T b a(f) [f ] +. P b a(f) = Conclude that if f is in AC then it is the difference of two monotone absolutely continuous functions.

Similar documents
(a) A partition P of [a, b] is a finite subset of [a, b] containing a and b. If Q is another partition and P Q, then Q is a refinement of P.

MATH 409 Advanced Calculus I Lecture 22: Improper Riemann integrals.

The Regulated and Riemann Integrals

Part 4. Integration (with Proofs)

The Riemann-Stieltjes Integral

W. We shall do so one by one, starting with I 1, and we shall do it greedily, trying

MA10207B: ANALYSIS SECOND SEMESTER OUTLINE NOTES

Presentation Problems 5

More Properties of the Riemann Integral

Appendix to Notes 8 (a)

7.2 Riemann Integrable Functions

Fundamental Theorem of Calculus for Lebesgue Integration

Phil Wertheimer UMD Math Qualifying Exam Solutions Analysis - January, 2015

Math 61CM - Solutions to homework 9

Chapter 4. Lebesgue Integration

SOLUTIONS FOR ANALYSIS QUALIFYING EXAM, FALL (1 + µ(f n )) f(x) =. But we don t need the exact bound.) Set

AP Calculus AB Unit 4 Assessment

The Banach algebra of functions of bounded variation and the pointwise Helly selection theorem

Math 554 Integration

Solutions to Assignment 1

FUNDAMENTALS OF REAL ANALYSIS by. III.1. Measurable functions. f 1 (

The Riemann and the Generalised Riemann Integral

MATH 409 Advanced Calculus I Lecture 19: Riemann sums. Properties of integrals.

f (x)dx = f(b) f(a). a b f (x)dx is the limit of sums

Lecture 3 ( ) (translated and slightly adapted from lecture notes by Martin Klazar)

MATH 409 Advanced Calculus I Lecture 18: Darboux sums. The Riemann integral.

ON THE C-INTEGRAL BENEDETTO BONGIORNO

a n+2 a n+1 M n a 2 a 1. (2)

6.1 Definition of the Riemann Integral

6.5 Improper integrals

Final Exam Review. [Top Bottom]dx =

Entrance Exam, Real Analysis September 1, 2009 Solve exactly 6 out of the 8 problems. Compute the following and justify your computation: lim

1 i n x i x i 1. Note that kqk kp k. In addition, if P and Q are partition of [a, b], P Q is finer than both P and Q.

Chapter 22. The Fundamental Theorem of Calculus

DEFINITE INTEGRALS. f(x)dx exists. Note that, together with the definition of definite integrals, definitions (2) and (3) define b

RIEMANN INTEGRATION. Throughout our discussion of Riemann integration. B = B [a; b] = B ([a; b] ; R)

Properties of the Riemann Integral

Lecture 3. Limits of Functions and Continuity

A product convergence theorem for Henstock Kurzweil integrals

arxiv: v1 [math.ca] 11 Jul 2011

A PROOF OF THE FUNDAMENTAL THEOREM OF CALCULUS USING HAUSDORFF MEASURES

Homework 4. (1) If f R[a, b], show that f 3 R[a, b]. If f + (x) = max{f(x), 0}, is f + R[a, b]? Justify your answer.

Advanced Calculus: MATH 410 Notes on Integrals and Integrability Professor David Levermore 17 October 2004

Main topics for the First Midterm

Hyers-Ulam stability of Pielou logistic difference equation

IMPORTANT THEOREMS CHEAT SHEET

a n = 1 58 a n+1 1 = 57a n + 1 a n = 56(a n 1) 57 so 0 a n+1 1, and the required result is true, by induction.

Mapping the delta function and other Radon measures

ON THE INEQUALITY OF THE DIFFERENCE OF TWO INTEGRAL MEANS AND APPLICATIONS FOR PDFs

Review of Riemann Integral

INTEGRATION. 1 Integrals of Complex Valued functions of a REAL variable

The Henstock-Kurzweil integral

Lecture 1. Functional series. Pointwise and uniform convergence.

