dynamic MRM for pesticide analysis

Similar documents
Pesticides in Cannabis

Batch 1. Batch 2. Batch 3. Batch 4. Batch 5

Screening for 250 Pesticides in Orange Oil and Ginseng Extract by LC-MS/MS Using TraceFinder Software

Multiresidue Analysis of 100 Pesticides in Food Samples by LC/Triple Quadrupole Mass Spectrometry Application

Application Note. Abstract. Authors. Food Safety and Environmental

Determination of pesticides in baby food by UHPLC/MS/MS using the Agilent 1290 Infinity LC system and the Agilent 6460 triple quadrupole LC/MS

Waters Application Notes. Food Testing

DETERMINATION OF PESTICIDES IN FOOD USING UPLC WITH POLARITY SWITCHING TANDEM QUADRUPOLE LC/MS/MS

COMMISSION REGULATION (EU)

László Tölgyesi LC/MS scientist EFSC Demo Group. International Symposium on Food Safety and Quality: Applications of Nuclear and Related Techniques

Official Journal of the European Union L 328/9

Advanced Data Acquisition and Data Processing Workflows to Identify, Quantify and Confirm Pesticide Residues

Routine Multiresidue Pesticide Analysis using the Agilent 6470 Triple Quadrupole Mass Spectrometer

Pure Chromatography. Food Safety Applications. Abstract. Introduction

Utility of H-SRM to Reduce Matrix Interference in Food Residue Analysis of Pesticides by LC-MS/MS Using the TSQ Quantum Discovery

Food & Environmental. Overview. Introduction. Method Details. André Schreiber and Yun Yun Zou SCIEX, Concord, Ontario, Canada

Safeguarding Food from Pesticides by UHPLC After Extraction with the QuEChERS Method

Multi-residue Method for Agricultural Chemicals by GC-MS (Animal and Fishery Products)

Overview. Introduction. Method Details. André Schreiber and Yun Yun Zou AB SCIEX, Concord, Ontario, Canada

Determination of Pesticide Multiresidues in Apple, Pear and Grape using modified QuEChERS and analysis by LC-QTOF MS

LC-MS/MS multiresidue method used for pesticides analysis in fruits and vegetables

Application of a Triggered MRM Database and Library for the Quantitation and Identification of Pesticides in Food Extracts

Analytical Test Report 10

Charles Yang, Dipankar Ghosh, Jonathan Beck Thermo Fisher Scientific, San Jose, CA, USA

Ultra-fast screening of pesticides in foods and agricultural products with desorption corona beam ionization (DCBI) tandem mass spectrometry

Triumphs and Challenges of High-Resolution Mass Spectrometry in Comprehensive Residue Screens

Application Note. Author. Abstract. Food Testing & Agriculture. Edgar Naegele Agilent Technologies, Inc. Waldbronn, Germany

A Rapid imethod Test for Screening Pesticides V.2.0 for Cliquid Software

Fully automated QuEChERS clean-up and LC/MS-QQQ analysis of pesticides in fruits and vegetables.

Higher Confidence in Identification with QTRAP LC/MS/MS Systems when Screening and Quantifying Pesticides in Fruit and Vegetable Samples

Agilent ESI and APCI sources: for polar to non-polar compounds

Overview. Introduction

New Dynamic MRM Mode Improves Data Quality and Triple Quad Quantification in Complex Analyses

Rapid Pesticide Screening and Identification Using the High Resolution All Ions MS/MS Technique

Simplified Workflow and Improved Confidence in Screening Methods on Time of Flight Mass Spectrometry

Pesticide Residue Analysis by HRMS

LC-MS/MS and GC-MS/MS Multi Residue Pesticide Analysis in Fruit and Vegetable Extracts on a Single Tandem Quadrupole Mass Spectrometer

Application Note LCMS-110 Development of a Targeted Quantitative LC-MS/MS Method for 431 Positive and Negative Ion Pesticides in a Single Analysis

Maximizing Triple Quadrupole Mass Spectrometry Productivity with the Agilent StreamSelect LC/MS System

Growing Analytical Solutions for Cannabis Testing

LC/MS/MS qua ntitation of β-estradiol 17-acetate using an Agilent 6460 Triple Quadrupole LC/MS working in ESI negative ion mode

Qualitative and Quantitative Analysis of Pesticides in Horse Feed Matrix Using Orbitrap MS

Non-targeted Screening and Accurate Mass Confirmation of 510 Pesticides on the High Resolution Exactive Benchtop LC/MS Orbitrap Mass Spectrometer

