The University of Hong Kong Department of Physics

Similar documents
Old Dominion University Physics 112N/227N/232N Lab Manual, 13 th Edition

The University of Hong Kong Department of Physics. Physics Laboratory PHYS3350 Classical Mechanics Experiment No The Physical Pendulum Name:

Electrostatic Charge Distribution (Charge Sensor)

LAB 5: Induction: A Linear Generator

RC Circuit (Power amplifier, Voltage Sensor)

Lab 7: EC-5, Faraday Effect Lab Worksheet

PHYS320 ilab (O) Experiment 2 Instructions Conservation of Energy: The Electrical Equivalent of Heat

Physics 30 Lesson 22 The Generator Effect

Name Class Date. RC Circuit Lab

PHYS 1442 Section 004 Lecture #14

COLLEGE PHYSICS Chapter 23 ELECTROMAGNETIC INDUCTION, AC CIRCUITS, AND ELECTRICAL TECHNOLOGIES

Induction and Inductance

PHYS 1444 Section 003 Lecture #18

Chapter 30. Inductance

Physics 201. Professor P. Q. Hung. 311B, Physics Building. Physics 201 p. 1/1

Physics Labs with Computers, Vol. 1 P14: Simple Harmonic Motion - Mass on a Spring A

HB Coupled Pendulums Lab Coupled Pendulums

Sliding Conducting Bar

Slide 1 / 24. Electromagnetic Induction 2011 by Bryan Pflueger

Handout 10: Inductance. Self-Inductance and inductors

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Spring Experiment 5: Faraday s Law

Lab 8: Magnetic Fields

Human Arm. 1 Purpose. 2 Theory. 2.1 Equation of Motion for a Rotating Rigid Body

Laboratory Manual Experiment NE02 - Rotary Motions Department of Physics The University of Hong Kong

AP Physics C - E & M

AP Physics Electromagnetic Wrap Up

Revision Guide for Chapter 15

Physics Labs with Computers, Vol. 1 P23: Conservation of Angular Momentum A

Experiment P43: RC Circuit (Power Amplifier, Voltage Sensor)

Physical Pendulum Torsion Pendulum

Chapter 21 Magnetic Induction Lecture 12

2.4 Models of Oscillation

Lecture 10 Induction and Inductance Ch. 30

Chapter 12. Magnetism and Electromagnetism

Chapter 27, 28 & 29: Magnetism & Electromagnetic Induction. Magnetic flux Faraday s and Lenz s law Electromagnetic Induction Ampere s law

The Damped Pendulum. Physics 211 Lab 3 3/18/2016

Don t Copy This. Michael Faraday 3/1/13. Chapter 25: EM Induction and EM Waves. Key Terms:

Magnetism. and its applications

Activity P24: Conservation of Linear and Angular Momentum (Photogate/Pulley System)

MEDE3500 Lab Guide Lab session: Electromagnetic Field

2.4 Harmonic Oscillator Models

Lab 10 Circular Motion and Centripetal Acceleration

Revision Guide for Chapter 15

Tactics: Evaluating line integrals

Ch. 23 Electromagnetic Induction, AC Circuits, And Electrical Technologies

Chapter 32. Inductance

Chapter 23: Magnetic Flux and Faraday s Law of Induction

1 Fig. 3.1 shows the variation of the magnetic flux linkage with time t for a small generator. magnetic. flux linkage / Wb-turns 1.

PHYS 202 Notes, Week 6

Activity P27: Speed of Sound in Air (Sound Sensor)

Electromagnetic Induction Practice Problems Homework PSI AP Physics B

Activity P08: Newton's Second Law - Constant Force (Force Sensor, Motion Sensor)

DO PHYSICS ONLINE MOTORS AND GENERATORS FARADAY S LAW ELECTROMAGNETIC INDUCTION

NE01 - Centripetal Force. Laboratory Manual Experiment NE01 - Centripetal Force Department of Physics The University of Hong Kong

Chapter 5. Electromagnetic Induction

( ) ( ) = q o. T 12 = τ ln 2. RC Circuits. 1 e t τ. q t

Electromagnetic Induction

Demo: Solenoid and Magnet. Topics. Chapter 22 Electromagnetic Induction. EMF Induced in a Moving Conductor

Lecture 29: MON 03 NOV

12-Nov-17 PHYS Inelastic Collision. To study the laws of conservation of linear momentum and energy in a completely inelastic collision.