38 Riemann sums and existence of the definite integral.

f p dm = exp Use the Dominated Convergence Theorem to complete the exercise. ( d φ(tx))f(x) dx. Ψ (t) =

Principles of Real Analysis I Fall VI. Riemann Integration

Calculus in R. Chapter Di erentiation

Notes on length and conformal metrics

MAT 403 NOTES 4. f + f =

n f(x i ) x. i=1 In section 4.2, we defined the definite integral of f from x = a to x = b as n f(x i ) x; f(x) dx = lim i=1

Tutorial Worksheet. 1. Find all solutions to the linear system by following the given steps. x + 2y + 3z = 2 2x + 3y + z = 4.

Chapter 6. Riemann Integral

Section 5.1 #7, 10, 16, 21, 25; Section 5.2 #8, 9, 15, 20, 27, 30; Section 5.3 #4, 6, 9, 13, 16, 28, 31; Section 5.4 #7, 18, 21, 23, 25, 29, 40

Math 32B Discussion Session Week 8 Notes February 28 and March 2, f(b) f(a) = f (t)dt (1)

Math 120 Answers for Homework 13

Math Solutions to homework 1

Math 324 Course Notes: Brief description

Lecture 1 - Introduction and Basic Facts about PDEs

CHAPTER V INTEGRATION, AVERAGE BEHAVIOR A = πr 2.

MATH34032: Green s Functions, Integral Equations and the Calculus of Variations 1

arxiv: v1 [math.ca] 7 Mar 2012

The Fundamental Theorem of Calculus. The Total Change Theorem and the Area Under a Curve.

Review of Calculus, cont d

Definition of Continuity: The function f(x) is continuous at x = a if f(a) exists and lim

Convex Sets and Functions

Week 10: Riemann integral and its properties

Exam 2, Mathematics 4701, Section ETY6 6:05 pm 7:40 pm, March 31, 2016, IH-1105 Instructor: Attila Máté 1

Line Integrals. Partitioning the Curve. Estimating the Mass

The Bochner Integral and the Weak Property (N)

1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

g i fφdx dx = x i i=1 is a Hilbert space. We shall, henceforth, abuse notation and write g i f(x) = f

Review: The Riemann Integral Review: The definition of R b

1. On some properties of definite integrals. We prove

Sections 5.3: Antiderivatives and the Fundamental Theorem of Calculus Theory:

Riemann Sums and Riemann Integrals

STUDY GUIDE FOR BASIC EXAM

Lecture 1: Introduction to integration theory and bounded variation

THE EXISTENCE-UNIQUENESS THEOREM FOR FIRST-ORDER DIFFERENTIAL EQUATIONS.

Green s Theorem. (2x e y ) da. (2x e y ) dx dy. x 2 xe y. (1 e y ) dy. y=1. = y e y. y=0. = 2 e

Riemann Sums and Riemann Integrals

Math 426: Probability Final Exam Practice

Section 3.6. Definite Integrals

Czechoslovak Mathematical Journal, 55 (130) (2005), , Abbotsford. 1. Introduction

For a continuous function f : [a; b]! R we wish to define the Riemann integral

DIFFERENCE BETWEEN TWO RIEMANN-STIELTJES INTEGRAL MEANS

A HELLY THEOREM FOR FUNCTIONS WITH VALUES IN METRIC SPACES. 1. Introduction

Line Integrals and Entire Functions

0.1 Properties of regulated functions and their Integrals.

Week 7 Riemann Stieltjes Integration: Lectures 19-21

Properties of the Riemann Stieltjes Integral

Transcription:

