Section 1 Scientific Method. Describe the purpose of the scientific method. Distinguish between qualitative and quantitative observations.

Similar documents
Section 1 Scientific Method. Describe the purpose of the scientific method. Distinguish between qualitative and quantitative observations.

Chapter 2. Preview. Objectives Scientific Method Observing and Collecting Data Formulating Hypotheses Testing Hypotheses Theorizing Scientific Method

Measurements and Calculations. Chapter 2

Would you be breaking the speed limit in a 40 mi/h zone if you were traveling at 60 km/h?

MEASUREMENT CALCULATIONS AND. Chapter 2 Chemistry I

Chapter 2 - Measurements and Calculations

Scientific notation is used to express very large or small numbers.

The SI system and units of measurement

Notes Chapter 2: Measurements and Calculations. It is used to easily and simply write very large numbers, and very small numbers.

General Chemistry Unit 8 Measurement ( )

Notes: Measurement and Calculation

Dimensional Analysis, SI Units & Significant figures

Scientific Method: a logical approach to understanding or solving problems that needs solved.

precision accuracy both neither

Measurements. October 06, 2014

Unit 1 Part 1: Significant Figures and Scientific Notation. Objective understand significant figures and their rules. Be able to use scientific

Lesson 5: Measurement Part II Accuracy & Precision SI Units

Section 3 Using Scientific Measurements. Look at the specifications for electronic balances. How do the instruments vary in precision?

Accelerated Chemistry Study Guide What is Chemistry? (Chapter 1)

Chapter 3 - Measurements

Chapter 2 Using the SI System in Science

Ch. 2 Notes: ANALYZING DATA MEASUREMENT NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics.

Units of Measurement. Key Terms quantity derived unit conversion factor SI volume dimensional analysis

Measuring SKILLS INTRODUCTION

Scientific Method, Units of Measurement, Scientific Notation, Significant Figures BASICS OF PHYSICAL SCIENCE

MEASUREMENTS. Significant Figures

Chapter 2 Measurements and Solving Problems

Ch. 2 Notes: ANALYZING DATA MEASUREMENT NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics.

Scientific Method. Why Study Chemistry? Why Study Chemistry? Chemistry has many applications to our everyday world. 1. Materials. Areas of Chemistry

Accuracy of Measurement: how close your measured value is to the actual measurement

Measurements and Calculations. Chapter 2

Lesson 7 Scientific Notation SI Units Unit Conversions

Co Curricular Data Analysis Review

Tools of Chemistry. Measurement Scientific Method Lab Safety & Apparatus

Example 3: 4000: 1 significant digit Example 4: : 4 significant digits

What the Heck is Metrics?

2 Standards for Measurement. Careful and accurate measurements of ingredients are important both when cooking and in the chemistry laboratory!

MEASUREMENT AND PROBLEM SOLVING. Chapter 3 & 4

I. Qualit a Qualit t a ive iv vs. Quantit Quan a tit tiv a e tiv Measurements

Chapter 1. Chemistry and Measurements

Scientific Measurement

WHAT IS CHEMISTRY? Chemistry 51 Chapter 1. Chemistry is the science that deals with the materials of the universe, and the changes they undergo.

Name: Measurements and Calculations (Chapter 3 and 4) Notes

Law vs. Theory. Steps in the Scientific Method. Outcomes Over the Long-Term. Measuring Matter in Two Ways

Chemistry I Chapter 3 Scientific Measurement

Metric System (System International or SI)

All measurements contain a number and a unit. Every unit is based upon standard.

CHAPTER 9 : Motion Physics Intro to MEASUREMENTS

Everyday Conversion: Money

SYLLABUS INDEX CARD NAME MAJOR (IF YOU DON T HAVE ONE INTEREST) WHAT DO YOU WANT TO BE WHEN YOU GROW UP?

Chapter 2 Measurement and Problem Solving. What Is a Measurement? Scientific Notation 8/20/09. Introductory Chemistry, 3 rd Edition Nivaldo Tro

Measurements UNITS FOR MEASUREMENTS

PS. 1 - SCIENTIFIC INVESTIGATION

1.5 Reporting Values from Measurements. Accuracy and Precision. 20 Chapter 1 An Introduction to Chemistry

SCIENTIFIC MEASUREMENT. Ch 2 Chemistry is a lot of math!

