference on: Pollution Control & Sustainable Environment

Supporting information A Porous Zr-cluster-based Cationic Metal-Organic Framework for Highly Efficient Cr 2 O 7

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY

Equilibrium and Kinetics of Adsorption of Cationic Dyes by STISHOVITE Clay TiO2 Nanocomposite

Name: Group: Date: d) lead turning into gold A nuclear transformation, because atomic nuclei are rearranged.

Thermal Gravimetric Analyzer (TGA) ก TiO 2 /AC

Sulfur-bubble template-mediated synthesis of uniform porous g-c 3 N 4 with superior photocatalytic performance

Photocatalytic degradation of dyes over graphene-gold nanocomposites under visible light irradiation

Removal of Cd (II) and Cr (VI) from Electroplating Wastewater by Coconut Shell

ADSORPTION STUDIES OF SOME DYES ON ACACIA CONCINNA POWDER

Chemical Oxidation Oxidizing agents

Photocatalytic Degradation Study of Methylene Blue Solutions and Its Application to Dye Industry Effluent

A project report on SYNTHESIS AND CHARACTERISATION OF COPPER NANOPARTICLE-GRAPHENE COMPOSITE. Submitted by Arun Kumar Yelshetty Roll no 410 CY 5066

Physical Changes and Chemical Reactions

Methylene blue adsorption by pyrolytic tyre char

Sorption of Water Pollutants

Scientific report 2016 January September. Designing composite nanoarchitectures for hydrogen production and environmental depollution

Photo Catalytic Degradation of Acetophenone by using TiO 2 Nanoparticles

Transcription:

Preparation of MnO 2 nanoparticles for the adsorption of environmentally hazardous malachite green dye B.M. Pradeep Kumar a, K.H. Shivaprasad a*, R.S. Raveendra b, R. Hari Krishna c, Sriram Karikkat d, B.M. Nagabhushana c* *Corresponding author a Department of Chemistry, VSK University, Bellary-583 104, India b Department of Chemistry, Sai Vidya Institute of Technology, Bangalore-560 064, India c Department of Chemistry, M.S. Ramaiah Institute of Technology, Bangalore-560 054, India d Department of Environmental Engineering, Sri Jayachamarajendra College of Engineering, Mysore -570 006, India ABSTRACT The present study reports preparation of nano sized MnO 2 for the adsorptive removal of environmentally hazardous malachite green (MG) dye. MnO 2 nanoparticles were prepared by facile solution combustion synthesis using Mn(NO 3) 2 and urea as oxidizer and fuel respectively at a low temperature of ~ 400 o C. Phase formation of the prepared sample was analyzed with powder X-ray diffraction (PXRD) studies, scanning electron microscopy (SEM). The PXRD results confirm partial crystallinity and cubic phase and crystallite size of the MnO 2 was calculated using Debye- Scherer s formula and it is found to in the range of 25-40 nm. SEM images show the formation of nearly spherical and agglomerated particles. Optical energy band gap was calculated using UV Vis spectroscopy. Adsorption of MG dye onto the MnO 2 nanoparticles studies were performed with various parameters such as effect of adsorbent dosage, contact time, initial concentration of the dye and ph of the pollutant. The results suggest that the MnO 2 nanoparticles are excellent adsorbent for the removal of MG dye. Keywords:- Nano MnO 2, Solution combustion, Malachite green, Adsorption. 1.INTRODUCTION The textile industries are the greatest generators of liquid effluent, due to the high quantity of water used in the dyeing processes [1]. Dyes are used in large quantities in many industries including textile, leather, cosmetics, paper, printing, plastic, pharmaceuticals, food, etc. to colour their products. Presently more than 9000 dyes are incorporated in colour index belonging to various chemical application classes. The textile industry alone accounts for two thirds of the total dye stuff production, about 10 15% of the dyes used come out through the effluent [2]. Dyeing and finishing processes from industries do generate large amounts of colored wastewater which are discharged into natural streams with undesirable consequences to the environment and human health. Apart from the unpleasant aesthetic aspects of dye wastewater, its presence in natural streams can cause serious harm to aquatic life by increasing toxicity, chemical oxygen demand, and as well hindering photosynthetic phenomena through reduction of light penetration [3]. Malachite Green (MG) is a cationic dye and widely used for the dyeing of leather, wool and silk, distilleries, jute, paper, as a foodcoloring agent, food additive, in medical disinfectant and fish industries. Discharge of MG into the hydrosphere can cause environmental degradation as it gives undesirable color to water and reduces sunlight penetration. The consumption of MG has many adverse effects due to its carcinogenic, genotoxic, mutagenic and teratogenic properties. The carcinogenic properties of MG are due to presence of the nitrogen [4]. Recently greater attention has been committed to the study of removal of dyes and pigments from industrial effluents and waste water by adsorption process using nanostructured materials. Usually organic and inorganic dyes are removed by different chemical and physical techniques, like chemical reaction, electro-coagulation, reverse osmosis, adsorption, flocculation, electro-floatation, ion exchange, membrane filtration, electrochemical destruction, precipitation and many others. Among all these techniques, adsorption technique has been found to be superior to other techniques for waste water treatment in terms of initial cost, simplicity of design, ease of operation and insensitivity to toxic substances [5]. Nano-structured compounds have gained importance in this category due their anticipated high surface area and improved reactive sites [6, 7]. Nano-MnO 2 has great potential applications in environment protection field as a new generation of environmental friendly catalyst. There are a number of research results which show that the functional activity of semiconductor materials depends on the structure. Manganese oxide is one of the most interesting materials, which has a wide variety of structure with large surface area. The diverse structures, chemical properties of manganese oxides are Volume 3, Issue 12, December 2014 Page 102