Rel Vribles, Fll 2014 Problem set 5 Solution suggestions Exerise 1. Let f be bsolutely ontinuous on [, b] Show tht nd T b (f) P b (f) f (x) dx [f ] +. Conlude tht if f is in AC then it is the differene of two monotone bsolutely ontinuous funtions. In homework 4 exerise 5 we showed tht f (x) dx T b (f) for ll funtions f of bounded vrition. Sine bsolutely ontinuous funtions hve bounded vrition then it suffies to only show the other inequlity. Let {x i } n i0 be prtition of of [, b]. Then f(x i ) f(x i 1 ) xi f (x) dx x i 1 xi x i 1 f (x) dx Tking supremum over ll prtitions of [, b] it follows tht Hene T b (f) T b (f) f (x) dx. f (x) dx. For the seond prt, we similrly see tht for ny prtition {x i } n i0 of [, b] we hve [f(x i ) f(x i 1 )] + [ x i ] + f (x) dx x i 1 1 xi x i 1 [f (x)] + dx f (x) dx. [f (x)] + dx.

Tking supremum over ll prtitions of [, b] it follows tht P b (f) [f ] +. For the onverse inequlity note tht f(x) P x (f) N x (f) + f(), so f (x) P x (f) N x (f) lmost everywhere. Sine P x (f) nd N x (f) re nonderesing funtions then P x (f) 0 nd N x (f) 0 lmost everywhere. So [f(x) ] + [P x (f) N x (f) ] + P x (f) lmost everywhere. So we onlude tht [f ] + P x (f) dx P b (f) P (f) P b (f), whih is the inequlity tht we wnted. Thus [f ] + P b (f). Finlly, sine P x (f) nd T x (f) re both integrls they re in prtiulr bsolutely ontinuous. Sine f(x) P x (f) N x (f) + f() 2P x (f) P x (f) N x (f) + f() 2P x (f) T x (f) + f() then f is the differene of two monotone bsolutely ontinuous funtions. Exerise 2. Show tht if f is in AC on [, b] nd if f is never zero there, then g 1 f is lso in AC on [, b]. Sine f is ontinuous funtion on the onneted set [, b] nd never zero, then either f(x) > 0 for ll x [, b] or f(x) < 0 for ll x [, b]. Without loss of generlity we n ssume tht f(x) > 0 for ll x [, b]. Sine [, b] is ompt then f ttins its minimum on [, b], so there exists > 0 so tht f(x) > 0 for ll x [, b]. Fix ε > 0. Sine f is bsolutely ontinuous we find δ > 0 so tht f( i ) f(b i ) < 2 ε 2

whenever {( i, b i )} n is disjoint olletion of intervls suh tht This implies tht i b i < δ. 1 g( i ) g(b i ) f( i ) 1 f(b i) f( i ) f(b i ) f( i )f(b i ) 1 f( 2 i ) f(b i ) < 1 2 2 ε ε whenever {( i, b i )} n is disjoint olletion of intervls suh tht Hene g 1 f i b i < δ. is bsolutely ontinuous on [, b]. Exerise 3. Show tht there is stritly inresing singulr funtion on [0, 1]. (Rell tht monotone funtion f on [, b] is lled singulr if f 0 lmost everywhere.) We follow the suggestions given by Royden. Lemm 1. Let f be monotone inresing funtion. Then f g + h where g is bsolutely ontinuous nd h is singulr, nd both g nd h re monotone inresing. Proof: Sine f is monotone then f exists lmost everywhere nd is mesurble, nd f 0 sine f is inresing. We define g(x) x f (t) dt for ll x. Now g is bsolutely ontinuous s n integrl nd g is monotone inresing sine f 0. We define h f g. Now 3

