SOLVING TRIGONOMETRIC EQUATIONS CONCEPT & METHODS (by Nghi H. Nguyen) DEFINITION.

Similar documents
SOLVING TRIGONOMETRIC EQUATIONS CONCEPT & METHODS

SOLVING TRIGONOMETRIC INEQUALITIES (CONCEPT, METHODS, AND STEPS )

SOLVING TRIGONOMETRIC INEQUALITIES: METHODS, AND STEPS By Nghi H. Nguyen

SOLVING TRIGONOMETRIC INEQUALITIES: METHODS, AND STEPS (By Nghi H. Nguyen Updated Nov 02, 2014)

( and 1 degree (1 ) , there are. radians in a full circle. As the circumference of a circle is. radians. Therefore, 1 radian.

π π π π Trigonometry Homework Booklet 1. Convert 5.3 radians to degrees. A B C D Determine the period of 15

An angle in the Cartesian plane is in standard position if its vertex lies at the origin and its initial arm lies on the positive x-axis.

Math Section 4.3 Unit Circle Trigonometry

MTH 122: Section 204. Plane Trigonometry. Test 1

Next, we ll use all of the tools we ve covered in our study of trigonometry to solve some equations.

MATH 100 REVIEW PACKAGE

Math Section 4.3 Unit Circle Trigonometry

Pre-Calculus MATH 119 Fall Section 1.1. Section objectives. Section 1.3. Section objectives. Section A.10. Section objectives

Chapter 1. Functions 1.3. Trigonometric Functions

Trigonometric Functions. Section 1.6

1. Trigonometry.notebook. September 29, Trigonometry. hypotenuse opposite. Recall: adjacent

Pre-Calculus EOC Review 2016

Math 12 Pre-Calculus Midterm Review (Chapters 1 6)

Using this definition, it is possible to define an angle of any (positive or negative) measurement by recognizing how its terminal side is obtained.

Trigonometry.notebook. March 16, Trigonometry. hypotenuse opposite. Recall: adjacent

Topic Outline for Algebra 2 & and Trigonometry One Year Program

Lesson 7.6 Exercises, pages

Algebra II Standard Term 4 Review packet Test will be 60 Minutes 50 Questions

PRE-CALCULUS FORM IV. Textbook: Precalculus with Limits, A Graphing Approach. 4 th Edition, 2005, Larson, Hostetler & Edwards, Cengage Learning.

6.1: Reciprocal, Quotient & Pythagorean Identities

CHINO VALLEY UNIFIED SCHOOL DISTRICT INSTRUCTIONAL GUIDE TRIGONOMETRY / PRE-CALCULUS

NYS Algebra II and Trigonometry Suggested Sequence of Units (P.I's within each unit are NOT in any suggested order)

5, tan = 4. csc = Simplify: 3. Simplify: 4. Factor and simplify: cos x sin x cos x

Chapter 13: Trigonometry Unit 1

AFM Midterm Review I Fall Determine if the relation is a function. 1,6, 2. Determine the domain of the function. . x x

Sec 3 Express E-Math & A-Math Syllabus (For Class 301 to 305)

MA40S Pre-calculus UNIT C Trigonometric Identities CLASS NOTES Analyze Trigonometric Identities Graphically and Verify them Algebraically

HEINEMANN HIGHER CHECKLIST

Step 1: Greatest Common Factor Step 2: Count the number of terms If there are: 2 Terms: Difference of 2 Perfect Squares ( + )( - )

1. Use the properties of exponents to simplify the following expression, writing your answer with only positive exponents.

Section 6.2 Notes Page Trigonometric Functions; Unit Circle Approach

Solving Equations. Pure Math 30: Explained! 255

Analytic Trigonometry. Copyright Cengage Learning. All rights reserved.

