Electricity and Magnetism Module 6 Student Guide

Similar documents
Electricity and Magnetism Module 1 Student Guide

Chapter 12. Magnetism and Electromagnetism

PHY152H1S Practical 2: Electrostatics

PHY222 Lab 10 - Magnetic Fields: Magnetic Flux and. Lenz's Law Currents induced in coils by magnets and by other coils

DO PHYSICS ONLINE MOTORS AND GENERATORS FARADAY S LAW ELECTROMAGNETIC INDUCTION

Lab 7: Magnetism Introduction Magnets need no introduction (i.e. introduction to be added in future revision).

PHY222 Lab 8 - Magnetic Fields and Right Hand Rules Magnetic forces on wires, electron beams, coils; direction of magnetic field in a coil

Objectives. to be able to represent a magnetic field at a point with a vector. to understand how to represent a magnetic field with field lines

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Spring Experiment 5: Faraday s Law

AP Physics C. Magnetism - Term 4

UNIT 25: MAGNETIC FIELDS Approximate Time three 100-minute Sessions

Reading Question 24.1

Cabrillo College Physics 10L. LAB 8 Magnetism. Read Hewitt Chapter 24

Chapter 27, 28 & 29: Magnetism & Electromagnetic Induction. Magnetic flux Faraday s and Lenz s law Electromagnetic Induction Ampere s law


Electricity and Magnetism Module 4 Student Guide

AP Physics C. Electricity - Term 3

Magnetism. and its applications

Magnets attract some metals but not others

Electromagnetic Induction

Lab 7: Magnetic fields and forces Lab Worksheet

Chapter 18 Study Questions Name: Class:

Universe Video. Magnetic Materials and Magnetic Fields Lab Activity. Discussion of Magnetism and Magnetic Fields

9. Which of the following is the correct relationship among power, current, and voltage?. a. P = I/V c. P = I x V b. V = P x I d.

Physics for Scientists and Engineers 4th Edition 2017

AP Physics Electromagnetic Wrap Up

Section 11: Magnetic Fields and Induction (Faraday's Discovery)

Electromagnetism Notes 1 Magnetic Fields

Section 11: Magnetic Fields and Induction (Faraday's Discovery)

Concept Questions with Answers. Concept Questions with Answers W11D2. Concept Questions Review

Pre-Lab Questions. Physics 1BL MAGNETISM Spring 2010

Name: Class: Date: AP Physics Spring 2012 Q6 Practice. Multiple Choice Identify the choice that best completes the statement or answers the question.

Electromagnetic Induction. Bo Zhou Faculty of Science, Hokudai

PHY132 Practicals Week 6 Student Guide

Physics 54 Lecture March 1, Micro-quiz problems (magnetic fields and forces) Magnetic dipoles and their interaction with magnetic fields

Physics 240 Fall 2005: Exam #3. Please print your name: Please list your discussion section number: Please list your discussion instructor:

Physics 240 Fall 2005: Exam #3 Solutions. Please print your name: Please list your discussion section number: Please list your discussion instructor:

Question Bank 4-Magnetic effects of current

Fundamentals of Circuits I: Current Models, Batteries & Bulbs

Name: Block: Date: NNHS Introductory Physics: MCAS Review Packet #4 Introductory Physics, High School Learning Standards for a Full First-Year Course

Magnetism. a) Ferromagnetic materials are strongly attracted to magnets. b) Paramagnetic materials are weakly attracted to magnets

7. A capacitor has been charged by a D C source. What are the magnitude of conduction and displacement current, when it is fully charged?

Unit 12: Magnetism. Background Reading

Version The diagram below represents lines of magnetic flux within a region of space.

Ch 17 Problem Set 31. A toaster is rated at 600 W when connected to a 120-V source. What current does the toaster carry, and what is its resistance?

36 Magnetism. A moving electric charge is surrounded by a magnetic field.

Revision Guide for Chapter 15

Revision Guide for Chapter 15

Phys 223A. Spring Lab 3 Magnetism Some Investigations. Objective: To investigate magnetic interactions and magnetic fields.

A moving electric charge is surrounded by a magnetic field Magnetic Poles

Faraday s Law of Induction I

PHY152H1S Practicals 4 and 5: Electric Potential, Electric Field

Magnetic Fields INTRODUCTION. The Hall Effect

Lab 6 Electrostatic Charge and Faraday s Ice Pail

1 Fig. 3.1 shows the variation of the magnetic flux linkage with time t for a small generator. magnetic. flux linkage / Wb-turns 1.