h f g f f 0 lmost everywhere so h is singulr. To see tht h is monotone inresing, fix x y nd observe tht h(y) h(x) f(y) y f(y) f(x) f(t) dt f(x) + y x f (t) dt. x f (x) dx Sine f is monotone then y f (t) dt f(y) f(x). So we onlude tht h(x) h(y). Finlly, sine f g + h then we re x done. Lemm 2. Let f be nonderesing singulr funtion on [, b]. Then f hs the following property (S): Given ε > 0, δ > 0, there is finite olletion {[y k, x k ]} n of nonoverlpping intervls suh tht x k y k < δ nd (f(x k ) f(y k )) > f(b) f() ε. Proof: Fix ε > 0 nd δ > 0. Denote A {x [, b] : f (x) 0} nd κ. Now if x A then ε b f(x + h) f(x) lim h 0 h f (x) 0, so there exists h x > 0 so tht for ll 0 < h < h x, f(x + h) f(x) h < κ, i.e. f(x + h) f(x) < κh. Now the olletion V {[x, x + h] : x A, h < h x } is Vitli over of A. Sine m(a) < then by Vitli overing theorem there is finite disjoint olletion {[x i, x i + h i ]} n V so tht ( n ) m A \ [x i, x i + h i ] < δ. 4

Denote I i [x i, x i + h i ] for ll i. Sine m([, b]) m(a) then b i n l(i i ) b m( i n I i ) m(a \ i n I i ) < δ, so i n l(i i) > b δ. Denote I i I i the open intervl obtined by tking the endpoints of I i wy. Now the omplement of i n I i in [, b] is finite olletion of disjoint losed intervls, denoted by {J i } k, nd dditionlly the possibility exists tht the singleton endpoints {, b} re lso in the omplement in the se of x 1 nd x n + h n b. In this se we tret J 1 {} nd J k {b}. We my ssume tht the intervls re listed in n inresing order, nd we denote J i [ i, b i ] for ll i. Note tht eh intervl J i is n intervl of the form [x in, x in+1 +h in+1] for some i n unless we re deling with the singleton endpoints, nd i k l(j i) < δ. Thus we hve k (f(b i ) f( i )) f(b k ) f( 1 ) + whih finishes the proof. f(b) f() > f(b) f() κ (f( i ) f(b i 1 )) i2 k (f(b i 1 ) f( i )) i2 k i2 h in > f(b) f() κ(b ) f(b) f() ε, Lemm 3. Let f be nonderesing funtion on [, b] with property (S) from Lemm 2. Then f is singulr. Proof: From Lemm 1 it follows tht f g + h where g is bsolutely ontinuous nd h is singulr, nd both g nd h re nonderesing. Fix ε > 0. Sine g is bsolutely ontinuous then there exists δ > 0 so tht (g(y i ) g(x i )) < ε 2 5

for ny olletion of disjoint intervls {[x i, y i ]} n with y i x i < δ. Now sine f hs property (S), for the fixed ε > 0 nd δ > 0 there is finite olletion {[ i, b i ]} n of disjoint intervls suh tht i b i < δ nd (f(b i ) f( i )) > f(b) f() ε 2. Sine g(x) x f (t) dt for ll x, then by denoting b 0 nd n+1 b, we hve g(b) g() (g( i+1 ) g(b i )) + i0 i+1 (g(b i ) g( i )) < f (t) dt + ε i0 b i 2 (f( i+1 ) f(b i )) + ε 2 i0 f(b) f() (f(b i ) f( i )) + ε 2 ( < f(b) f() f(b) f() ε ) + ε 2 2 ε. Sine the hoie of ε > 0 ws rbitrry, it follows tht g(b) g() for ll x. Sine g() 0 then g 0. Thus f h nd sine h ws singulr then f is singulr. Lemm 4. Let (f n ) n1 sequene of nonderesing singulr funtions on [, b] so tht the funtion f(x) f n (x) 6 n1