Fast GC-MS/MS for High Throughput Pesticides Analysis

Taking Full Advantage of UHPLC with Agilent 6460A Triple Quadrupole MS. Outline

Introducing the Agilent G6410A Triple Quadrupole Mass Spectrometer

[ APPLICATION NOTE ] UPLC and APGC Multi Residue Pesticide Analysis on a Single Tandem Quadrupole Mass Spectrometer Platform APPLICATION BENEFITS AIM

Multiclass Determination of Organic Contaminants in Red Chili and Turmeric Powders

Analysis of Pesticides in Citrus Oil Using a Shimadzu GCMS-TQ8030. No. GCMS No. SSI-GCMS-1404

Agilent 6400 Series Triple Quadrupole Users Workshop. MH QQQ Users workshop 2/21/2014 1

Performance characteristics of the Agilent 1290 Infinity Quaternary Pump

We are IntechOpen, the first native scientific publisher of Open Access books. International authors and editors. Our authors are among the TOP 1%

Comprehensive Pesticide Analysis in Juice Using a Combination of GC/MS and LC/MS Methods

Applying MRM Spectrum Mode and Library Searching for Enhanced Reporting Confidence in Routine Pesticide Residue Analysis

CropLife Australia Insecticide Resistance Management Review Group Mode of Action Classification for Insecticides Valid as at 7 June 2017

CropLife Australia Insecticide Resistance Management Review Group Mode of Action Classification for Insecticides Valid as at 22 June 2018

Analytical determination of testosterone in human serum using an Agilent Ultivo Triple Quadrupole LC/MS

Determination of Beta-Blockers in Urine Using Supercritical Fluid Chromatography and Mass Spectrometry

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

Liquid Chromatography Mass Spectrometry. Expanding Capabilities in Multi-Residue Pesticide Analysis Using The LCMS-8060

Analysis of Pesticides in Baby Foods Using a Triple-Quadrupole GC/MS/MS

Evaluation of interferences between matrix-analyte for the correct identification of the pesticides by GC-QqQ-MS/MS and LC-QqQ-MS/MS

Agilent 6400 Series Triple Quadrupole LC/MS/MS Users Session

Rapid method development to study plasma stability of diverse pharmaceutical compounds using Rapid Resolution LC and triple quadrupole MS

Identification and Quantitation of Pesticides in Chamomile and Ginger Extracts Using an Agilent 6460 Triple Quadrupole LC/MS system with Triggered MRM

Application News. No. C154. Applying MRM Spectrum Mode and Library Searching for Enhanced Reporting Confidence in Routine Pesticide Residue Analysis

Plasma Metanephrines and 3-Methoxytyramine by LC/MS/MS Using Agilent SimpliQ WCX SPE, 1290 Infi nity LC, and 6460 Triple Quadrupole LC/MS

Analytical Test Report Birthday Cake OG

2016 iquan Series: Pesticide Quantitation on the Thermo Scientific TSQ Quantiva

QTRAP Technology A COMPENDIUM OF RELATED RESEARCH APPLICATIONS

Article. Pesticide Residues Method Validation by UPLC-MS/MS for Accreditation Purposes

Analysis of Stachydrine in Leonurus japonicus Using an Agilent ZORBAX RRHD HILIC Plus Column with LC/ELSD and LC/MS/MS

Multi pesticide residue analysis in tobacco by GCMS/MS using QuEChERS as an extraction method

Rapid Screening and Confirmation of Melamine Residues in Milk and Its Products by Liquid Chromatography Tandem Mass Spectrometry

Analytical considerations on the use of a fruit-specific and representative matrix in pesticide residue analysis by LC-ESI-MS/MS

Analysis of Pesticide Residues in Cannabis Regulated by Oregon State Using LC/MS/MS

LC/MS/MS of Fungicides and Metabolites in Apple Juice with Agilent Bond Elut Plexa and Poroshell 120

Separation of Enantiomers of Amphetamine-Related Drugs and Their Structural Isomers

LC/MS/MS of Fungicides and Metabolites in Orange Juice with Agilent Bond Elut Plexa and Poroshell 120

תוספת שלישית )תקנה 1, הגדרת "שארית"(

Screening Validation Report 1

Automated Screening of 600 Pesticides in Food by LC/TOF MS Using a Molecular-Feature Database Search Application

Quantitative and Qualitative Confirmation of Pesticides in Beet Extract Using a Hybrid Quadrupole-Orbitrap Mass Spectrometer