PHYSICS. Chapter 29 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT

0 questions at random and keep in order

FXA 2008 Φ = BA. Candidates should be able to : Define magnetic flux. Define the weber (Wb). Select and use the equation for magnetic flux :

AP Physics C - E & M

Mansfield Independent School District AP Physics C: Electricity and Magnetism Year at a Glance

Electrostatics. Apparatus:

HIGH SCHOOL SCIENCE. Physical Science 7: Electricity & Magnetism

Induction and Inductance

First Name: Last Name: Section: n 1. March 26, 2003 Physics 202 EXAM 2

Midterms and finals from previous 4 years are now posted on the website (under Exams link). Check the main course website for practice problems

Chapter 27, 28 & 29: Magnetism & Electromagnetic Induction

Physics. Student Materials Advanced Higher. Tutorial Problems Electrical Phenomena HIGHER STILL. Spring 2000

Magnetic inductance & Solenoids. P.Ravindran, PHY041: Electricity & Magnetism 22 February 2013: Magnetic inductance, and Solenoid

Elements of Physics II. Agenda for Today. Induced EMF. Force on moving charges Induced Current Magnetic Flux Area Vector. Physics 201: Lecture 1, Pg 1

1. A solenoid is a powerful magnet that is created by looping a conductor and passing a current through the conductor.

2014 F 2014 AI. 1. Why must electrostatic field at the surface of a charged conductor be normal to the surface at every point? Give reason.

MAGNETIC EFFECT OF CURRENT

4.7 Magnetism and electromagnetism

AP Physics C Mechanics Objectives

Chapter 4: Magnetic Field

Magnetizing a substance

Lab 3: Electric Field Mapping Lab

Lab 7: EC-5, Faraday Effect Lab Worksheet

PHYSICS. Chapter 30 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT

Note that a current-carrying solenoid produces a dipole field similar to that of a bar magnet. The field is uniform within the coil.

Physics 240 Fall 2003: Final Exam. Please print your name: Please list your discussion section number: Please list your discussion instructor:

Joy of Science Discovering the matters and the laws of the universe

This Week. 1/22/2018 Physics 214 Summer

PHYS 1442 Section 004 Lecture #14

PHYSICS Fall Lecture 15. Electromagnetic Induction and Faraday s Law

Physics Week 5(Sem. 2) Name. Magnetism. Chapter Summary. Magnetic Fields

Physics 6b Winter 2015 Final Campagnari Section Test Form A

Physics 6b Winter 2015 Final Campagnari Section Test Form D

Physics 182. Assignment 4

University of Maryland Department of Physics. Spring 2009 Final Exam 20. May (175 points) Post grades on web? (Initial, please) Yes No

Final Worksheet. Equation And Constant Summary

Electromagnetic Induction

Never switch on the equipment without the assistants explicit authorization!

Calculus Relationships in AP Physics C: Electricity and Magnetism

Big Idea 2: Fields existing in space can be used to explain interactions.

FORM 5 PHYSICS TIME: 2 hours

Physics - Grade 12. Revision Sheet for the Final Exam / Second Term. Academic Year: 2018/2019. Student s Name:.. Date: /3/2018

End-of-Chapter Exercises

Magnetic flux. where θ is the angle between the magnetic field and the area vector. The unit of magnetic flux is the weber. 1 Wb = 1 T m 2.

Magnetic field and magnetic poles

Transcription:

Concepts of this Module Electricity and Magnetism Module 6 Student Guide Interactions of permanent magnets with other magnets, conductors, insulators, and electric charges. Magnetic fields of permanent magnets, current carrying coils, and a current carrying straight wire. Introduction to induction. NOTE: for most setups the North poles of the magnets are colored red. Activity 1 A. You are supplied two bar magnets, with the North and South poles marked. Do the same poles attract or repel each other? Do the opposite poles attract or repel each other? B. Imagine that you have two electric dipoles, each of which consists of equal and opposite electric charges +q and q separated by a constant distance d. Would the positive poles (i.e. charges) of the dipole attract or repel each other? What about the opposite poles? Is there any difference between the interaction of two electric dipoles and two bar magnets? Activity 2 In Electricity and Magnetism Module 1 you may have used a white pith ball, which is an insulator, and a black Aluminum coated pith ball, which is a conductor, both hanging by strings from stands. In this Activity you are given those two balls again plus a small carbon steel ball hanging by a string from a stand. The steel is also a conductor. In this Activity you will use one of the two supplied bar magnets. A. Does the North Pole of the magnet exert a force on the pith ball? How about the South Pole of the magnet? Repeat for the Aluminum coated pith ball.