is everywhere finite. Show tht f is lso singulr. Let ε > 0 nd δ > 0 be fixed. Sine (f n (b) f n ()) f(b) f() <, n1 then there exists N N suh tht (f n (b) f n ()) < ε 2. nn+1 Denote g(x) N f n(x). Sine eh f n is nonderesing then g is nonderesing, nd sine g (x) N f n(x) 0 for lmost every x, then g is singulr. By Lemm 2 the funtion g hs the property (S). So there exists finite olletion of disjoint intervls {[ i, b i ]} m so tht m b i i < δ nd m (g(b i ) g( i )) > g(b) g() ε 2. For this sme olletion of intervls we lso hve m m ( ) (f(b i ) f( i )) (f n (b i ) f n ( i )) n1 m ( N ) (f n (b i ) f n ( i )) n1 m (g(b i ) g( i )) > g(b) g() ε 2 N (f n (b) f n ()) ε 2 n1 f(b) f() nn+1 > f(b) f() ε 2 ε 2 (f n (b) f n ()) ε 2 f(b) f() ε. 7

So we onlude tht f hs the property (S). Sine f is lso nonderesing then by Lemm 3 f is singulr. We now return to our exerise. Sine Q is ountble then the set of ll intervls with rtionl endpoints is ountble. So we n enumerte this set, sy by {[ n, b n ] : n N}, where n, b n Q [0, 1] nd n < b n. We then define f n : [0, 1] R for eh n N by setting ( x f n (x) 2 n n ) C, b n n where C : R R is the Cntor funtion extended ontinuously to the whole rel line by setting C (,0] 0 nd C [1, ) 1. Now note tht f n (x) 0 for ll x n nd f n (x) 2 n for ll x b n, f n(x) 0 lmost everywhere nd f n is nonderesing. It follows tht f(x) : f n (x) n1 is everywhere finite nd thus by Lemm 4 f is singulr on [0, 1]. It lso follows tht f is nonderesing beuse eh f n is. To see tht it is stritly inresing ssume tht x < y. Sine the rtionls re dense in the rels there exists q Q so tht x < q < y. So ny f n ssigned to rtionl intervl with left endpoint t q gives f n (x) 0 nd f n (y) > 0. So it follows tht f(x) < f(y). Hene f is stritly inresing singulr funtion on [0, 1]. Exerise 4. () Let F be AC on [, d] nd let g be stritly inresing nd AC on [, b] with g d. Then F g is AC on [, b]. Fix ε > 0. Sine F is in AC there is κ > 0 so tht F (b i ) F ( i ) < ε whenever {[ i, b i ]} n is disjoint olletion of intervls with b i i < κ. 8

Now use κ > 0 in the definition of the bsolute ontinuity of g to find δ > 0 so tht g(y i ) g(x i ) < κ whenever {[x i, y i ]} n is disjoint olletion of intervls with y i x i < δ. So fix disjoint olletion of intervls {[x i, y i ]} n with y i x i < δ. Then sine g is inresing nd ontinuous, the intervls [x i, y i ] mp to intervls under g. More preisely, we hve g[x i, y i ] [g(x i ), g(y i )] for ll i nd the intervls re disjoint s g is stritly inresing. By the bsolute ontinuity of g we lso hve for the length of the intervls tht g(y i ) g(x i ) < κ. So treting the disjoint olletion of intervls {[g(x i ), g(y i )]} n in the definition of the bsolute ontinuity of F we hve tht F (g(y i )) F (g(x i )) < ε. So we hve shown tht there is δ > 0 suh tht for ny disjoint olletion of intervls {[x i, y i ]} n with we hve y i x i < δ. (F g)(y i ) (F g)(x i ) < ε. Hene F g is bsolutely ontinuous. 9