Electromagnetism Notes 1 Magnetic Fields

Motion on a linear air track

Lab 6 Electrostatic Charge and Faraday s Ice Pail

Experiment P30: Centripetal Force on a Pendulum (Force Sensor, Photogate)

Study of Electromagnetic Induction

AP Physics B Summer Assignment

RLC Circuit (3) We can then write the differential equation for charge on the capacitor. The solution of this differential equation is

Experiment P26: Rotational Inertia (Smart Pulley)

Part 4: Electromagnetism. 4.1: Induction. A. Faraday's Law. The magnetic flux through a loop of wire is

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Spring 2003 Experiment 17: RLC Circuit (modified 4/15/2003) OBJECTIVES

The Torsion Pendulum (One or two weights)

Electromagnetic Induction. Bo Zhou Faculty of Science, Hokudai

Name Class Date. Activity P21: Kinetic Friction (Photogate/Pulley System)

REVIEW SESSION. Midterm 2

CHAPTER 29: ELECTROMAGNETIC INDUCTION

Electromagnetic Induction

Faraday's Law ds B B G G ΦB B ds Φ ε = d B dt

C. Incorrect! Use the formula for magnetic flux. This is the product of magnetic field, times area, times the angle between them.

13-Nov-2015 PHYS Rotational Inertia

Physics 1050 Experiment 6. Moment of Inertia

Physics 54 Lecture March 1, Micro-quiz problems (magnetic fields and forces) Magnetic dipoles and their interaction with magnetic fields

PHYSICS. Chapter 30 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT

ElectroMagnetic Induction

AP Physics C Mechanics Objectives

Problem Fig

PreLab 2 - Simple Harmonic Motion: Pendulum (adapted from PASCO- PS-2826 Manual)

Electromagnetic Induction (Chapters 31-32)

21 MAGNETIC FORCES AND MAGNETIC FIELDS

Application Of Faraday s Law

Physical Pendulum, Torsion Pendulum

Electromagnetic Induction

Maxwell s equations and EM waves. From previous Lecture Time dependent fields and Faraday s Law

PHYS Fields and Waves

Self-inductance A time-varying current in a circuit produces an induced emf opposing the emf that initially set up the time-varying current.

Faraday s Law of Induction I

Magnetic Induction Faraday, Lenz, Mutual & Self Inductance Maxwell s Eqns, E-M waves. Reading Journals for Tuesday from table(s)

Experiment 19: The Current Balance

PHYS 1441 Section 001 Lecture #23 Monday, Dec. 4, 2017

Transformers. slide 1

Describe the forces and torques exerted on an electric dipole in a field.

Transcription:

Faraday's Law of Induction Page 1 of 6 Demonstrator: University number: The University of Hong Kong Department of Physics Experimental Physics Laboratory PHYS3450 Electromagnetism Experiment No. 3450-2: Faraday's Law of Induction Objective: To demonstrate various properties of Faraday s Law such as: 1. Verify the law. 2. Demonstrate the lightly damped oscillation of the hall probe as a simple pendulum. 3. Find the amount of energy lost due to lightly damped oscillation. Introduction Electromagnetic induction was discovered independently by Michael Faraday in 1831 and Joseph Henry in 1832. Faraday firstly published the result of his experiment. He explained electromagnetic induction using a concept he called line force. However, this idea was widely rejected at that time, mainly because it lacked mathematical formulation. James Clerk Maxwell grabbed this opportunity and used Faraday s idea as the basis of his quantitative electromagnetic theory. A voltage is induced in a coil swinging through a magnetic field. Faraday's Law and Lenz' Law are examined and the energy dissipated in a load resistor is compared to the loss of amplitude of the coil pendulum. A rigid pendulum with coil at its end swings through a horseshoe magnet. A resistive load is connected across the coil and the induced voltage is recorded using a Voltage Sensor and the angle is measured with a Rotary Motion Sensor that also acts as a pivot for the pendulum. The induced voltage is plotted versus time and angle. The power dissipated in the resistor is calculated from the voltage and the energy converted to thermal energy is determined by finding the area under the power versus time curve. This energy is compared to the loss of potential energy determined from the amplitude of the pendulum. Faraday's Law is used to estimate the magnetic field of the magnet from the maximum induced voltage. Also, the direction of the induced voltage as the coil enters and leaves the magnetic field is examined and analyzed using Lenz' Law. Theory According to Faraday's Law of Induction, a changing magnetic flux through a coil induces an emf given by

Faraday's Law of Induction Page 2 of 6 E = -N df (1) dt where F = ò B da = BA for a magnetic field (B) which is constant over the area (A) and perpendicular to the area. N is the number of turns of wire in the coil. For this experiment, the area of the coil is constant and as the coil passes into or out of the magnetic field, there is an average emf given by E = -NA DB. (2) Dt Apparatus 1 PASCO Scientific EM-8099 Induction Wand 1 PASCO Scientific EM-8641 Variable Gap Lab Magnet 1 PASCO Scientific CI-6503 Voltage Sensor 1 PASCO Scientific CI-6520A Magnetic Field Sensor 1 PASCO Scientific CI-6538 Rotary Motion Sensor 1 PASCO Scientific USB interface PASCO DataStudio computer interface 1 large rod stand Miscellaneous wirings Part I: Induced emf SET UP 1. Put a rod in the stand and clamp the cross-rod to it as shown in Figure 1. Put the Rotary Motion Sensor at the end of the cross-rod. 2. Attach the coil wand to the Rotary Motion Sensor with the tabs on the 3-step pulley just to the sides of the wand as shown in Figure 2. 3. Put the pole plates on the magnet as shown in Figure 3. (Caution: Hold the plates tight and approach slowly to the strong magnet; be careful of the plates edges and watch out your fingers). 4. Adjust the gap between the magnet poles so the coil wand will be able to pass through but put the magnet poles as close together as possible.

Faraday's Law of Induction Page 3 of 6 Tab Figure 1: Rod Stand Figure 2: Tabs Figure 3: Magnet Pole Plates Tab 4. Adjust the height of the coil so it is in the middle of the magnet. Align the wand from side-to-side so it will swing through the magnet without hitting it. 5. Plug the Voltage Sensor into a USB Link or similar PASPORT interface. Connect the interface into the computer. Repeat for the Rotary Motion Sensor and the Magnetic Field Sensor. 6. Plug the Voltage Sensor banana plugs into the banana jacks on the end of the coil wand. Drape the Voltage Sensor wires over the rods as shown in Figure 1 so the wires will not exert a torque on the coil as it swings. It helps to hold the wires up while recording data. 7. Open the DataStudio file called "InducedEMFpas.ds" PROCEDURE