2 B. Does the North Pole of the magnet exert a force on the carbon steel ball? Is the force attractive or repulsive? C. Predict whether or not the South Pole of the magnet will exert a force on the carbon steel ball. Will it be attractive or repulsive? D. Check your prediction. Were you correct? Explain. E. Does the magnet interact with other insulators and conductors in the room? What about the whiteboard? Generalize your observations about the interaction of the magnet with insulators and conductors. Activity 3 In addition to the bar magnet of Activity 2, you are supplied an unmagnetised soft iron rod. Imagine that you don t know which object is the magnet. Using only these two objects find a way to determine which object is the magnet. Activity 4 In Electricity and Magnetism Module 1 Activity 1 you may have put an electric charge on a length of sticky tape by suddenly peeling it off the tabletop and hanging it from the cupboard. You may wish to refer to the Student Guide for that Module and/or your lab book to refresh your memory. Repeat that procedure. 1. Does the magnet exert a force on the charged tape? Is there a difference between the North and South poles? 2. You are supplied with an aluminum rod, which is not magnetizeable. Does it exert any forces on the charged tape? Are there any differences between the interaction of the tape with magnet and with the aluminum rod? 3. What can you conclude about the interaction of stationary electric charges with magnetic fields? Activity 5 We can describe the fact that the Earth exerts a gravitational force on all objects near it by saying: 1. The Earth creates a gravitational field in all regions of space around it. 2. The gravitational field exerts a gravitational force on all objects in the field.

3 A convenient definition of the gravitational field is that it is equal in magnitude and direction to the acceleration due to gravity g at that point in space. Then the gravitational force exerted on a mass m in the gravitational field is: F mg We could measure the direction of the gravitational field by taking a mass hanging from a string and observing in what direction the mass hangs. The figure to the right illustrates. A compass is a little bar magnet that is free to rotate. In this Activity we will use a simple compass the measure the direction of the magnetic field around various objects. The procedure is similar to the one we described for determining the gravitational field. We will use the following standard convention: The direction of an external magnetic field is parallel to the orientation of the compass, and points from the South to the North direction as marked on the compass. All of the fields you will map are sufficiently strong that the Earth s magnetic field is negligible. Be sure when you are mapping a magnetic field that all other magnets and metals are as far away as possible. A. Map the magnetic field around one of the bar magnets using the compasses. Use your results to sketch the magnetic field lines around the bar magnet. Be sure to include arrows on the lines to indicate the direction of the magnetic field. B. Place the two bar magnets together, with the North pole of one in contact with the South pole of the other, as shown. Map the magnetic field of the combination and sketch the field lines including the direction of the field. Do you think the field any different from that of a single long bar magnet? C. In Activities 11 and 12 below you may be using the pair of wire coils shown to the right. Here you will use only the outer coil, and you may place the inner coil to the side. You are supplied with a plastic plate with a rectangular hole cut in it. Place the outer coil in the hole. You will place the compasses on the Plexiglas You will connect the 6V battery to the red sockets on the outer coil, with a switch to avoid draining the batter.

4 The switch you will use is called a Contact Key: this type of switch is only on when you hold it down. The symbol for a coil is shown to the right. So the circuit diagram of the experiment you will do is: Use the compasses to map the magnetic field around the coil, and draw field lines including the direction. Compare your results to Parts A and B. D. In terms of its magnetic field we can model the Earth as a big bar magnet. Is the magnetic North pole located at the geographic North pole (where Santa s workshop is located) or at the geographic South pole (where the penguins live)? Activity 6 A. You will investigate the magnetic field of a single straight wire carrying a current. The wire is oriented vertically through a hole in a Plexiglas stand with compasses placed on the stand. Sketch the field lines around the wire. B. In Electricity and Magnetism Module 2 you may have used a clamp meter to measure the current in a wire. Can you now explain how that meter works? If yes, do so.

