Chapter 8. Basic Concepts of Chemical Bonding

Similar documents
Chapter 8. Basic Concepts of Chemical Bonding

Chapter 8. Basic Concepts of Chemical Bonding

Chapter 8. Basic Concepts of Chemical Bonding

Chapter 8. Basic Concepts of Chemical Bonding

November 18, Oct 23 5:37 PM. Oct 23 5:30 PM. Oct 23 5:39 PM. Oct 23 5:38 PM. Oct 23 5:53 PM. Oct 23 5:57 PM

Unit 7: Basic Concepts of Chemical Bonding. Chemical Bonds. Lewis Symbols. The Octet Rule. Transition Metal Ions. Ionic Bonding 11/17/15

Chapter 8. Basic Concepts of Chemical Bonding. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO

Name: Hr: 8 Basic Concepts of Chemical Bonding

Chapter 8 Concepts of Chemical. Bonding

Chapter 8: Concepts of Chemical Bonding

The energy associated with electrostatic interactions is governed by Coulomb s law:

Chemistry: The Central Science. Chapter 8: Basic Concepts of Chemical Bonding

Chapter 8. Basic Concepts of Chemical Bonding. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO

Chapter 8 Concepts of Chemical. Bonding

Chapter 8. Chemical Bonding I: Basic Concepts

Chapter 8 Basic concepts of bonding

Chapter 8 & 9 Concepts of Chemical. Bonding

Chemistry: The Central Science

Chapter 8 Concepts of Chemical. Bonding

Chapter 8. Basic Concepts of Chemical Bonding

Chapter 8 Concepts of Chemical. Bonding. Ionic vs Covalent Simulation 3/13/2013. Why do TiCl 4 & TiCl 3 have different colors?

Chemistry 101 Chapter 9 CHEMICAL BONDING

AP Chemistry A. Allan Chapter 8 Notes - Bonding: General Concepts

AP Chemistry. Unit #7. Chemical Bonding & Molecular Shape. Zumdahl Chapters 8 & 9 TYPES OF BONDING BONDING. Discrete molecules formed

Chapter 8. Bonding: General Concepts

AP Chapter 8 Study Questions

Chemical Bonding AP Chemistry Ms. Grobsky

Chapter 8. Chemical Bonding: Basic Concepts

Chapter 8 The Concept of the Chemical Bond

CHEMICAL BONDS. Electrical forces. Reflect a balance in the attractive and repulsive forces between electrically charged particles

Test Bank for Introductory Chemistry Essentials 5th Edition by Tro

Chapter 8. Chemical Bonding: Basic Concepts

Test Bank for General Chemistry 10th Edition by Ebbing

Chemical Bonding I: Basic Concepts

Chemical Bonding -- Lewis Theory (Chapter 9)

Chapter 8. Bonding: General Concepts. Copyright 2017 Cengage Learning. All Rights Reserved.

Chpt 8 Chemical Bonding Forces holding atoms together = Chemical Bonds

Chapter 8: Bonding. Section 8.1: Lewis Dot Symbols

Name Unit Three MC Practice March 15, 2017

We study bonding since it plays a central role in the understanding of chemical reactions and understanding the chemical & physical properties.

Properties of substances are largely dependent on the bonds holding the material together.

Chapter 8 outline. Chemical Bonding

Name AP CHEM / / Chapter 8 Outline Bonding: General Concepts

CHEM 110: CHAPTER 8 Basic Concepts of Chem Bonding. Lewis Structures of Atoms: The Lewis Dot Diagram

8.1 Types of Chemical Bonds List and define three types of bonding. chapter 8 Bonding General Concepts.notebook. September 10, 2015

Chapter 7. Chemical Bonding I: Basic Concepts

Chemical Bonding Chapter 8

Chapter 8. Bonding: General Concepts

CHAPTER 12: CHEMICAL BONDING

5. Which compound in each set will have the strongest ionic bond? Justify your answer (Think Coulombs Law). a. NaCl or KBr

When more than one valid Lewis structure can be drawn for a particular molecule, formal charge is used to predict the most favorable structure.