taken advantage of in potential applications such as cation exchange [8]. In this paper, we report a facile, energy saving method to synthesize MnO 2 nanoparticles with highly porous structure via solution combustion route and its potential application in removal of malachite green dye from aqueous solution. 2. EXPERIMENTAL 2.1 Materials Commercially pure manganese nitrate hexa hydrate (Mn(NO 3 ) 2 H 2 O, AR 99% Merck), urea (CO(NH 2 ) 2, AR 99% Merck), hydrochloric acid (HCl Fisher scientific), sodium hydroxide (NaOH Fisher scientific), malachite green dye (C 23 H 26 ON 2 Sigma-Aldrich), were used as such without further purification. 2.2 Synthesis of MnO 2 nanoparticles The synthesis process involved the combustion of redox mixtures in which manganese nitrate [Mn(NO 3 ) 2. H 2 O] acted as an oxidizing reactant and urea [CO(NH 2 ) 2 ] as a fuel. The initial composition of solution containing manganese nitrate and urea was calculated based on the total oxidizing and reducing valences of the oxidizer and the fuel using the concepts of propellant chemistry [9]. Manganese nitrate and urea were mixed with minimum quantity of doubled distilled water in a crystalline dish and stirred for few minutes until clear solution is formed. The dish was introduced into a muffle furnace maintained at ~ 400 C. The solution initially undergoes dehydration, followed by decomposition with the evolution of large amounts of gases. The mixture then froths and swells forming foam, very soon the flames spread the entire volume forming black porous product. The entire combustion process is over in 5 min. The foam was grinded to obtain fine powder of MnO 2 nanoparticles. 3Mn(NO 3 ) 2 + 4CO(NH 2 ) 2 3MnO 2 + 7N 2 + 8H 2 O + 4CO 2 (1) 2.3 Instruments used Solution combustion derived product was characterized by PXRD. Powder X- ray diffraction patterns were collected on a Philips PW/1050/70/76 X-ray diffractometer using CuKα radiation at a scan rate of 2 /min. with diffraction angle range 2θ = 20 º to 80 º. Product was morphologically characterized by JEOL (JSM-840A) scanning electron microscopy. To calculate optical energy band gap, UV-Vis spectrum was recorded using Elico SL-159 UV-Vis spectrophotometer. 3. RESULT AND DISCUSSIONS 3.1 PXRD studies and crystallite size Fig. 1 shows the PXRD pattern of the MnO 2 powder prepared using urea as fuel in stoichiometric fuel-to-oxidant ratio at 400 C. The PXRD results confirm the partial crystallinity of cubic phase. The crystallite size is calculated [using (131) peak] from the full width at half maximum (FWHM ( )) of the diffraction peaks using Debye- Scherer s method [10] using the following equation, Where d is the average crystalline dimension perpendicular to the reflecting phases, λ is the X-ray wavelength, k is Scherer s constant (0.92), β is the full width at half maximum (FWHM) intensity of a Bragg reflection excluding instrumental broadening and is the Bragg s angle. The calculated average crystallite size of the sample is found to be 15-20 nm. (2) Fig. 1 PXRD pattern of MnO 2 nanoparticles 3.2 Morphological analysis SEM micrograph (Fig.2) reveals the overall appearance of the combustion derived product. The particles are nearly spherical in shape has uniform size and distribution with varying sizes, might be due to non uniform distribution of temperature during combustion. It can be observed that product aggregation is constituted by many irregular particles with a variety of pores voids due to the evolution large amount of gases during synthesis. This type of structure is Volume 3, Issue 12, December 2014 Page 103