Scientific Method Notes. Science = Latin for. Method = Greek for Science + Method =

Chemistry Section Review 2.2

Chapter 2: Measurements & Calculations

AP Chemistry Chapter 1: Chemical Foundations. The only thing that matters is Matter!

Full file at

Chapter: Measurement

Measurement. Scientific Notation. Measurements and Problem Solving. Writing Numbers in Scientific Notation

Welcome to the World of Chemistry. Mrs. Panzarella Rm. 351

Unit I: Measurements A. Significant figures B. Rounding numbers C. Scientific notation D. Using electronic calculators E.

Significant Figures. Accuracy how close of a measurement to the exact measurement

Chemistry Basic Science Concepts. Observations: are recorded using the senses. Examples: the paper is white; the air is cold; the drink is sweet.

Right Side NOTES ONLY. TN Ch 2.1, 2.3 Topic: EQ:

Chapter 2 Measurements & Calculations. Quantity: A thing that can be measured. ex. Length (6.3 ft), mass (35 kg), and time (7.2 s)

Measurements and Calculations. Chapter 2

International System of Units (SI)

Notes: Unit 1: Math and Measurement

Notes: Unit 1: Math and Measurement

Today is Thursday, February 11 th, 2016

International System of Units (SI)

METRIC CHART. The metric system has three units or bases.

The Metric System and Measurement

Welcome to General Chemistry I

Chemistry 104 Chapter Two PowerPoint Notes

Chapter 1B. Measurement CHAPTER OUTLINE

Name: Chapter 2: Analyzing Data Note Taking Guide This worksheet is meant to help us learn some of the basic terms and concepts of chemistry.

Number vs. Quantity. Quantity - number + unit UNITS MATTER!! for a measurement to be useful, must include both a number and unit

Welcome to Chemistry

UNIT 1 - MATH & MEASUREMENT

Methods of Science. Measurement and Scientific Tools

Standards of the past

Chem 140 Section C Instructor: Ken Marr. Chem 140 Section A Instructor: Ken Marr. Chem 140 Section E Instructor: Ken Marr. Day 1 Activities CHEMISTRY

Measuring Matter - Study Guide

The Metric System and Measurement

1.1 Convert between scientific notation and standard notation

Chapter 2. Measurements and Calculations

Defining Physical Science

Welcome to Chemistry 121

Chemistry 11. Unit 2 : Introduction to Chemistry

Introduction. The Scientific Method and Measurement

Matter & Measurement. Chapter 1 Chemistry 2A

Nature of Science Measurement and. Scientific Tools

Worksheet 0.3: Math and Measurements

SCIENTIFIC MEASUREMENT C H A P T E R 3

The Metric System. Most scientists use the metric system when collecting data and performing experiments

Measurement and Calculations

Transcription:

Section 1 Scientific Method Objectives Describe the purpose of the scientific method. Distinguish between qualitative and quantitative observations. Describe the differences between hypotheses, theories, and models.

Section 1 Scientific Method Scientific Method The scientific method is a logical approach to solving problems by observing and collecting data, formulating hypotheses, testing hypotheses, and formulating theories that are supported by data.

Section 1 Scientific Method Observing and Collecting Data Observing is the use of the senses to obtain information. data may be qualitative (descriptive) quantitative (numerical) A system is a specific portion of matter in a given region of space that has been selected for study during an experiment or observation.

Section 1 Scientific Method Formulating Hypotheses Scientists make generalizations based on the data. Scientists use generalizations about the data to formulate a hypothesis, or testable statement. Hypotheses are often if-then statements.

Section 1 Scientific Method Formulating Hypotheses

Section 1 Scientific Method Testing Hypotheses Testing a hypothesis requires experimentation that provides data to support or refute a hypothesis or theory. Controls are the experimental conditions that remain constant. Variables are any experimental conditions that change.

Section 1 Scientific Method Theorizing A model in science is more than a physical object; it is often an explanation of how phenomena occur and how data or events are related. visual, verbal, or mathematical example: atomic model of matter A theory is a broad generalization that explains a body of facts or phenomena. example: atomic theory

Section 1 Scientific Method Scientific Method

Section 2 Units of Measurement Objectives Distinguish between a quantity, a unit, and a measurement standard. Name and use SI units for length, mass, time, volume, and density. Distinguish between mass and weight.