Unit 3 Trigonometry Note Package. Name:

(c) cos Arctan ( 3) ( ) PRECALCULUS ADVANCED REVIEW FOR FINAL FIRST SEMESTER

function independent dependent domain range graph of the function The Vertical Line Test

4 The Trigonometric Functions

1 Chapter 2 Perform arithmetic operations with polynomial expressions containing rational coefficients 2-2, 2-3, 2-4

SESSION 6 Trig. Equations and Identities. Math 30-1 R 3. (Revisit, Review and Revive)

The six trigonometric functions

Calculus First Semester Review Name: Section: Evaluate the function: (g o f )( 2) f (x + h) f (x) h. m(x + h) m(x)

MCPS Algebra 2 and Precalculus Standards, Categories, and Indicators*

0615a2. Algebra 2/Trigonometry Regents Exam x 2 y? 4 x. y 2. x 3 y

Math 175: Chapter 6 Review: Trigonometric Functions

Prof. Israel Nwaguru PLANE TRIGONOMETRY - MATH 1316, CHAPTER REVIEW

REVIEW: MORE FUNCTIONS AP CALCULUS :: MR. VELAZQUEZ

Candidates are expected to have available a calculator. Only division by (x + a) or (x a) will be required.

Pre-calculus 12 Curriculum Outcomes Framework (110 hours)

4.3 TRIGONOMETRY EXTENDED: THE CIRCULAR FUNCTIONS

Trigonometric Identities Exam Questions

The Not-Formula Book for C2 Everything you need to know for Core 2 that won t be in the formula book Examination Board: AQA

DIFFERENTIATION RULES

Preview from Notesale.co.uk Page 2 of 42

Summer Work for students entering PreCalculus

Review for Cumulative Test 2

CALCULUS ASSESSMENT REVIEW

Secondary Honors Algebra II Objectives

MA 110 Algebra and Trigonometry for Calculus Spring 2017 Exam 3 Tuesday, 11 April Multiple Choice Answers EXAMPLE A B C D E.

ALGEBRA II WITH TRIGONOMETRY EXAM

The American School of Marrakesh. AP Calculus AB Summer Preparation Packet

( ) a (graphical) transformation of y = f ( x )? x 0,2π. f ( 1 b) = a if and only if f ( a ) = b. f 1 1 f

G r a d e 1 1 P r e - C a l c u l u s M a t h e m a t i c s ( 3 0 S ) Final Practice Exam

Find all solutions cos 6. Find all solutions. 7sin 3t Find all solutions on the interval [0, 2 ) sin t 15cos t sin.

Coach Stones Expanded Standard Pre-Calculus Algorithm Packet Page 1 Section: P.1 Algebraic Expressions, Mathematical Models and Real Numbers

MA 110 Algebra and Trigonometry for Calculus Fall 2016 Exam 4 12 December Multiple Choice Answers EXAMPLE A B C D E.

Messiah College Calculus I Placement Exam Topics and Review

Summer Work for students entering PreCalculus

Curriculum Scope & Sequence

2. Determine the domain of the function. Verify your result with a graph. f(x) = 25 x 2

Summer Packet Honors PreCalculus

Mathematics Precalculus: Honors Unit 3: Analytic Trigonometry

ATHS FC Math Department Al Ain Revision worksheet

Geometry The Unit Circle

MAC 1114: Trigonometry Notes

Topics from Algebra and Pre-Calculus. (Key contains solved problems)

*n23494b0220* C3 past-paper questions on trigonometry. 1. (a) Given that sin 2 θ + cos 2 θ 1, show that 1 + tan 2 θ sec 2 θ. (2)

D. 6. Correct to the nearest tenth, the perimeter of the shaded portion of the rectangle is:

You should be comfortable with everything below (and if you aren t you d better brush up).

Core Mathematics 3 Trigonometry

Multiple Choice Answers. MA 114 Calculus II Spring 2013 Final Exam 1 May Question

1. Use the properties of exponents to simplify the following expression, writing your answer with only positive exponents.