Faraday's Law of Induction Page 4 of 6 1. Click START. With the pole plates on the magnet, use the Magnetic Field Sensor to measure the magnetic field strength between the magnet poles. Click STOP. 2. Click START and pull the coil wand back and let it swing through the magnet. Then click STOP. 3. Use the Magnifier Tool to enlarge the portion of the voltage vs. time graph where the coil passed through the magnet. 4. Use the mouse to highlight the first peak and find the average voltage. 5. Use the Smart Cursor to determine the difference in time from the beginning to the end of the first peak. ANALYSIS 1. Calculate the value of the average emf using Equation (2). Compare this value to the value measured from the graph. 2. Identify on the graph where the coil is entering the magnet and where the coil is leaving the magnet. Figure 4: Coil Passes through Magnet 3. Is the emf of the first peak positive or negative? Taking into account the direction the wire is wrapped around the coil, does the sign of the emf correspond to the direction expected using Lenz's Law? 4. Why is the sign of the emf of the second peak opposite to the sign of the first peak? 5. Why is the emf zero when the coil is passing through the exact center of the magnet? Part II: Energy THEORY If the center of mass of the pendulum starts from rest at an initial height hi, its potential energy is U = mghi. (3) As the pendulum swings and passes through the magnet, some energy is lost to mechanical frictional heat and some energy is converted to electrical energy and then to thermal energy in the resistor. Thus the center of mass of the pendulum does not rise to the same height but rather to a lower final height, hf. See Figure 5. The total energy lost by the pendulum is equal to its change in potential energy: TotalEnergyLost = DU = mg h f - h i ( ) (4)

Faraday's Law of Induction Page 5 of 6 i f Centre of mass h i h b h f Figure 5: Coil Height Decreases E = where P is the power and t is time. ò Pdt = Area Under P vs. T graph e.m.f. (5) r R i V Coil Figure 6: Coil and Resistor Circuit The power is given by P = I 2 ( R + r ) = æ V ö 2 ç è r (R + r) (6) ø where V is the voltage across the resistor (r), I is the current through the coil, and R is the resistance of the coil. See Figure 6. In this experiment, R = 1.9 and r = 4.7.

Faraday's Law of Induction Page 6 of 6 PROCEDURE 1. Remove the coil wand and plug in the 4.7 resistor to the end of the wand handle. Find the coil wands center of mass by balancing it on the edge of a table. Measure the distance from the pivot point to the center of mass. 2. Remove the magnet pole plates. Attach the coil wand to the Rotary Motion Sensor and plug in the Voltage Sensor as shown in Figure 7. 3. Open the DataStudio file called "InductionEnergyPAS". 4. First, the amount of energy lost to friction will be measured by letting the pendulum swing without the coil connected in a complete circuit. Pull the resistor plug out and plug it back in with one of its plugs out to the side and one plug in the wand (see Figure 8). This will disconnect the coil while not changing the center of mass or disconnecting the Voltage Sensor wires. Figure 7: Coil and Resistor Figure 8: Resistor Disconnected 5. Click START with the coil at rest in its equilibrium position between the coils. Then rotate the wand to an initial angle of 25 degrees and let it go. Click STOP after it has swung to the other side. 6. Measure the angle to which the pendulum rises after it passes once through the magnet.

Faraday's Law of Induction Page 7 of 6 Calculate the initial and final heights using the distance from the center of mass to the pivot and the initial and final angles. Calculate the energy lost to friction using Equation (4). 7. Reconnect the resistor with both plugs in the wand. This completes the series circuit of the resistor and coil. 8. Click START with the coil at rest in its equilibrium position between the coils. Then rotate the wand to an initial angle of 25 degrees and let it go. Click STOP after it has swung to the other side. 9. Measure the angle to which the pendulum rises after it passes once through the magnet. Calculate the initial and final heights using the distance from the center of mass to the pivot and the initial and final angles. Calculate the total energy lost using Equation (4). 10. Highlight both peaks on the power vs. time graph and find the area. This area is the energy dissipated by the resistor. 11. Add the energy dissipated by the resistor and the energy lost to friction. Compare this to the total energy lost by the pendulum. References: 1. Pasco Scientific Instruction Manual for Faraday's Law PASPORT Experiment File 2. Hyperphysics - http://hyperphysics.phy-astr.gsu.edu/hbase/electric/farlaw.html 3. Maxwell, James Clerk (1904), A Treatise on electricity and Magnetism, Vol. II, Third Edition. Oxford University Press. (revised August 2017)