Chapter 8. Bonding: General Concepts

GENERAL BONDING REVIEW

Chemical Bonding I: Basic Concepts

bond energy- energy required to break a chemical bond -We can measure bond energy to determine strength of interaction

Chapter 8. forces of attraction which hold atoms or ions together. 3 fundamental types of bonding. Ionic - metals & nonmetals

Unit-3 Chemical Bonding Practice Exam

CHEMICAL BONDS. Determining Percentage Composition, Empirical, and Molecular Formulas for Compounds:

More Chemical Bonding

Chemical Bonding I: Basic Concepts

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Announcements. Chem 7 Final Exam Wednesday, Oct 10 1:30-3:30AM Chapter or 75 multiple choice questions

Chapter 16 Covalent Bonding

Example 9.1 Using Lewis Symbols to Predict the Chemical Formula of an Ionic Compound

CHEMICAL BONDING. Chemical Bonds. Ionic Bonding. Lewis Symbols

Chapter 9. Chemical Bonding I: The Lewis Model. HIV-Protease. Lecture Presentation

Chemical Bonding I: Covalent Bonding. How are atoms held together in compounds?

Big Idea: The following list is a GUIDE to what you should study in order to be prepared for the Unit #4 Test on Chemical Bonding.

Ch 10 Chemical Bonding, Lewis Structures for Ionic & Covalent Compounds, and Predicting Shapes of Molecules

Chapter 7 Chemical Bonding and Molecular Structure

AP Chemistry- Practice Bonding Questions for Exam

Ionic Bond TRANSFER of electrons between atoms. Ionic Bonding. Ionic Bonding. Ionic Bonding. Attraction that holds atoms together

Chapter 8 Covalent Boding

Bonding: Part Two. Three types of bonds: Ionic Bond. transfer valence e - Metallic bond. (NaCl) (Fe) mobile valence e - Covalent bond

Form J. Test #4 Last Name First Name Zumdahl, Chapters 8 and 9 November 23, 2004

Chapter 6 Chemical Bonding

Bonding: Part Two. Three types of bonds: Ionic Bond. transfer valence e - Metallic bond. (NaCl) (Fe) mobile valence e - Covalent bond

What is a Bond? Chapter 8. Ionic Bonding. Coulomb's Law. What about covalent compounds?

Chapter 8 Basic Concepts of Chemical Bonding

CHEMISTRY. Chapter 9 The Basics of Chemical Bonding. The Molecular Nature of Matter. Jespersen Brady Hyslop SIXTH EDITION

Bond Atoms Electron behavior Ionic Metal + nonmetal Electrons transferred Covalent Nonmetal + nonmetal Electrons shared

Three types of chemical bonding: Recall that we can use dots to show valence electrons - these are called Lewis electron-dot structures:

Na Cl Wants to lose ONE electron! Na Cl Ionic Bond TRANSFER of electrons between atoms. Ionic Bonding. Ionic Bonding.

Basic Concepts of Chemical Bonding

Name Honors Chemistry / /

Chapter 12. Chemical Bonding

1. There are paired and unpaired electrons in the Lewis symbol for a phosphorus atom. a. 4, 2 b. 2, 4 c. 2, 3 d. 4, 3 e. 0, 3

Chemical Bonding. Chemical Bonding I: The Covalent Bond. Chemical Bonding. Bonding Generalities

REVIEW: VALENCE ELECTRONS CHEMICAL BONDS: LEWIS SYMBOLS: CHEMICAL BONDING. What are valence electrons?