Using the MRM Catalogue of Cliquid Software to Quickly Build LC-MS/MS Methods for Pesticide Analysis Matching the Japanese Positive List

PESTICIDE RESIDUE CONTROL RESULTS NATIONAL SUMMARY REPORT. Country: HELLAS. Year: Ver. 2. National competent authority

LC/MS/MS Analysis of Pesticide Residues in Apples Using Agilent Chem Elut Cartridges

Almería 23 rd -25 th October th Joint Workshop of the European Union Reference Laboratories for Residues of Pesticides

Ultrafast Analysis of Methadone and Metabolite EDDP in Urine by the Agilent RapidFire High-Throughput Mass Spectrometry System

Analysis of Pesticides and Contaminants using HS-SPME-GC/MS and DRS Detection. Blair Surridge, Tyler Dyer, Rene Bilideau, Paloma Bertolin Presoti

High-Resolution Sampling 2D-LC for Pharmaceutical Impurity Analysis

An Effective Workflow for Impurity Analysis Incorporating High Quality HRAM LCMS & MSMS with Intelligent Automated Data Mining

Available online at Journal of Chromatography A, 1175 (2007) 24 37

Sensitive Femtogram Determination of Aflatoxins B 1 , B 2 , G 1. and G 2. in Food Matrices using Triple Quadrupole LC/MS. Authors.

European Reference Laboratory - FV

Agilent Technologies LCMS Portfolio

Almería 23 rd -25 th October th Joint Workshop of the European Union Reference Laboratories for Residues of Pesticides

Quantitative Analysis of Water-Soluble B-Vitamins in Cereal Using Rapid Resolution LC/MS/MS. Application. Authors. Abstract.

Application Note. Author. Abstract. Pharmaceutical QA/QC. Siji Joseph Agilent Technologies, Inc. Bangalore, India

LC/Q-TOF Workflows for Comprehensive Micropollutant Analysis

CERTIFICATE OF ANALYSIS

Transcription:

The power of fast separation and dynamic MRM for pesticide analysis based on 1290/6460QQQ Dr. Volker Gnau Produkt Spezialist LCMS Page 1

3.) Quantitative analysis of pesticides (smrm) Chromatographic hi conditions (pos. mode) 1200 Series HPLC system consisting of: - vacuum degasser - binary pump SL - wellplate sampler SL - diode array detector SL (not used) HPLC method Separation column: ZORBAX Eclipse Plus C-18, 100 x 2.1 mm, 1.8 µm Guard column: ZORBAX Eclipse Plus C-18, 12.5 x 2.1 mm, 5 µm Mobile phase: A: 5 mm ammonium formate + 0.01% formic acid B: methanol + 5 mm ammonium formate + 0.01% formic acid Flow: Inj.Vol.: 5 µl 0.3 ml/min Gradient**: 0.00 min 10 % B 1.00 min 10 % B 18.00 min 100 % B 20.00 min 100 % B 20.10 min 10 % B 25.00 min 10 % B Page 2

3.) Quantitative analysis of pesticides (smrm) Agilent Jetstream t conditions (pos. mode) Spray chamber conditions: Gas temp.: 250 C Dry gas: 5 l/min Nebulizer: 35 psi Sheath gas temp: 250 C Sheath gas flow: 10 l/min Positive Negative CapVoltage: 4500 V 3000 V Nozzle voltage 300 V 0 V The selection of the spray chamber conditions i for a multi-residue li id method always have to be a trade-off between the optimum settings of the individual compounds. For this analysis parameters have been chosen based on the optimization of the least abundant ion signals (Cypermethrin, Avermectin B1a, Fenhexamid, and Diflubenzuron). For Spinosyn A and Bentazone (most abundant signals in positive and negative mode) the use of the optimal values would result in a signal increase of 27.2 % and 34.0%, respectively. Page 3

MRM (Multiple Reaction Monitoring) Quad Mass Filter (MS1) Quad Mass Filter (MS2) Collision Cell Spectrum with background ions (from ESI) 210 222 Q1 lets only target ion 210 pass through 210 Collision cell breaks ion 210 apart Q3 monitors only characteristic fragments 158 and 191 from ion 210 for quant and qual. 165 268 280 158 191 210 158 191 170 210 250 290 210 150 170 190 210 160 190 no chemical background Page 4