typical of combustion derived samples. Highly porous nature of MnO 2 nanoparticles facilitates and enhances the adsorption characteristics. Fig. 2 Scanning Electron Micrograph 3.3 UV-Vis spectroscopy studies In order to determine the optical energy band gap of MnO 2 nanoparticles the UV-Vis absorption spectrum was recorded. The sample shows a strong absorption peak (λ max ) at 467 nm at the UV region. Fig. 3 (a) shows the UV-Vis absorption spectrum of MnO 2 nanoparticles. This can be attributed to photo excitation of electron from valence band to conduction band. The optical energy band gap (E g ) was estimated (Fig. 3 (b)) by the method proposed by Wood and Tauc [11] according to the following equation, ( h ) h E n g (3) where α is the absorbance, h is the Planck constant, ν is the frequency, E g is the optical energy band gap and n is a constant associated to the different types of electronic transitions (n= 1/2, 2, 3/2 or 3 for direct allowed, indirect allowed, direct forbidden and indirect forbidden transitions, respectively). E g value for MnO 2 nanoparticles is ~ 5.1 ev. 4.ADSORPTION STUDIES Fig. 3(a) UV-Vis Spectrum, 3(b) Optical energy band gap plot Adsorption experiments were performed using organic hazardous cationic Malachite green dye. Malachite green is a basic triphenylmethane dye with a molecular weight 327. IUPAC name of MG is [4-[(4-dimethylaminophenyl)- phenylmethyidene]-1-cyclohexa-2,5-dienylidene] dimethylazanium with molecular formula C 23 H 25 N 2 +. Malachite green has a high solubility in acidic organic solvents but less in water [12]. Chemical structure and UV-Vis spectrum of malachite green dye are shown in Fig. 4a and 4b. Fig. 4(a) Chemical structure, 4(b) UV-Vis spectrum of Malachite green dye Volume 3, Issue 12, December 2014 Page 104

4.1 Batch experiments Batch experiments were carried out at different time, dose, and ph 100 ml of dye solution of concentration was mixed with different dose (5 to 65 mg) of adsorbent in 250 ml beaker. Dye solution containing MnO 2 adsorbent was stirred magnetically (in absence of light) to increase the contact between the dye solution and the adsorbent. After desired time the adsorbent was separated from the solution by centrifugation at 2000 rpm for 10 min. Residual concentration of dye in supernatant was estimated spectrophotometrically by monitoring the absorbance at 617 nm (λ max ) using a UV Vis spectrophotometer. The % Adsorption was calculated as follows % Adsorption = A o - A t / A o 100 (4) Where A o is the initial optical density and A t is the optical density of the dye solution after adsorption at t min. 4.2 Effect of contact time Effect of contact time on the adsorption of malachite green dye onto MnO 2 nanoparticles was studied. It can be observed from the Fig. 5 that the dye adsorption increases with the increasing of stirring time of 30 min. The rate of adsorption is initially quite rapid with most of the compound being adsorbed within the first 30 min. It was found that more than 96% adsorption of dye occurred in the first 30 min; thereafter the rate of adsorption was found to be slow. This shows that equilibrium can be assumed to be achieved after 30 min. It is basically due to saturation of the active site which does not allow further adsorption to take place. Fig. 5 Effect of contact time on adsorption of MG on MnO 2 4.3 Effect of dose of adsorbent Adsorption of dye is strongly influenced by the quantity of the adsorbent. Adsorption of malachite green onto MnO 2 nanoparticles was studied with changing the amount of adsorbent from 5 mg to 65 mg/l at a constant stirring rate of 30 minutes with optimum dye concentration of 10 ppm. It is observed from the Fig. 6 that with increase in the dose, adsorption of malachite green increases upto optimum quantity of adsorbent. Maximum of 96% dye adsorbed at the dose of 45 mg of adsorbent. Further increase in adsorbent dose, decreases the adsorption percentage. This might be attributed to over-lapping or aggregation of adsorption sites resulting in decrease in total adsorbent surface area available to malachite green and increase in path length [13]. Fig. 6 Effect of dose on adsorption of MG on MnO 2 4.4 Effect of ph The ph of system has a great effect on the adsorption efficiency of organic dyes. Effect ph on malachite green adsorption onto the MnO 2 nanoparticles was carried out at 10 ppm of initial dye concentration with 45 mg mass of adsorbent at 30 min of stirring rate at lab temperature. As given in the Fig. 7, MnO 2 nanoparticles show maximum of 96% dye adsorption at the ph of 9 which decreased to 3% at ph of 2. This confirms that the low ph (2 5) was unfavourable for malachite green adsorption by MnO 2 nanoparticles. Volume 3, Issue 12, December 2014 Page 105