(b) Let E {x : g (x) 0}. Then m(g(e)) 0. Fix ε > 0. The proof follows similr rgument s we did in Lemm 2 of Exerise 3. Let κ ε. There now exists δ > 0 so 4(b ) tht A g < ε whenever A [, b] with m(a) < δ. Fix x E. 2 Sine g(x + h) g(x) lim h 0 h 0, there exists h x > 0 so tht for ll 0 < h < h x we hve g(x + h) g(x) h < κ. In other words g(x + h) g(x) < κh for ll 0 < h < h x. We then define V {[x, x + h] : x E, 0 < h < h x }, whih is Vitli over of the set E. Sine m(e) <, by Vitli overing theorem we find finite disjoint subolletion of V, denoted by {[x i, x i + h i ]} n, so tht ( m E \ n ) [x i, x i + h i ] < δ 2. Denote U n [x i, x i + h i ], nd hoose n open set O E \ U with m(o \ (E \ U)) < δ 2. Now so m(o) m(e \ U) m(o \ (E \ U)) < δ 2, m(o) < δ 2 + m(e \ U) < δ 2 + δ 2 δ. We then write O s ountble disjoint union O I k of open intervls I k, so m(g(e \ U)) m(g(o)) m(g(i k )) m ( [min g(x), mx g(x)] ) x I k x I k (mx x I k g(x) min x I k g(x)) 10 g I k O g < ε 2,

sine m(o) < δ. Above we lso used the ft tht sine g is ontinuous on the ompt intervls I k then the mximums nd minimums exist. On the other hnd, if t [x i, x i + h i ] then 0 < t x i < h i, so g(t) g(x i ) < κh i. Thus g[x i, x i + h i ] B(g(x i ), κh i ), whih implies tht m(g[x i, x i + h i ]) m(b(g(x i ), κh i )) 2κh i. We then observe tht m(g(e U)) m(g(u)) m(g[x i, x i + h i ]) 2κh i ε 2κ(b ) 2 4(b ) (b ) ε 2. So finlly, m(g(e)) m(g(e \ U)) + m(g(e U)) < ε 2 + ε 2. Sine the hoie of ε > 0 ws rbitrry, then m(g(e)) 0. Exerise 5. Let g be n bsolutely ontinuous monotone funtion on [0, 1] nd E set of mesure zero. Then g(e) hs mesure zero. Fix ε > 0. Sine g is bsolutely ontinuous there exists δ > 0 so tht g(b i ) g( i ) < ε whenever {[ i, b i ]} n is disjoint olletion of intervls with b i i < δ. Tke n open set O E so tht m(o) < δ. Suh set exists sine m(e) 0. We then write O s ountble disjoint union O I k of open intervls I k ( k, b k ). Let m N be fixed. Then m m ( ) b k k l(i k ) l(i k ) m I k m(o) < δ. 11

Sine g is monotone nd ontinuous then g(i k ) is the intervl [g( k ), g(b k )] or [g(b k ), g( k )], so by bsolute ontinuity of g we hve m m(g(i k )) m g(b k ) g( k ) < ε. Sine this pplies for ll m N then l(g(i k )) < ε. In prtiulr, it follows tht m(g(e)) m(g(o)) m(g(i k )) < ε. Sine this holds for ll ε > 0, then m(g(e)) 0. Exerise 6. Let g be monotone inresing bsolutely ontinuous funtion on [, b] with g() nd g(b) d. () Show tht for ny open set O [, d], m(o) g 1 (O) g (x) dx. We first write the open set O s ountble disjoint union O I k of open intervls I k ( k, b k ). Sine g is ontinuous then g 1 ( k, b k ) is n open subset of [, b] for ll k, nd sine g is monotone inresing then g 1 ( k, b k ) is n intervl J k (x k, y k ) with g(x k ) k nd g(y k ) b k. Moreover the intervls J k re disjoint sine I k re nd the preimges of disjoint sets re disjoint. Now g 1 (O) is the ountble disjoint union g 1 (O) J k, so g 1 (O) s required. g g (g(y k ) g(x k )) J k m(i k ) m(o), (b k k ) 12