Subtopic 4.2 MOLECULAR SHAPE AND POLARITY

Chapter 9 Bonding. Dr. Sapna Gupta

Covalent Bonding. a. O b. Mg c. Ar d. C. a. K b. N c. Cl d. B

C H E M 1 CHEM 101-GENERAL CHEMISTRY CHAPTER 7 CHEMICAL BONDING & MOLECULAR STRUCTURE INSTR : FİLİZ ALSHANABLEH

Focus Learning Targets for Periodic Trends and Bonding (1) Discuss the development of the periodic table by Mendeleev. (2) Locate and state important

CHM1045 Exam 3 Chapters 5, 8, & 9

Types of Bonding : Ionic Compounds. Types of Bonding : Ionic Compounds

Review for Chapter 4: Structures and Properties of Substances

Valence electrons octet rule. Lewis structure Lewis structures

Worksheet 5 - Chemical Bonding

Unit 3 - Part 1: Bonding. Objective - to be able to understand and name the forces that create chemical bonds.

Transcription:

Chapter 8. Basic Concepts of Chemical Bonding 8.1 Chemical Bonds, Lewis Symbols, and the Octet Rule 8.2 Ionic Bonding positive and negative ions form an ionic lattice, in which each cation is surrounded by anions, and vice versa. The ions are packed as closely as possible. We use the empirical formula to identify the ratio of cations to anions. Energetics of Ionic Bond Formation e.g. NaCl The heat of formation of NaCl(s) is exothermic: Na(s) + ½Cl 2 (g) NaCl(s) H o f = 410.9 kj/mol Separation of the NaCl into sodium and chloride ions is endothermic: NaCl(s) Na + (g) + Cl (g) H = +788 kj/mol lattice energy, H lattice = the energy required to separate one mole of a solid ionic compound into gaseous ions Lattice energy depends on the charge on the ions and the size of the ions. The stability of the ionic compound comes from the attraction between ions of unlike charge. The specific relationship is given by Coulomb s equation: Q1Q 2 E = k d where E is the potential energy of the two interacting charged particles, Q 1 and Q 2 are the charges on the particles, d is the distance between their centers, and k is a constant. k = 8.99 x 10 9 J-m/C 2. As Q 1 and Q 2 increase, E increases, and as d increases, E decreases. - 1 -

Sample Exercise 8.1 (p. 303) Without using Table 8.2 (above), arrange the ionic compounds NaF, CsI, CaO in order of increasing lattice energy:. Practice Exercise 1 (8.1) Without looking at Table 8.2, predict which one of the following orderings of lattice energy is correct for these ionic compounds. a) NaCl > MgO > CsI > ScN b) ScN > MgO > NaCl > CsI c) NaCl > CsI > ScN > CaO d) MgO > NaCl > ScN > CsI e) ScN > CsI > NaCl > MgO Practice Exercise 2 (8.1) Which substance would you expect to have the greatest lattice energy? MgF 2, CaF 2 or ZrO 2? Electron Configuration of Ions of the Representative Elements Sample Exercise 8.2 (p. 306) Predict the ion generally formed by each of the following atoms: a) Sr b) S c) Al Practice Exercise 1 (8.2) Which of these elements is most likely to form ions with a 2+ charge? a) Li b) Ca c) O d) P e) Cl Practice Exercise 2 (8.2) Predict the charges on the ions formed when magnesium reacts with nitrogen. - 2 -

Polyatomic Ions Polyatomic ions are formed when there is an overall charge on a compound containing covalent bonds. Examples: SO 4 2, NO 3 In polyatomic ions, two or more atoms are bound together by predominantly covalent bonds. The stable grouping carries a charge. 8.3 Covalent Bonding Read this section, then answer the Sample and Practice Exercises Sample Exercise 8.3 (p. 308) Given the Lewis symbols for the elements nitrogen and fluorine shown in Table 8.1, predict the formula of the stable binary compound (a compound composed of two elements) formed when nitrogen reacts with fluorine, and draw its Lewis structure. Practice Exercise 1 (8.3) Which of these molecules has the same number of shared electron pairs as unshared electron pairs? a) HCl b) H 2 S c) PF 3 d) CCl 2 F 2 e) Br 2 Practice Exercise 2 (8.3) Compare the Lewis symbol for neon with the Lewis structure for methane, CH 4. In what important way are the electron arrangements about neon and carbon alike? In what important respect are they different?. - 3 -