UNIT 2 ALGEBRA II TEMPLATE CREATED BY REGION 1 ESA UNIT 2

Class Syllabus. Accessible Topic - Topics accessible to visually impaired students using a screen reader.

ab = c a If the coefficients a,b and c are real then either α and β are real or α and β are complex conjugates

How to use this Algebra II - Semester 2 Study Packet

MTH30 Review Sheet. y = g(x) BRONX COMMUNITY COLLEGE of the City University of New York DEPARTMENT OF MATHEMATICS & COMPUTER SCIENCE

Sec 4 Maths SET D PAPER 2

DIFFERENTIATION RULES

Find the domain and range of each function. Use interval notation (parenthesis or square brackets).

weebly.com/ Core Mathematics 3 Trigonometry

AP Calculus Summer Packet

Pre-Calc Trigonometry

Chapter 7 Trigonometric Identities and Equations 7-1 Basic Trigonometric Identities Pages

Lesson 9 Exploring Graphs of Quadratic Functions

National 5 Learning Checklist - Relationships

Transcription:

SOLVING TRIGONOMETRIC EQUATIONS CONCEPT & METHODS (by Nghi H. Nguyen) DEFINITION. A trig equation is an equation containing one or many trig functions of the variable arc x that rotates counter clockwise on the trig unit circle. Solving for x means finding the values of the trig arcs x whose trig functions make the trig equation true. Example of trig equations: tan (x + Pi/3) = 1.5 sin (2x + Pi/4) = 0.5 sin x + sin 2x = 0.75 cos x + sin 2x = 1.2 tan x + cot x = 1.732 2sin 2x + cos x = 1 Answers, or values of the solution arcs, are expressed in degrees or radians. Examples: x = 30 degree; x = 43.72 degree x = 360 deg. x = Pi/3 x = 2Pi/3 x = 2Pi THE TRIG UNIT CIRCLE. It is a circle with radius R = 1 with an origin O. The unit circle defines the main trig functions of the variable arcs x that rotates counterclockwise on it. When the variable arc AM, with value x (in radians or degree) varies on the trig unit circle: The horizontal axis OAx defines the function f(x) = cos x. The vertical axis OBy defines the function f(x) = sin x. The vertical axis AT defines the function f(x) = tan x The horizontal axis BU defines the function f(x) = cot x. The trig unit circle will be used as proof for solving basic trig equations & basic trig inequalities. THE PERIODIC PROPERTY OF TRIG FUNCTIONS. All trig functions are periodic meaning they come back to the same values after the trig arc x rotates one period on the trig unit circle. Examples: The trig function f(x) = sin x has 2Pi as period The trig function f(x) = tan x has Pi as period The trig function f(x) = sin 2x has Pi as period The trig function f(x) = cos (x/2) has 4Pi as period. Page 1 of 7

FIND THE ARCS WHOSE TRIG FUNCTIONS ARE KNOWN. Before learning solving trig equations, you must know how to quickly find the arcs whose trig functions are known. Conversion values of arcs (or angles) are given by trig tables or calculators. Examples: After solving get cos x = 0.732. Calculators give the solution arc x = 42.95 degree. The trig unit circle will give an infinity of other arcs x that have the same cos value (0.732). These values are called extended answers. After solving get sin x = 0.5. Trig table gives the solution arc: x = Pi/6. The unit circle gives another answer: x = 5Pi/6. The extended answers are: x = Pi/6 +2K.Pi (K is a real whole number) and x = 5Pi/6 + 2k.Pi CONCEPT IN SOLVING TRIG EQUATIONS. To solve a trig equation, transform it into one or many basic trig equations. Solving trig equations finally results in solving 4 types of basic trig equations Page 2 of 7

KNOW HOW TO SOLVE BASIC TRIG EQUATIONS. They are also called trig equations in simplest forms. There are 4 types of common basic trig equations: sin x = a cos x = a (a is a given number) tan x = a cot x = a Solving basic trig equations proceeds by considering the positions of the variable arc x that rotates on the trig unit circle, and by using trig conversion tables (or calculators). To fully know how to solve these basic trig equations, or similar, see book titled: Trigonometry: Solving trig equations and inequalities (Amazon e-book 2010) Example 1. Solve: sin x = 0.866 Solution. There are 2 answers given by the trig unit circle and trig conversion table: x1 = Pi/3 x2 = 2Pi/3 Answers x1 = Pi/3 + 2k.Pi x2 = 2Pi/3 + 2k.Pi Extended answers Example 2. Solve: cos x = -0.5 Solution. There are 2 answers given by the unit circle, trig conversion table (or calculators): x1 = 2Pi/3 + 2k.Pi x2 = -2Pi/3 Answers x2 = 2Pi/3 + 2k.Pi x2 = -2Pi/3 + 2k.Pi Extended answers Example 3. Solve: tan (x Pi/4) = 0 Solution. Answer given by the unit circle and calculators: x Pi/4 = 0 x = Pi/4 x = Pi/4 + k.pi Answer Extended answer Example 4. Solve: cot 2x = 1.732 Solution. Answers given by unit circle, trig table (or calculators): 2x = Pi/6 x = Pi/12 Answer x = Pi/12 + k Pi/2 Extended answer Page 3 of 7