Section 2 Units of Measurement Units of Measurement Measurements represent quantities. A quantity is something that has magnitude, size, or amount. measurement quantity the teaspoon is a unit of measurement volume is a quantity The choice of unit depends on the quantity being measured. Measurements have a number AND a unit!!!

Section 2 Units of Measurement SI Measurement Scientists all over the world have agreed on a single measurement system called Le Système International d Unités, abbreviated SI. SI has seven base units most other units are derived from these seven

Section 2 Units of Measurement SI Base Units

Section 2 Units of Measurement SI Base Units Mass Mass is a measure of the quantity of matter. The SI standard unit for mass is the kilogram. Weight is a measure of the gravitational pull on matter. Mass does not depend on gravity.

Section 2 Units of Measurement SI Base Units Length Length is a measure of distance. The SI standard for length is the meter. The kilometer, km, is used to express longer distances The centimeter, cm, is used to express shorter distances

SI Prefixes

Prefixes to memorize: 1 kilo (k) = 1000 1 hecto (h) = 100 1 deca (da) = 10 1 km = 1000 m 1 hm = 100 m 1 dam = 10 m 1 deci (d) = 0.1 1 centi (c)= 0.01 1 milli (m)= 0.001 1 dm= 0.1 m 1 cm = 0.01m 1 mm = 0.001m

Paper Meter Stick Activity

King Henry Died by Drinking Chocolate Milk Kilo Hecto Deka base. Deci Centi Milli 1000 100 10..1.01.001

Practice converting between units with prefixes: Metric Mania

Section 2 Units of Measurement Objectives Recognize Derived Units. Perform density calculations. Transform a statement of equality into a conversion factor.

Section 2 Units of Measurement Derived SI Units Combinations of SI base units form derived units. pressure is measured in kg/m s 2, or pascals

Section 2 Units of Measurement Derived SI Units, continued Volume Volume is the amount of space occupied by an object. The derived SI unit is cubic meters, m 3 The cubic centimeter, cm 3, is often used The liter, L, is a non-si base unit 1 L = 1000 cm 3 1 ml = 1 cm 3

Section 3 Using Scientific Measurements Measure 50 ml of water into the beaker at your desk. All tablemates should agree that you have measured 50 ml. Now, pour the water into the graduated cylinder. Make sure you allow time for all of the water to exit the beaker and enter the cylinder. Determine a measurement for the water in the graduated cylinder. Which measuring tool is best to use when measuring a liquid?

Add an unmeasured amount of water to a graduated cylinder. Read the amount of water at the meniscus and record your measurement. Report your measurement to 1 place value past the value represented by the graduations on the cylinder (lines). After your teacher has approved your measurement, complete the graduated cylinder worksheet.

Section 2 Units of Measurement Derived SI Units, continued Density Density is the ratio of mass to volume, or mass divided by volume. mass density = or D = volume m V The derived SI unit is kilograms per cubic meter, kg/m 3 g/cm 3 or g/ml are also used Density is a characteristic physical property of a substance.

Section 2 Units of Measurement Derived SI Units, continued Density Density can be used as one property to help identify a substance

Section 2 Units of Measurement Equation for Density Units for Density: g/cm 3 g/ml Visual Concept kg/m 3

Calculate these densities: A sample of aluminum metal has a mass of 8.4 g. The volume of the sample is 3.1 cm 3. What is the density of aluminum? What is the density of a 853 gram block of marble that occupies 310.cm 3?

Deriving (rearranging) formulas: Rearrange the Density formula to solve for Mass. Rearrange the Density formula to solve for Volume.

Use your derived formulas to solve: Diamond has a density of 3.26 g/cm 3. What is the mass of a diamond that has a volume of 0.351 cm 3? What is the volume of a sample of liquid mercury that has a mass of 76.2 g, given that the density of mercury is 13.6 g/ml?