3.) Quantitative analysis of pesticides (smrm) MRM parameter setup (pos. mode static ti MRM) Compound Name Prec Ion MS1 Res Prod Ion MS2 Res Dwell Frag (V) CE (V) Avermectin B1a 890.6 Unit 567.2 Unit 25 130 4 Avermectin B1a 890.6 Unit 305 Unit 25 130 20 Spinosyn D 746.5 Unit 142.1 Unit 25 195 24 Spinosyn D 746.5 Unit 98.1 Unit 25 195 48 Spinosyn A 732.4 Unit 142 Unit 25 140 35 Spinosyn A 732.4 Unit 98 Unit 25 140 55 Cypermethrin 435.1 Unit 193 Unit 25 90 10 Cypermethrin 433.1 Unit 191 Unit 25 90 10 Diflubenzuron 311 Unit 158 Unit 25 80 10 Diflubenzuron 311 Unit 141 Unit 25 80 15 Fensulfothion 309 Unit 281 Unit 25 120 10 Fensulfothion 309 Unit 157 Unit 25 120 25 Fenhexamid 302 Unit 96.9 Unit 25 100 16 Fenhexamid 302 Unit 55 Unit 25 100 40 Aldicarb 208 Unit 116 Unit 25 70 0 Aldicarb 208 Unit 89.1 Unit 25 70 15 Carbendazim 192.1 Unit 160 Unit 25 120 15 Carbendazim 192.11 Unit 132 Unit 25 120 35 Acephate 184 Unit 143 Unit 25 90 5 Acephate 184 Unit 95 Unit 25 90 20 Methamidophos 142 Unit 125 Unit 25 80 10 Mth Methamidophos h 142 Unit 94 Unit 25 80 10 Page 5

Pesticide MRM Data Base G1733AA Page 6

3.) Quantitative analysis of pesticides (smrm) MRM traces of pesticides id of calibration standard d QC_7 (25 ng/ml) Final method includes 11 pesticides with 2 MRM transitions each Dwell time 25 ms for each transition, Inter-scan delay 2 ms Page 7

3.) Quantitative analysis of pesticides (smrm) Calibration curves for static ti MRM (9 individual id calibration levels) l Responses Responses Methamidophos R 2 = 0.9998 Acephate R 2 = 0.9998 Responses Responses Carbendazim R 2 = 0.9999 Aldicarb R 2 = 0.9998 Blue triangles show overlay of QC samples (20 replicates for QC 10 ng/ml, 4 replicates for QC 25 ng/ml) Page 8

3.) Quantitative analysis of pesticides (smrm) Calibration curves for static ti MRM (9 individual id calibration levels) l Responses Responses Fensulfothion R 2 = 0.9998 Fenhexamid R 2 = 0.9992 Responses Responses Diflubenzuron R 2 = 0.9997 Spinosyn A R 2 = 1.0000 Blue triangles show overlay of QC samples (20 replicates for QC 10 ng/ml, 4 replicates for QC 25 ng/ml) Page 9

3.) Quantitative analysis of pesticides (smrm) Calibration curves for static ti MRM (9 individual id calibration levels) l Responses Responses Spinosyn D R 2 = 0.9998 Cypermethrin R 2 = 0.9989 Responses Avermectin B1a R 2 = 0.9996 Blue triangles show overlay of QC samples (20 replicates for QC 10 ng/ml, 4 replicates for QC 25 ng/ml) Page 10

4.) Quantitative analysis of pesticides (dmrm) Comparison of MRM and Dynamic MRM Time Segment 1 Time Segment 2 Time Segment 3 Time Segment 4 Time (min) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 MRM Compounds (10/block) Cycle Time (sec) 50 80 100 70 05 0.5 08 0.8 1 07 0.7 Dynamic MRM Max Coincident 20 40 40 30 Cycle Time (sec) 0.4 0.4 0.4 0.4 2 x shorter cycle times supports narrow chromatographic peaks, more analytes or longer dwell per analyte. Page 11

Dynamic MRM # of MRMs will vary: Dwell times are adjusted dynamically to keep scan time constant for best quant data quality. MRMs chosen based on analyte ayte RT window On average, the number of MRMs at any time are many fewer than with time segment methods, allowing much faster MS cycle times. Agilent LC/MS Seminar 2009 Page 12

4.) Quantitative analysis of pesticides (dmrm) Setup of Dynamic MRM methods Create table with compound names, MRM transitions and parameters, retention times and retention ti time windows in EXCEL (can be automized from MassHunter Quant report) Page 13