Example 5. Solve: sin(x 25 deg.) = 0.5 Solution. The trig table and unit circle gives: a. sin ( x 25 deg.) = sin 30 deg. b. sin (x 25 deg) = sin (180 30) deg. x 25 = 30 deg. x = 55 deg. x = 55 deg. + k.360 deg. x 25 deg. = 150 deg. x = 175 deg. x = 175 deg. + k.360 deg. (Extended answers) TRANSFORMATIONS USED TO SOLVE TRIG EQUATIONS To transform a complex trig equation into many basic trig equations, students can use common algebraic transformations (factoring, common factor, polynomials identities ), definitions and properties of trig functions, and trig identities (the most needed). There are about 31 trig identities, among them the last 14 identities, from # 19 to # 31, are called transformation identities since they are necessary tools to transform trig equations into basic ones. See above mentioned trig book (Amazon e-book 2010) Example 6: Transform the sum (sin a + cos a) into a product of 2 basic trig equations. sin a + cos a = sin a + sin (Pi/2 a) Use Identity Sum into Product (# 28) = 2sin Pi/4.sin (a + Pi/4) Answer Example 7. Transform the difference (sin 2a sin a) into a product of 2 basic trig equations, using trig identity and common factor. Use the Trig Identity: sin 2a = 2sin a.cos a. sin 2a sin a = 2sin a.cos a sin a = sin a (2cos a -1) GRAPH THE SOLUTION ARCS ON THE TRIG UNIT CIRCLE After solving, you can graph to illustrate the solution arcs on the trig unit circle. The terminal points of these solution arcs constitute regular polygons on the trig circle. For examples: - The terminal points of the solution arcs x = Pi/3 + k Pi/2 constitute a square on the unit circle. - The solution arcs x = Pi/4 + kpi/3 are represented by the vertexes of a regular hexagon on the unit circle Page 4 of 7

THE COMMON PERIOD OF A TRIG EQUATION. Unless specified, a trig equation F(x) = 0 must be solved covering one common period. This means you must find all the solution arcs within the common period of the equation. The common period of a trig equation is equal to the least multiple of all periods of the trig functions presented in the trig equation. Examples: - The equation F(x) = cos x 2tan x 1, has 2Pi as common period - The equation F(x) = tan x + 3cot x = 0, has Pi as common period - The equation F(x) = cos 2x + sin x = 0, has 2Pi as common period - The equation F(x) = sin 2x + cos x cos x/2 = 0, has 4Pi as common period. METHODS TO SOLVE TRIG EQUATIONS If the given trig equation contains only one trig function of x, solve it as a basic trig equation. If the given trig equation contains two or more trig functions of x, there are two common methods for solving, depending on transformation possibilities. 1. Method 1 Transform the given trig equation into a product of many basic trig equations. Example 8. Solve: 2cos x + sin 2x = 0 (0 < x < 2Pi) Solution. Replace sin 2x by using the trig identity sin 2x = 2sinx.cosx 2cos x + 2sin x.cos x = 2cos x (sin x + 1) Next, solve the 2 basic trig equations: cos x = 0 and (sin x + 1) = 0 - cos x = 0 x = Pi/2 and x = 3Pi/2 - sin x = -1 x = 3Pi/2 Example 9. Solve the trig equation: cos x + cos 2x + cos 3x = 0 (0 < x< 2Pi) Solution. Transform it into a product, using trig identity (cos a + cos b). cos x + cos 2x + cos 3x = cos 2x (2cos x + 1) = 0 Next, solve the 2 basic trig equations: cos 2x = 0 and (2cos x + 1) = 0 Example 10. Solve: sin x sin 3x = cos 2x (0 < x < 2Pi) Solution. Using the trig identity (sin a sin b), transform the equation into a product: Page 5 of 7