5. CONCLUSION Fig. 7 Effect of ph on adsorption of MG on MnO 2 MnO 2 nanoparticles were successfully prepared by the simple solution combustion synthesis method and its adsorption capacity for Malachite green dye was investigated. The result showed that the parameters like effect of ph and contact time will play a very important role on the adsorption. REFERENCES [1] Selen, M.A.G.U. de Souza, Peruzzo, L.C., de Souza, Antonio, A.U., Numerical study of the adsorption of dyes from textile effluents. Appl. Math. Model 32 (2008) 1711 1718. [2] Zollinger H. Colour chemistry: syntheses, properties and applications of organic dyes and pigments. New York: VCH Publishers; 1987. [3] Mi-Hwa Baek, Christianah Olakitan Ijagbemi, Se-Jin O, Dong-Su Kim, Removal of Malachite Green from aqueous solution using degreased coffee bean. Journal of Hazardous Materials 176 (2010) 820 828. [4] Rais Ahmad, Rajeev Kumar. Adsorption studies of hazardous malachite green onto treated ginger waste Journal of Environmental Management 91 (2010) 1032 1038. [5] R. S. Raveendra, P. A. Prashanth, R. Hari Krishna, N. P. Bhagya, B. M. Nagabhushana, H. Raja Naika, K. Lingaraju, H. Nagabhushana, and B. Daruka Prasad, Synthesis, structural characterization of nano ZnTiO 3 ceramic: An effective azo dye adsorbent and antibacterial agent. J.Asian Ceramic Societies (2014). http://dx.doi.org/10.1016/j.jascer.2014.07.008. [6] R. Nagaraja, B. Nagappa, C.R. Girija, B.M. Nagabhushana, Synthesis and Characterization of Nanocrystalline MgO Powder and its Application in the Treatment of Pharmaceutical Effluent. J Nanotech Appl., (2011) 11: 28. [7] Stark J.V. et al. Nanoscale Metal Oxide Particles/Clusters as Chemical Reagents. Unique Surface Chemistry on Magnesium Oxide As Shown by Enhanced Adsorption of Acid Gases (Sulfur Dioxide and Carbon Dioxide) and Pressure Dependence. Chem.Mats. 1996: 81: 1904. [8] B. M. Pradeep Kumar, Sriram Karikkat, R. Hari Krishna, T. H. Udayashankara, K. H. Shivaprasad, and B. M. Nagabhushana, Synthesis, Characterization of Nano MnO 2 and Its Adsorption Characteristics Over an Azo Dye. Research & Reviews: J. Mate. Scie.. 21 (2014) 27-31. [9] S. Ekambaram, N. Arul Dhas, K.C. Patil. Synthesis and properties of aluminium borate (a light-weight ceramic). Int. J. Self-prop High-temp. Synth. 1995; 4: 85. [10] H.P. Klug, LE Alexander, X-ray Diffraction Procedure, Wiley, New York, (1954). [11] J. Tauc and F. Abeles (Ed.), Optical Properties of Solids, North-Holland, Amsterdam. (1970). [12] N. Hidayah, F. Abu Bakar, N. A. Mahyudin, S. Faridah, M. S. Nur-Azura, and M. Z. Zaman, Inter. Food Res. Jour., 20 (2013) 1511-1519. [13] V. K. Garg, Moirangthem Amita, Rakesh Kumar, and Renuka Gupta, Dyes. Pigments. 63 (2004) 243-250. Volume 3, Issue 12, December 2014 Page 106