4.) Quantitative analysis of pesticides (dmrm) Setup of Dynamic MRM methods Select Dynamic MRM as Scan type from MassHunter Acquisition (allows up to 200 concurrent MRMs and up to 4000 MRMs in total t for constant t cycle times) 1. 2. Copy table from EXCEL and paste it into MassHunter Acquisition from clipboard Page 14

4.) Quantitative analysis of pesticides (dmrm) Setup of Dynamic MRM methods Pressing the Apply button creates MRM method Setup of time segments MRM tables, and dwell times is done automatically ti based on the specified cycle time, retention times and retention time windows. 3. Calculation of maximum number of concurrent MRMs, minimum and maximum dwell times Page 15

4.) Quantitative analysis of pesticides (dmrm) Chromatographic hi conditions (pos. mode) 1200 Series HPLC system consisting of: - vacuum degasser - binary pump SL - wellplate sampler SL - diode array detector SL (not used) HPLC method Separation column: ZORBAX Eclipse Plus C-18, 100 x 2.1 mm, 1.8 µm Guard column: ZORBAX Eclipse Plus C-18, 12.5 x 2.1 mm, 5 µm Mobile phase: A: 5 mm ammonium formate + 0.01% formic acid B: methanol + 5 mm ammonium formate + 0.01% formic acid Flow: Inj.Vol.: 5 µl 0.3 ml/min Gradient**: 0.00 min 10 % B 1.00 min 10 % B 18.00 min 100 % B 20.00 min 100 % B 20.10 min 10 % B 25.00 min 10 % B Page 16

4.) Quantitative analysis of pesticides (dmrm) Agilent Jetstream t conditions (pos. mode) Spray chamber conditions: Gas temp.: 200 C Dry gas: 5 l/min Nebulizer: 35 psi Sheath gas temp: 250 C Sheath h gas flow: 10 l/min Positive Negative CapVoltage: 4500 V 3000 V Nozzle voltage 300 V 0 V Automatic setup of MRM tables based on selected cycle time, retention times and retention time windows for the individual compounds Cycle time 750 ms Interscan delay 2 ms Total No. of MRMs 350 Maximum No. Of concurrent MRMs 66 Minimum Dwell time 7.86 ms Maximum Dwell time 371.5 ms Page 17

4.) Quantitative analysis of pesticides (dmrm) Compounds included d in method using dynamic MRMs 3-OH Carbofuran Acephate Acetamiprid Aldicarb Aldicarb sulfone Aldicarb sulfoxid Ametryn Aminocarb Amitraz Avermectin B1a Azinphos-ethyl Azinphos-methyl Azoxystrobin Benalaxyl Bendiocarb Benfuracarb Benzoximate Bifenazate Bitertanol Boscalid Bromuconazole Bupirimate Buprofezin Butocarboxym Butoxycarboxim Carbaryl Carbendazim Carbetamid Carbofuran Carboxine Chlorfluazuron Chlorotoluron Chloroxuron Clethodim Clofentezine Clothianidin Cycluron Cymoxanil Cypermethrin Cyproconazole Cyprodinil Deltamethrin Demethon-S-methyl -sulfoxide Desmedipham Diazinon Dichlobutrazol Dicrotophos Diethofencarb Difenoconazol Diflubenzuron Dimethoat Dimethomorph Dioxacarb Diuron Edifenphos Emamectin B1a Epoxiconazole Etaconazole Ethiofencarb Ethofumesate Etoxazole Famoxadone Famphur Fenamidone Fenarimol Fenazaquin Fenbuconazol Fenhexamid Fenitrothion Fenoxycarb Fenpropimorph Fenpyroximat Fensulfothion Fenuron Fipronil Flufenoxuron Fluometuron Fluquinconazole Flusilazol Flutolanil Flutriafol Forchlorfenuron Formetanate Fuberidazole Furathiocarb Hexaconazol Hexythiazox Hydramethylnon Imazalil Imidacloprid Indoxacarb Iprovalicarb Isoprocarb Isoproturon Isoxaflutole Kresoxim-methyl Linuron Lufenuron Malathion Mefenazet Mepanipyrim Mepronil Mesotrione Metalaxyl Methabenzthiazuron Methamidophos Methidathion Methiocarb Methomyl Methoprotryne Methoxifenozid Metobromuron Metribuzin Mevinphos Monocrotophos Monolinuron Myclobutanil Neburon Nitenpyram Omethoate Oxadixyl Oxamyl Penconazole Phenmedipham Phorate Phosmet Pirimicarb Pirimifos-methyli if Prochloraz Promecarb Prometon Prometryn Propamocarb Propargite Propiconazole Propoxur Prothioconazole Pymetrozine Pyracarbolid Pyraclostrobin Pyrazophos Pyridaben Pyrimethanil Pyriproxyfen Quinoxyfen Rotenon Secbumeton Siduron Simetryn Spinosyn A Spinosyn D Spirodiclofen Spiromesifen Spiroxamin Tebuconazole Tebufenozide Tebufenpyrad Tebuthiuron Teflubenzuron Temephos Terbutryn Tetraconazole Thiabendazole Thiacloprid Thiametoxam Thidiazuron Thiofanox Thiophanat methyl Triadimefon Triadimenol Tricyclazole Trifloxystrobin Triflumizole Tifl Triflumuron Zoxamide Page 18