8.4 Bond Polarity and Electronegativity Read this section, then answer the following Sample and Practice Exercise: Sample Exercise 8.4 (p. 311) In each case, which bond is more polar: a) B-Cl or C-Cl? b) P-F or P-Cl? Indicate in each case which atom has the partial negative charge. Which of the following bonds is the most polar? a) H-F b) H-I c) Se-F d) N-P e) Ga-Cl Which of the following bonds is most polar: S-Cl, S-Br, Se-Cl, or Se-Br? Practice Exercise 1 (8.4) Practice Exercise 2 (8.4) Dipole Moments We indicate the polarity of molecules in two ways: The positive end (or pole) in a polar bond may be represented with a δ+ and the negative pole with a δ. We can also place an arrow over the line representing the bond. The arrow points toward the more electronegative element and shows the shift in electron density toward that atom. We can quantify the polarity of the molecule. When charges are separated by a distance, a dipole is produced. The dipole moment is the quantitative measure of the magnitude of the dipole (µ) µ = Q r The magnitude of the dipole moment is given in debyes (D). - 4 -

NOTE: As far as Dr. Hart can tell, you will not have to calculate dipole moments for the AP Chem exam. You will need to be able to rank and justify the ranking of bond polarity on the basis of the locations of the bonded atoms in the periodic table. FYI Table 8.3 Bond Lengths, Electronegativity Differences, and Dipole Moments of the Hydrogen Halides Compound Bond Length (Å) Electronegativity Difference Dipole Moment (D) HF 0.92 1.9 1.82 HCl 1.27 0.9 1.08 HBr 1.41 0.7 0.82 HI 1.61 0.4 0.44 8.5 Drawing Lewis Structures 1. Add up all of the valence electrons on all atoms. For an anion, add electrons equal to the negative charge. For a cation, subtract electrons equal to the positive charge. 2. Identify the central atom. When a central atom has other atoms bound to it, the central atom is usually written first. Example: In CO 3 2 the central atom is carbon. 3. Place the central atom in the center of the molecule and add all other atoms around it. 4. Place one bond (two electrons) between each pair of atoms. 5. Complete the octets for all atoms connected to the central atom (exception: hydrogen can only have two electrons). 6. Complete the octet for the central atom; use multiple bonds if necessary. Sample Exercise 8.6 (p. 316) Draw the Lewis structure for phosphorus trichloride, PCl 3. - 5 -

Practice Exercise 1 (8.6) Which of these molecules has a Lewis structure with a central atoms having no nonbinding electron pairs? a) CO 2 b) H 2 S c) PF 3 d) SiF 4 e) More than one of a, b, c, d. Practice Exercise 2 (8.6) a) How many valence electrons should appear in the Lewis structure for CH 2 Cl 2? b) Draw the Lewis structure. Draw the Lewis structure for HCN. Sample Exercise 8.7 (p. 316) Practice Exercise 1 (8.7) Draw the Lewis structure(s) for the molecule with the chemical formula C 2 H 3 N, where the N is connected to only one other atom. How many double bonds are there in the correct Lewis Structure? a) zero b) one c) two d) three e) four Practice Exercise 2 (8.7) Draw the Lewis structure for a) NO + ion; b) C 2 H 4-6 -