(b) Let H {x : g (x) 0}. If E is subset of [, d] with m(e) 0, then F g 1 (E) H hs mesure zero. Let E be subset of [, d] with m(e) 0, nd denote F g 1 (E) H. Assume towrds ontrdition tht m(f ) > 0. Sine g is inresing then g 0 lmost everywhere, so g (x) > 0 for ll x F nd thus F g > 0. Fix n open set O E. Sine F (g 1 (E) H) g 1 (O), then by prt () we hve m(o) g g. g 1 (O) This lower bound holds uniformly for ll open sets O E, so by tking infimum we get m(e) F g > 0. This is ontrdition with the ssumption m(e) 0, so we onlude tht m(f ) 0. F () If E is mesurble subset of [, d], then F g 1 (E) H is mesurble nd m(e) g χ E (g(x))g (x) dx. F Sine E is mesurble then by homework 1 exerise 1 we n write E A N, where A is F σ -set nd N hs mesure zero, nd A N. Then F g 1 (E) H g 1 (A N) H (g 1 (A) g 1 (N)) H (g 1 (A) H) (g 1 (N) H). Now H (g ) 1 (R \ {0}) is mesurble sine g is, nd thus g 1 (A) H is mesurble s A ws Borel set. Also, by prt (b) the set g 1 (N) H hs mesure zero nd is thus mesurble. Hene F is mesurble. Note then tht g g χ g 1 (E)g χ E (g)g F g 1 (E) sine χ g 1 (E) χ E (g). So we hve to show tht m(e) equls the bove vlue. We will prove it in severl steps. 13

(i) We first ssume tht E is n open set. By prt () we hve m(e) g 1 (E) g χ g 1 (E)g So the sttement is true if E is open. χ E (g)g. (ii) Assume then tht E is G δ set. So there exists nested sequene of open sets {O n } n1 so tht O n+1 O n for ll n nd E n1 O n. Now lim n χ On χ E pointwise nd by dominted onvergene theorem nd prt (i) we hve m(e) lim m(o n ) lim n χ E (g)g, n χ On (g)g so the sttement holds for ll G δ sets. lim χ O n (g)g n (iii) Assume then tht E is ny mesurble set. Then by exerise 1 of problem set 1 we n find G δ -set G nd set N with m(n) 0 so tht E N G nd E N. Thus by prt (ii) we hve m(e) m(e N) m(g) g g 1 (E N) H g 1 (E) H g g 1 (E) H χ E (g)g. χ G (g)g g + So the sttement is true for ll mesurble E. g g 1 (G) H g g 1 (N) H (d) If f is non-negtive mesurble funtion on [, d], then (f g)g is mesurble on [, b] nd f(x) dx f(g(x))g (x) dx. 14

Sine g is monotone inresing bsolutely ontinuous funtion nd f is mesurble then (f g) is mesurble. Sine g is mesurble then so is (f g)g. We prove the sttement in severl steps by using the stndrd pproximtion rgument. (i) Assume first tht f χ E is hrteristi funtion of some mesurble set E [, d]. Then by prt () we hve f(x) dx χ E m(e) f(g(x))g (x) dx, χ E (g(x))g (x) dx so the sttement is true for ll hrteristi funtions. (ii) Assume then tht f is simple funtion f n kχ Ek for some onstnts k nd mesurble sets E k [, d]. Then by prt (i) nd linerity of the integrl we hve f(x) dx k χ Ek k k χ Ek (g(x))g (x) dx k χ Ek (g(x))g (x) dx f(g(x))g (x) dx, so the sttement holds for ll simple funtions. χ Ek (iii) Let f then be ny non-negtive mesurble funtion, nd tke nonderesing sequene (ϕ) n1 of simple funtions so tht ϕ n f for ll n nd ϕ n f pointwise. We use monotone 15

onvergene theorem nd prt (ii) to onlude tht f(x) dx lim lim ϕ n(x) dx lim n n n ϕ n (g(x))g (x) dx f(g(x))g (x) dx. So this proves the sttement. ϕ n (x) dx lim ϕ n(g(x))g (x) dx n 16