4.) Quantitative analysis of pesticides (dmrm) MRM parameter setup (pos. mode dynamic MRM) Compound Name Prec Ion MS1 Res Prod Ion MS2 Res Average Dwell Frag (V) CE (V) Avermectin B1a 890.6 Unit 567.2 Unit 66.2 130 4 Avermectin B1a 890.6 Unit 305 Unit 66.2 130 20 Spinosyn D 746.5 Unit 142.1 Unit 17.7 195 24 Spinosyn D 746.5 Unit 98.1 Unit 17.7 195 48 Spinosyn A 732.4 Unit 142 Unit 14.7 140 35 Spinosyn A 732.4 Unit 98 Unit 14.7 140 55 Cypermethrin 435.1 Unit 193 Unit 35.5 90 10 Cypermethrin 433.1 Unit 191 Unit 35.5 90 10 Diflubenzuron 311 Unit 158 Unit 10.1 80 10 Diflubenzuron 311 Unit 141 Unit 10.11 80 15 Fensulfothion 309 Unit 281 Unit 25.8 120 10 Fensulfothion 309 Unit 157 Unit 25.8 120 25 Fenhexamid 302 Unit 96.9 Unit 11.6 100 16 Fenhexamid 302 Unit 55 Unit 11.6 100 40 Aldicarb 208 Unit 116 Unit 73.0 70 0 Aldicarb 208 Unit 89.1 Unit 73.0 70 15 Carbendazim 192.1 Unit 160 Unit 66.2 120 15 Carbendazim 192.11 Unit 132 Unit 66.2 120 35 Acephate 184 Unit 143 Unit 148 90 5 Acephate 184 Unit 95 Unit 148 90 20 Methamidophos 142 Unit 125 Unit 185.5 80 10 Mth Methamidophos h 142 Unit 94 Unit 185.55 80 10 Page 19

Static MRM for selected pesticides (25 ng/ml) 7x10 4 Final method includes 11 pesticides with 2 MRM transitions each Dwell time 25 ms for each transition, Inter-scan delay 2 ms Page 20

Dynamic MRM for 175 pesticides (25 ng/ml) 8x10 4 Final method includes 175 pesticides with 2 MRM transitions each (350 MRMs) Flexible dwell times with a fixed cycle time of 750 ms, Inter-scan delay 3.5 ms Page 21

4.) Quantitative analysis of pesticides (dmrm) Calibration curves for dynamic MRM (9 individual id calibration levels) l Responses Responses Methamidophos R 2 = 0.9999 Acephate R 2 = 0.9999 Responses Responses Carbendazim R 2 = 0.9999 Aldicarb R 2 = 0.9999 Blue triangles show overlay of QC samples (20 replicates for QC 10 ng/ml, 4 replicates for QC 25 ng/ml) Page 22

4.) Quantitative analysis of pesticides (dmrm) Calibration curves for dynamic MRM (9 individual id calibration levels) l Responses Responses Fensulfothion R 2 = 1.0000 Fenhexamid R 2 = 0.9995 Responses Responses Diflubenzuron R 2 = 0.9991 Spinosyn A R 2 = 1.0000 Blue triangles show overlay of QC samples (20 replicates for QC 10 ng/ml, 4 replicates for QC 25 ng/ml) Page 23

4.) Quantitative analysis of pesticides (dmrm) Calibration curves for dynamic MRM (9 individual id calibration levels) l Responses Responses Spinosyn D R 2 = 0.9999 Cypermethrin R 2 = 0.9958 Responses Avermectin B1a R 2 = 0.9992 Blue triangles show overlay of QC samples (20 replicates for QC 10 ng/ml, 4 replicates for QC 25 ng/ml) Page 24