Draw the Lewis structure for the BrO 3 - ion. Sample Exercise 8.8 (p. 317) Practice Exercise 1 (8.8) How many nonbonding electron pairs are there in the Lewis structure of the peroxide ion, O 2 2-? a) 7 b) 6 c) 5 d) 4 e) 3 Practice Exercise 2 (8.8) Draw the Lewis structure for a) ClO - 2 ion b) PO 3-4 ion Formal Charge Sometimes it is possible to draw more than one Lewis structure with the octet rule obeyed for all the atoms. To determine which structure is most reasonable, we use formal charge. The formal charge of an atom is the charge that an atom (in a molecule) would have if all of the atoms had the same electronegativity. To calculate formal charge, electrons are assigned as follows: All nonbonding (unshared) electrons are assigned to the atom on which they are found. Half of the bonding electrons are assigned to each atom in a bond. Formal charge is the number of valence electrons in the isolated atom, minus the number of electrons assigned to the atom in the Lewis structure. - 7 -

For example: consider CN - (cyanide ion): For carbon: There are four valence electrons (from periodic table). In the Lewis structure there are two nonbonding electrons and three electrons from the triple bond. There are five electrons from the Lewis structure. Formal charge: 4 5 = 1. For nitrogen: There are five valence electrons. In the Lewis structure there are two nonbonding electrons and three from the triple bond. There are five electrons from the Lewis structure. Formal charge = 5 5 = 0. Using formal charge calculations to distinguish between alternative Lewis structures: The most stable structure has the smallest formal charge on each atom and The most negative formal charge on the most electronegative atoms. It is important to keep in mind that formal charges do NOT represent REAL charges on atoms! Sample Exercise 8.9 (p. 318) The following are three possible Lewis structures for the thiocyanate ion, NCS - : a) Determine the formal charges of the atoms in each structure. b) Which Lewis structure is the preferred one? Practice Exercise 1 (8.9) Phosphorus oxychloride has the chemical formula POCl 3, with P as the central atom. To minimize formal charge, how many bonds does phosphorus make to the other atoms in the molecule? (Count each single bond as one, each double bond as two, and each triple bond as three.) a) 3 b) 4 c) 5 d) 6 e) 7-8 -

Practice Exercise 2 (8.9) The cyanate ion (NCO - ), like the thiocyanate ion, has three possible Lewis structures. a) Draw these three Lewis structures and assign formal charges to the atoms in each structure; b) Which Lewis structures should be the preferred one? 8.6 Resonance Structures Some molecules are not well described by a single Lewis structure. Resonance structures are attempts to represent a real structure that is a mix between several extreme possibilities. Resonance structures are Lewis structures that differ only with respect to placement of the electrons. The true arrangement is a blend or hybrid of the resonance structures. Example: In ozone the extreme possibilities have one double and one single bond. The resonance structure has two identical bonds of intermediate character. We use a double headed arrows ( ) to indicate resonance. Common examples: O 3, NO 3, SO 3, NO 2, and benzene. Sample Exercise 8.10 (p. 321) Which is predicted to have the shorter sulfur-oxygen bonds, SO 3 or SO 3 2-? Practice Exercise 1 (8.10) Which of these statements about resonance is true? a) When you draw resonance structures, it is permissible to alter the way atoms are connected. b) The nitrate ion has one long N-O bond and two short N-O bonds. c) Resonance refers to the idea that molecules are resonating rapidly between different bonding patterns. d) The cyanide ion has only one dominant resonance structure. e) All of the above are true. Practice Exercise 2 (8.10) Draw two equivalent resonance structures for the formate ion, HCO 2 -. - 9 -