sin x sin 3x cos 2x = - cos 2x (2sin x + 1) = 0 Next, solve the 2 basic trig equations: cos 2x = 0 and (2sin x + 1) = 0 Example 11. Solve: sin x + sin 2x + sin 3x = cos x + cos 2x + cos 3x Solution. By using the Sum into Product Identities, and then common factor, transform this trig equation into a product: sin x + sin 2x + sin 3x = cos x + cos 2x + cos 3x sin 2x (2cos x + 1) = cos 2x (2cos x + 1) (2cos x + 1) (sin 2x cos 2x) = 0 Next, solve the 2 basic trig equations: (2cos x + 1) = 0 and (sin 2x cos 2x) = 0 2. Method 2 - If the given trig equation contains 2 or more trig functions, transform it into an equation having only one trig function variable. The common trig functions to choose as variable are: sin x = t; cos x = t, cos 2x = t, tan x = t; tan x/2 = t. Example 12. Solve 3sin ^2 x 2cos^2 x = 4sin x + 7 (1) (0 < x < 2Pi) Solution. Replace in the equation (cos^2 x) by (1 sin^2 x) then put the equation in standard form. 3sin^2 x - 2 + 2sin^2x 4sin x 7 = 0 Call sin x = t, we get: 5t^2 4t 9 = 0 This is a quadratic equation in t, with 2 real roots: t1 = -1 and t2 = 9/5. The second real root t2 is rejected since sin x must < 1. Next, solve for t = sin x = -1 x = 3Pi/2 (Solution) Check with the given equation (1) by replacing sin x = sin 3Pi/2 3 0 = -4 + 7 The solution is correct Example 13. Solve: sin^2 x + sin^4 x cos ^2 x = 0 Solution. Choose cos x = t as function variable. (1 t^2) (1 + 1 t^2) t^2 = 0 t^4 4 t^2 + 2 = 0 It is a bi-quadratic equation. There are 2 real roots: cos^2 x = t^2 = 2 + 1.414 (rejected) and Page 6 of 7

cos^2 x = t^2 = 2 1.414 = 0.586 (accepted since < 1). Next solve the 2 basic trig equations: cos x = t = 0.77 and cos x = t = -0.77. Example 14. Solve: cos x + 2sin x = 1 + tan x/2 (0 < x < 2Pi) Solution. Choose t = tan x/2 as function variable. Replace sin x and cos x in terms of tan x/2. 1 - t^2 + 4t = (1 + t) (1 + t^2) t^3 + 2 t^2 3t = t (t^2 + 2t 3) = 0 The quadratic equation (t^2 + 2t 3 = 0) has 2 real roots: 1 and -3. Next, solve the 3 basic trig equations: t = tan x/2 = 0 ; t = tan x/2 = -3 ; and t = tan x/2 = 1. Example 15. Solve: tan x + 2 tan^2 x = cot x + 2 (-Pi/2 < x < Pi/2) Solution. Choose tan x = t as function variable. t + 2 t^2 = 1/t + 2 (2t + 1) (t^2 1) = 0 Next, solve the 3 basic trig equations (2tan x + 1) = 0; (tan x 1) = 0; (tan x + 1) = 0 SOLVING SPECIAL TYPES OF TRIG EQUATIONS. There are a few special types of trig equations that require specific transformations. Examples: a sin x + b cos x = c a (sin x + cos x) + b cos x.sin x = c a.sin^2 x + b.sin x.cos x + c.cos ^2 x = 0 CONCLUSION. Solving trig equations is a tricky work that often leads to errors and mistakes. Therefore, the answers should be always carefully checked. After solving, you may check the answers by using a graphing calculator to directly graph the given trig equation F(x) = 0. Graphing calculators will give answers (real roots) in decimals. For example Pi, or 180 degree, is given by the value 3.14. For more details, see the last chapter of the book titled Solving trig equations and inequalities (Amazon e-book 2010). (This article was written by Nghi H. Nguyen, co-author of the new Diagonal Sum Method for solving quadratic equations) Page 7 of 7