5.) Comparison of results for smrm and dmrm Reproducibility test t for spiked sample (10 ng/ml) Peak Areas Solvent (n = 20) Citron (n = 5) Carrot (n = 5) Cucumber (n = 5) Tobacco (n = 5) dmrm smrm dmrm smrm dmrm smrm dmrm smrm dmrm smrm Methamidophos Average 27677 26579 22946 21675 22952 22879 22475 21591 314 273 CV 095 0.95 222 2.22 082 0.82 240 2.40 223 2.23 216 2.16 268 2.68 140 1.40 498 4.98 15.11 Acephate Average CV Carbendazim Average CV Aldicarb Average CV 24813 1.62 89720 0.94 31069 1.21 23765 2.17 86027 1.66 29859 1.77 23854 2.30 53413 0.80 16687 0.75 23328 1.36 51837 1.20 16260 1.23 25235 1.65 53814 1.42 30924 1.76 24461 0.75 52532 0.92 30245 1.12 25428 1.84 91944 1.00 28214 1.37 24582 0.82 89812 0.61 26707 1.15 Fensulfothion Average 29533 28304 22060 21476 33777 32610 31789 30235 3661 3296 CV 1.55 1.38 0.73 1.59 1.29 1.78 2.47 0.76 3.85 3.10 Fenhexamid Average 6013 5791 5009 4625 9331 9433 4700 5424 2165 2640 CV 243 2.43 254 2.54 114 1.14 357 3.57 448 4.48 285 2.85 850 8.50 698 6.98 683 6.83 650 6.50 1902 6.06 6449 1.77 3199 1.20 1478 12.6 5920 2.63 2788 3.05 Page 25

5.) Comparison of results for smrm and dmrm Reproducibility test t for spiked sample (10 ng/ml) Peak Areas Diflubenzuron Average CV Spinosyn A Average CV Spinosyn D Average CV Solvent (n = 20) Citron (n = 5) Carrot (n = 5) Cucumber (n = 5) Tobacco (n = 5) dmrm smrm dmrm smrm dmrm smrm dmrm smrm dmrm smrm 7130 2.46 153897 1.12 44289 0.75 6720 2.40 151002 1.23 43248 1.88 1639 6.14 142868 0.86 41065 0.48 1744 3.76 143027 0.47 40807 0.61 6802 4.68 114625 0.97 23030 0.51 6398 1.40 114595 0.28 23067 1.13 6609 2.02 112952 0.76 25979 0.35 6279 1.57 109072 0.84 25154 0.92 150 34.98 23194 1.57 5840 1.94 243 19.87 23613 0.80 Cypermethrin Average 1921 1817 2657 2775 1605 1457 1725 1684 1313 963 CV 4.20 4.46 4.26 4.30 6.96 2.61 1.11 5.00 36.79 14.62 Avermectin B1a Average CV 10515 3.34 4282 5.90 11394 1.43 5556 1.06 Cycle time has been 750 ms for both methods (resulting in about 15 data points across the chromatographic peak) Peak areas have been very similar except for Avermectin B1a which showed bigger response for dmrm 10540 2.50 4902 4.65 7082 3.49 3562 2.55 1215 10.26 method (peak elutes very late in chromatogram and therefore dwell time was adjusted to significantly higher values from acquisition software) 5828 3.51 698 2.63 Page 26

Agilent 1290 Infinity LC Attributes for MS - Infinitely Better for LC/MS Lowest Delay Volume Pump (w/o) mixer: 10 µl Pump, Fixed Loop 20 µl Pump, Fixed Loop, JetWeaver 55 µl Highest Precision Best Autosampler Performance ALS precision for small volumes: <1.5% from 0.5-1µLm, <0.7% from 1-2µL, <0.25% @ 2-20 µl (40 ul) ** Pump Active Damping: RT stability < 0.2 % (1.5 min runs)** <0.002% carry-over with Chlorhexidine Optional needle seat backflushing with FlexCube Fixed Loop or Variable Loop Injections Greatest Productivity 1200bar @ 2mL/min for highest resolution per time Reduced Ion & Matrix Suppression HT-Solution for up to 2000 samples/day (ACR) Complete Integration and control from MassHunter Enables method conversion from/to any (U)HPLC ** preliminary Minimum Specs Page 27