Resonance in Benzene Benzene belongs to an important category of organic molecules called aromatic compounds. Benzene (C 6 H 6 ) is a cyclic structure, consisting of six carbon atoms in a hexagon. Each carbon atom is attached to two other carbon atoms and one hydrogen atom. There are alternating double and single bonds between the carbon atoms. Experimentally, the C C bonds in benzene are all the same length. Experimentally, benzene is planar. To emphasize the resonance between the two Lewis structures (hexagons with alternating single and double bonds), we often represent benzene as a hexagon with a circle in it. 8.7 Exceptions to the Octet Rule There are three classes of exceptions to the octet rule: Molecules with an odd number of electrons. Molecules in which one atom has less than an octet. Molecules in which one atom has more than an octet. Odd Number of Electrons Most molecules have an even number of electrons and complete pairing of electrons occurs although some molecules have an odd number of electrons. Examples: ClO 2, NO, and NO 2. Less than an Octet Molecules with less than an octet are also relatively rare. Most often encountered in compounds of boron or beryllium. E.g. BF 3. More than an Octet This is the largest class of exceptions. Atoms from the third period on can accommodate more than an octet. E.g. PCl 5, SF 4, AsF 6, and ICl 4. Size also plays a role. The larger the central atom, the larger the number of atoms that can surround it. The size of the surrounding atoms is also important. Expanded octets occur often when the atoms bound to the central atom are the smallest and most electronegative (e.g., F, Cl, O). - 10 -

Sample Exercise 8.11 (p. 324) Draw the Lewis structure for ICl 4 -. Practice Exercise 1 (8.11) In which of these molecules or ions is there only one lone pair of electrons on the central sulfur atom? a) SF 4 b) SF 6 c) SOF 4 d) SF 2 2- e) SO 4 Practice Exercise 2 (8.11) a) Which of the following atoms is never found with more than an octet of electrons around it: S, C, P, Br? b) Draw the Lewis structure for XeF 2. - 11 -

8.8 Strengths of Covalent Bonds The energy required to break a covalent bond is called the bond enthalpy, D. That is, for the Cl 2 molecule, D(Cl-Cl) is given by H for the reaction: When more than one bond is broken: CH 4 (g) C(g) + 4H(g) H = 1660 kj The bond enthalpy is a fraction of H for the atomization reaction: D(C-H) = ¼ H = ¼(1660 kj) = 415 kj. Bond enthalpy is always a positive quantity. - 12 -

Bond Enthalpies and the Enthalpies of Reactions We can use bond enthalpies to calculate the enthalpy for a chemical reaction. We recognize that in any chemical reaction bonds need to be broken and then new bonds form. The enthalpy of the reaction is given by: The sum of bond enthalpies for bonds broken less the sum of bond enthalpies for bonds formed. Where H rxn is the enthalpy for a reaction, H rxn = ΣD(bonds broken) ΣD(bonds formed) We illustrate the concept with the reaction between methane, CH 4, and chlorine: CH 4 (g) + Cl 2 (g) CH 3 Cl(g) + HCl(g) In this reaction one C-H bond and one Cl-Cl bond are broken while one C-Cl bond and one H-Cl bond are formed. So H rxn = [D(C-H) + D(Cl-Cl)] - [D(C-Cl) + D(H-Cl)] = -104 kj. The overall reaction is exothermic which means than the bonds formed are stronger than the bonds broken. The above result is consistent with Hess s law. Using bond enthalpies to calculate ΔHrxn. Average bond enthalpies are used to estimate ΔH rxn for the reaction in Equation 8.13. Breaking the C H and Cl Cl bonds produces a positive enthalpy change (ΔH 1, whereas making the C Cl and H Cl bonds causes a negative enthalpy change (ΔH 2 ). The values of ΔH 1 and ΔH 2 are estimated from the values in Table 8.4. From Hess's law, ΔH rxn = ΔH 1 + ΔH 2. - 13 -

Sample Exercise 8.12 (p. 328) Using Table 8.4, estimate ΔH for the reaction in the figure (where we explicitly show the bonds involved in the reactants and products). Practice Exercise 1 (8.12) Using Table 8.4, estimate H for the water splitting reaction : H 2 O (g) H 2(g) + ½ O 2(g). a) 242 kj b) 417 kj c) 5 kj d) 5 kj e) 468 kj Practice Exercise 2 (8.12) Using Table 8.4, estimate ΔH for the reaction shown. - 14 -