5 C. In Part A you used a vertical current carrying wire passing through a hole in a Plexiglas stand to map the magnetic field. Here you will investigate how the magnitude of the magnetic field varies with distance from the wire. You will measure the magnetic field with a Giant Magnetoresistance (GMR) sensor. What do you expect the magnetic field to vary with distance from the wire? Is there an equation from class describing this relationship between the magnetic field and distance from the wire? Discuss any limitations this equation has in relation to our experimental set-up. Activity 7 In Activity 5 you mapped the magnetic field of a coil carrying an electric current. In Activity 6 you explored the magnetic field of a single straight current carrying wire. Here is a figure of a few of the wires of a coil. The current in the upper wires is out of the plane of the paper, and the current in the lower wires is into the plane of the paper. A. Sketch the total magnetic field at point due to currents A1 and A2 indicating its magnitude by the length of the vector line. You do not need to do a detailed calculation of the magnitude of the field, just a rough estimate. You may wish to label this line A upper. On the same sketch add the total magnetic field at point due to currents A3 and A4, perhaps labeling the line A lower. So what is the direction and magnitude of the total magnetic field at due all four A currents? B. Repeat Part A for the B currents. So for a real coil of many turns of wire, what is the direction of the total magnetic field at a point reasonably far from the ends of the coil? C. Repeat Parts A and B for the point, which is on the axis of the coil and far from the ends.

6 D. Repeat Parts A and B for the point. Compare to your result from Part C. Activity 8 A. In Part B of Activity 5 you made a big bar magnet by joining two smaller magnets together and determined its magnetic field. In Electricity and Magnetism Module 3 Activity 9 you may have determined the electric field of an electric dipole, which is two equal and opposite charges separated by some distance; the figure for Activity 1 of this module shows two such dipoles. Are there any differences between the shape of the magnetic field of a big bar magnet and the shape of the electric field of an electric dipole? B. If you have an electric dipole and cut it in half along its axis you end up with an isolated positive charge and an isolated electric charge. If you take the big bar magnet of Part B Activity 4 and take it apart into two smaller magnets, do you end up with an isolated magnetic North charge and an isolated magnetic South charge? What about if you took one of the small bar magnets and sawed it in half [don t actually do this!]? Can you think of any reason why we never observe an isolated magnetic monopole? Activity 9 The force exerted on a moving charge is given by: F q v B (1) A. The direction of this force is always perpendicular to the velocity of the charge. Can this force ever do work on the charge? B. Here is a figure of a typical electric motor:

7 A current in the loop experiences the forces shown due to the magnet. Eqn. 1 describes the forces. Is this fact consistent with your answer to Part A? Do motors do work? Explain. Activity 10 A galvanometer is a type of ammeter. Typically, they have a coil of wire through which the current to be measured flows. A magnetic field from a permanent magnet exerts a torque on the coil of wire that is proportional to the current. A spring exerts a torque opposite the torque due to the current-magnetic field interaction. So at equilibrium the deflection of the pointer of the meter is proportional to the current. Many galvanometers are capable of detecting very small currents, but often are not as accurate as more modern instruments. Some galvanometers do not even attempt quantitative measurements of the value of the current but are just used to detect their presence and direction. Although sometimes a galvanometer is represented in circuit diagrams as an ammeter, it is usually drawn as shown to the right. In 1831 Faraday asked an interesting question. His reasoning was: Electric currents cause magnetic fields. Is the converse true: do magnetic fields cause electric currents? A diagram of the apparatus he used to try to answer this question is shown to the right. A battery is connected to a coil of wire, which will generate a magnetic field when the switch is closed. A second coil of wire is connected to a galvanometer. If the magnetic field from the first coil causes electric currents in the second coil, then the galvanometer could show a current provided it is sensitive enough. In the actual experiment, the two coils of wire were concentric with each other. A photograph of the coils you will be using appears as part of Activity 5 above.. In the photograph the inner coil is slid partly out from the outer one. In this experiment the inner

8 coil should be slid all the way into the outer coil. The battery and switch should be connected to the outer coil using the red banana sockets, and the galvanometer should be connected to the inner coil using the black banana sockets. In Activity 3 you may have used an unmagnetised soft iron rod. This rod comes with the coils, but is not part of the apparatus for this Activity. Please be sure to set it aside and do not use it here. The switch you will use is called a Contact Key: this type of switch is only on when held down. Please do not leave the switch closed for too long: this will drain the battery. Also please do not connect the battery to the inner coil: the resistance of that wire is so small it will either quickly drain the battery or trip the circuit breaker on the battery. What is the answer to Faraday s original question? Is there anything else going on or is this just a failed experiment? Activity 11 You are supplied a soft iron cylinder, which you may have used in Activity 3. Insert the rod completely into the hole in the inner coil of the setup you used in Activity 10 and repeat the experiment. What happened? Why is the result different from the earlier one? Activity 12 A U-shaped conducting wire has a straight vertical wire resting on and making electrical contact with it. There is a uniform magnetic field B directed into the page. The vertical bar is being pulled to the right at a constant velocity v. At some moment in time the contact between the U-shaped and the vertical wires is at points a and b.