Agilent 1290 Infinity LC methods for pesticides TIC traces (pos/neg mode) for different UHPLC gradients x10 4 +ESI TIC MRM CID@** (** -> **) pos_cal_06.d Gradient program 1 1 3 0min 10% B 1 min 10 % B 2 18 min 100 % B 1 20 min 100 % B x10 5 1.2 1 0.8 0.6 0.4 0.2 +/-ESI TIC MRM CID@** (** -> **) pest test-0016.d 1 1 Gradient program 0 min 20% B 10 min 100 % B 12 min 100 % B x10 5 +/-ESI TIC MRM CID@** (** -> **) pest test-0015.d 1.25 1 1 Gradient program 1 0.75 0.5 0.25 0 min 20% B 5 min 100 % B 7 min 100 % B 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Counts vs. Acquisition Time (min) Final method dincludes 11 pesticides id with ith2mrmt transitions each Page 28

Agilent 1290 Infinity LC methods for pesticides MRM traces of Avermectin B1a for Cal_6 (10 ng/ml) 2x10 3 5x10 3 8x10 3 RRLC method (25 min gradient) RT 18.98 min Width 0.346 min 1290 method (12 min gradient) RT 970min 9.70 Width 0.127 min 1290 method (7 min Gradient) RT 551min 5.51 Width 0.091 min Page 29

Analysis of 300 Pesticides in 15 min. Agilent 1290 Infinity LC + 6460A Triple Quad with Agilent Jet Stream Technology ~600 Dynamic MRM Transitions 9 replicates analyzed at 200 pg levell Mean area %RSD = 3.2, Mean height %RSD= 3.6 Page 30

~ 40 Pesticides Eluting in a 1 minute RT Window Page 31

5 pg Atrazine on-column Avg. Signal Area: 6,069 Avg. Signal Height: 2,371 7 data points above FWHM 2.2 sec FWHM 4.8 sec @10% valley (14 data pts) 10.2 sec peak width baseline-to- baseline (27 data points total) S/N: 119:1 (5*RMS noise) Estimated LOQ: 500 fg or less 2.2 sec FWHM 10% valley Page 32

Fast Polarity switching and fast MRMs with 6460 6430 performance should be nearly identical Avg. W 1/2 = 0.72 sec W = 2.1 sec Cycle time < 115 ms The verapamil peak eluted in two seconds from a sub-2- micron column at pressures exceeding a 1,000 bar with Agilent s new 1290 Infinity LC System. The verapamil ion transition from 455 to 165 was monitored more than fifteen times across the peak with multiple injections demonstrated a peak area RSD of 5%. The cycle time for six ion transitions and positive/negative polarity switching was less than 115 milliseconds. Page 33

Assay Precision (1290/6460, dynamic MRM) Diazepam, 500fg 100fg on-column N= 5 (@500fg), %RSD (area) = 2.67 x10 1 6.75 6.7 Cou unts 6.65 6.6 655 6.55 6.5 6.45 6.4 6.35 6.3 6.25 6.2 6.15 6.1 6.05 6 5.95 5.9 585 5.85 5.8 5.75 5.7 5.65 5.6 5.55 5.5 5.45 5.4 5.35 5.3 5.25 5.2 5.15 5.1 5.05 5 4.95 4.9 4.85 4.8 4.75 4.7 4.65 4.6 4.55 4.5 4.45 44 4.4 4.35 4.3 4.25 4.2 4.15 4.1 4.05 Quant & Qual transitions 20% outlier ratio boundary 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 Counts vs. Acquisition Time (sec) N= 35 (all Cal levels), %RSD (RT) = 0.03 Diazepam - 7 Levels, 7 Levels Used, 35 Points, 35 Points Used, 0 QCs x10 4 y = 143.2177 * x - 1.2275 1.5 R^2 = 0.99970154 1.4 1.3 1.2 1.1 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0-0.1 R 2 =0.99970154-5 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 Concentration (ppb)

SUMMARY Agilent LC/MS has achieved a new, higher level of performance Combined operation in MassHunter software Agilent 1290 Infinity LC allows fast, hi resolution separations Huge peak capacity for complex separations Excellent injection and RT precision Low delay volume for very fast methods Very low AS carry-over Agilent MS systems can keep up! Fast pos/neg switching Fast MRM and Dynamic MRM methods for triple quad Excellent sensitivity and linear dynamic range Fast scanning TOF and Q-TOF without loss of spectral quality or resolution. Page 35

SUMMARY Agilent LC/MS can meet the most demanding application needs. Agilent 1290 Infinity LC and Agilent 6530 Accurate Mass Q-TOF MS The ultimate Qual solution Agilent 1290 Infinity LC and Agilent 6460 Triple Quad MS The ultimate Quan solution Page 36