Section 2 Units of Measurement Conversion Factors A conversion factor is a ratio derived from the equality between two different units that can be used to convert from one unit to the other. example: How quarters and dollars are related 4 quarters 1 dollar = 1 = 1 1 dollar 4 quarters 0.25 dollar 1 quarter = 1 = 1 1 quarters 0.25 dollar

Section 2 Units of Measurement Conversion Factors, continued Dimensional analysis is a mathematical technique that allows you to use units to solve problems involving measurements. (a/k/a factor-label method) quantity sought = quantity given conversion factor example: the number of quarters in 12 dollars number of quarters = 12 dollars conversion factor 4 quarter? quarters = 12 dollars = 48 quarters 1 dollar

Section 2 Units of Measurement Conversion Factors, continued Deriving Conversion Factors You can derive conversion factors if you know the relationship between the unit you have and the unit you want. example: conversion factors for meters and decimeters 1 m 0.1 m 10 dm 10 dm dm m

Section 2 Units of Measurement Conversion Factors, continued Sample Problem Express a mass of 5.712 grams in milligrams.

Section 2 Units of Measurement Conversion Factors, continued Sample Problem Express a mass of 5.712 grams in kilograms.

Sample Problem: How many seconds are in 1.5 years?

Arrange the cards to show the dimensional analysis process to determine the number of turtles on the island. Calculate an answer.

Section 3 Using Scientific Measurements Objectives Distinguish between accuracy and precision. Determine the number of significant figures in measurements. Perform mathematical operations involving significant figures. Convert measurements into scientific notation. Distinguish between inversely and directly proportional relationships.

Section 3 Using Scientific Measurements Accuracy and Precision Accuracy refers to the closeness of measurements to the correct or accepted value of the quantity measured. Precision refers to the closeness of a set of measurements of the same quantity made in the same way.

Section 3 Using Scientific Measurements Accuracy and Precision

Section 3 Using Scientific Measurements Accuracy and Precision, continued Error in Measurement Some error or uncertainty always exists in any measurement. skill of the measurer conditions of measurement measuring instruments

Section 3 Using Scientific Measurements Significant Figures Significant figures in a measurement consist of all the digits known with certainty plus one final digit, which is somewhat uncertain or is estimated. The term significant does not mean important or certain.

Chapter 2 Section 3 Using Scientific Measurements Reporting Measurements Using Significant Figures

Section 3 Using Scientific Measurements Significant Figures, continued Determining the Number of Significant Figures

Section 3 Using Scientific Measurements Significant Figures, continued Sample Problem D How many significant figures are in each of the following measurements? a. 28.6 g b. 3440. cm c. 910 m d. 0.046 04 L e. 0.006 700 0 kg

Section 3 Using Scientific Measurements Significant Figures, continued Rounding

Section 3 Using Scientific Measurements Significant Figures, continued Addition or Subtraction with Significant Figures When adding or subtracting decimals, the answer must have the same number of digits to the right of the decimal point as there are in the measurement having the fewest digits to the right of the decimal point. Multiplying or Dividing with Significant Figures For multiplication or division, the answer can have no more significant figures than are in the measurement with the fewest number of significant figures.

Section 3 Using Scientific Measurements Significant Figures, continued Sample Problem E Carry out the following calculations. Express each answer to the correct number of significant figures. a. 5.44 m - 2.6103 m b. 2.4 g/ml 15.82 ml

Section 3 Using Scientific Measurements Significant Figures, continued Conversion Factors and Significant Figures There is no uncertainty in exact conversion factors. Most exact conversion factors are defined quantities. In other words, when solving calculations, DO NOT consider the significant figures in conversion factors or scientific constants (such as density) when deciding on number of sig. figs. in answer.

Section 3 Using Scientific Measurements Scientific Notation In scientific notation, numbers are written in the form M 10 n, where the factor M is a number greater than or equal to 1 but less than 10 and n is a whole number. example: 0.000 12 mm = 1.2 10 4 mm Move the decimal point four places to the right and multiply the number by 10 4.

Section 3 Using Scientific Measurements Scientific Notation, continued 1. Determine M by moving the decimal point in the original number to the left or the right so that only one nonzero digit remains to the left of the decimal point. 2. Determine n by counting the number of places that you moved the decimal point. If you moved it to the left, n is positive. If you moved it to the right, n is negative.