9 A. What is the force, magnitude and direction, exerted on the electrons in the vertical wire by the magnetic field? B. If an electric field in the vertical wire were to exert the same force on the electrons as the answer to Part A, what would be its magnitude and direction? C. If the electric field of Part B is constant, what is the potential difference ΔV between points a and b? D. The magnetic flux Φ B through the loop consisting of the U-shaped wire and the vertical wire is the magnitude of the magnetic field B times the area A of the loop. What is the rate of change of the magnetic flux? E. Compare your answers to Parts C and D. Explain. Activity 13 Lenz s Law is often stated: The direction of an induced current is such that the induced magnetic field opposes the change in the flux. However, an alternative statement is: The direction of induced current opposes its cause. You may find that the second form is useful for this Activity. A. A bar magnet is falling towards a circular loop of wire as shown. The falling magnet induces a current in the wire. The current in the wire exerts a force on the falling magnet. What is the direction of the force exerted on the magnet? B. The magnet has fallen past the loop of wire and is now accelerating away from it. Now what is the direction of the force exerted on the magnet?

10 C. The magnet is falling away from the loop as in Part B, but the poles of the magnet are reversed. What is the direction of the force exerted on the magnet? D. If your answers to Parts A, B, and C were opposite to the correct answers, would this violate any physical principles? Appendix Here we discuss Giant Magnetoresistance (GMR) and how the effect is used to measure a magnetic field. GMR was discovered independently in 1988 by Grünberg and Fert; they were awarded the Nobel Prize in Physics in 2007 for their discovery. It is now used extensively in read heads of computer disc drives. GMR is a quantum mechanical effect that produces significant decreases of resistance in the presence of an external magnetic field. GMR materials are commonly comprised of alternating very thin layers of various metallic elements. As described by IBM: The key structure in GMR materials is a spacer layer of a non-magnetic metal between two magnetic metals. Magnetic materials tend to align themselves in the same direction. So if the spacer layer is thin enough, changing the orientation of one of the magnetic layers can cause the next one to align itself in the same direction. Increase the spacer layer thickness and you'd expect the strength of such "coupling" of the magnetic layers to decrease. But as [an IBM research team] made and tested some 30,000 different multilayer combinations of different elements and layer dimensions, they demonstrated the generality of GMR for all transition metal elements and invented the structures that still hold the world records for GMR at low temperature, room temperature and useful fields. In addition, they discovered oscillations in the coupling strength: the magnetic alignment of the magnetic layers periodically swung back and forth from being aligned in the same magnetic direction (parallel alignment) to being aligned in opposite magnetic directions (anti-parallel alignment). The overall resistance is relatively low when the layers were in parallel alignment and relatively high when in anti-parallel alignment.

11 A GMR sensor that measures magnetic fields uses four such resistors in an arrangement called a Wheatstone bridge. The two resistors R are shielded from the magnetic field, and the two resistors r are exposed to it. The sensor is driven with an applied voltage V, which is 5 volts in our case. Then we measure the voltage V. It is fairly easy to show that: V V ( R r) ( R r) Further information on GMR sensors is at: http://www.nve.com/downloads/lowfield.pdf. This Guide Sheet was written by David M. Harrison, Dept. of Physics, Univ. of Toronto in January 2008. Activity 4 is from Lillian McDermott et al, Tutorial in Introductory Physics, Magnets and Magnetic Fields I.B, (Prentice-Hall, 2002), pg. 113. Parts of Activity 5 are similar to Priscilla W. Laws et al., Workshop Activity Guide, Module 4, Unit 28, (John Wiley, 2004), pg. 725. The figure of the electric motor is slightly modified from Fig. 32.48 of Randall D. Knight, Physics for Scientists and Engineers (Pearson, 2004). The figure of the mechanism of a galvanometer is slightly modified from a version at Wikipedia: http://en.wikipedia.org/wiki/galvanometer. The quotation from IBM in the Appendix is from http://www.research.ibm.com/research/gmr.html, accessed February 5, 2008. The date stamp of the html file is March 16, 2004. Last revision: March 14, 2013 by Andrew Meyertholen.