Chapter 32 Solutions

Similar documents
Inductance. * An asterisk indicates a question or problem new to this edition.

Chapter 30 Inductance

Handout 10: Inductance. Self-Inductance and inductors

Exam 2 Solutions. Note that there are several variations of some problems, indicated by choices in parentheses.

Physics 1B Spring 2010: Final Version A 1 COMMENTS AND REMINDERS:

Self-inductance A time-varying current in a circuit produces an induced emf opposing the emf that initially set up the time-varying current.

Chapter 32. Inductance

PHYS 241 EXAM #2 November 9, 2006

Chapter 32. Inductance

Chapter 30 Examples : Inductance (sections 1 through 6) Key concepts: (See chapter 29 also.)

Louisiana State University Physics 2102, Exam 3 April 2nd, 2009.

ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT

Version 001 HW 22 EM Induction C&J sizemore (21301jtsizemore) 1

Inductance, RL and RLC Circuits

Active Figure 32.3 (SLIDESHOW MODE ONLY)

Inductance, RL Circuits, LC Circuits, RLC Circuits

Chapter 30 INDUCTANCE. Copyright 2012 Pearson Education Inc.

2. Thus, if the current is doubled while the inductance is constant, the stored energy increases by a factor of 4 and the correct choice is (d).


Exam 2, Phy 2049, Spring Solutions:

Inductance, Inductors, RL Circuits & RC Circuits, LC, and RLC Circuits

INDUCTANCE Self Inductance

Chapter 31. Faraday s Law

Chapter 28 Solutions

Solutions to PHY2049 Exam 2 (Nov. 3, 2017)

Physics 2B Spring 2010: Final Version A 1 COMMENTS AND REMINDERS:

Physics 1302W.400 Lecture 33 Introductory Physics for Scientists and Engineering II

Physics 420 Fall 2004 Quiz 1 Wednesday This quiz is worth 6 points. Be sure to show your work and label your final answers.

9. M = 2 π R µ 0 n. 3. M = π R 2 µ 0 n N correct. 5. M = π R 2 µ 0 n. 8. M = π r 2 µ 0 n N

Chapter 31. Faraday s Law

PHYS General Physics for Engineering II FIRST MIDTERM

Physics 2B Winter 2012 Final Exam Practice

Physics 240 Fall 2005: Exam #3 Solutions. Please print your name: Please list your discussion section number: Please list your discussion instructor:

Part 4: Electromagnetism. 4.1: Induction. A. Faraday's Law. The magnetic flux through a loop of wire is

Physics 208, Spring 2016 Exam #3

Electromagnetic Induction (Chapters 31-32)

Yell if you have any questions

Electromagnetic Induction Faraday s Law Lenz s Law Self-Inductance RL Circuits Energy in a Magnetic Field Mutual Inductance

1 2 U CV. K dq I dt J nqv d J V IR P VI

Exam 3 Topics. Displacement Current Poynting Vector. Faraday s Law Self Inductance. Circuits. Energy Stored in Inductor/Magnetic Field

Chapter 20: Electromagnetic Induction. PHY2054: Chapter 20 1

A) I B) II C) III D) IV E) V

Physics 1308 Exam 2 Summer 2015

Driven RLC Circuits Challenge Problem Solutions

PHY 131 Review Session Fall 2015 PART 1:

Louisiana State University Physics 2102, Exam 3, November 11, 2010.

11 Chapter. Inductance and Magnetic Energy

Physics 106, Section 1

AP Physics C. Magnetism - Term 4

ELECTROMAGNETIC INDUCTION AND FARADAY S LAW

Ch. 23 Electromagnetic Induction, AC Circuits, And Electrical Technologies

Self-Inductance. Φ i. Self-induction. = (if flux Φ 1 through 1 loop. Tm Vs A A. Lecture 11-1

SUMMARY Phys 2523 (University Physics II) Compiled by Prof. Erickson. F e (r )=q E(r ) dq r 2 ˆr = k e E = V. V (r )=k e r = k q i. r i r.

On my honor, I have neither given nor received unauthorized aid on this examination.

force per unit length

Magnets. Domain = small magnetized region of a magnetic material. all the atoms are grouped together and aligned

Chapter 31 Solutions

Induction_P1. 1. [1 mark]

Chapter In Fig , the magnetic flux through the loop increases according to the relation Φ B. =12.0t

EM Oscillations. David J. Starling Penn State Hazleton PHYS 212

(a) zero. B 2 l 2. (c) (b)

University of the Philippines College of Science PHYSICS 72. Summer Second Long Problem Set

Physics Jonathan Dowling. Final Exam Review

Electricity and Magnetism Energy of the Magnetic Field Mutual Inductance

18 - ELECTROMAGNETIC INDUCTION AND ALTERNATING CURRENTS ( Answers at the end of all questions ) Page 1

LECTURE 17. Reminder Magnetic Flux

Module 22 and 23: Section 11.1 through Section 11.4 Module 24: Section 11.4 through Section Table of Contents

Chapters 34,36: Electromagnetic Induction. PHY2061: Chapter

Phys102 Final-163 Zero Version Coordinator: Saleem Rao Tuesday, August 22, 2017 Page: 1. = m/s

Lecture 27: FRI 20 MAR

AP Physics C. Inductance. Free Response Problems

Physics 227 Final Exam December 18, 2007 Prof. Coleman and Prof. Rabe. Useful Information. Your name sticker. with exam code

Faraday s Law; Inductance

A 2. The potential difference across the capacitor is F m N m /C m. R R m m R m R m 0

Last time. Ampere's Law Faraday s law

PHYS 241 EXAM #1 October 5, 2006

University of California, Berkeley Physics H7B Spring 1999 (Strovink) SOLUTION TO PROBLEM SET 11 Solutions by P. Pebler

Chapter 23 Magnetic Flux and Faraday s Law of Induction

1. A ring of radius α has a charge distribution on it that varies as λ(θ) = λ 0 sin(θ), where λ 0 > 0, as shown in the figure.

Two point charges, A and B, lie along a line separated by a distance L. The point x is the midpoint of their separation.

ELECTRO MAGNETIC INDUCTION

Gen. Phys. II Exam 2 - Chs. 21,22,23 - Circuits, Magnetism, EM Induction Mar. 5, 2018

Lecture 39. PHYC 161 Fall 2016

Phys 2025, First Test. September 20, minutes Name:

Mansfield Independent School District AP Physics C: Electricity and Magnetism Year at a Glance

Exam 2 Solutions. ε 3. ε 1. Problem 1

Physics 1308 Exam 2 Summer Instructions

PHYSICS 2B FINAL EXAM ANSWERS WINTER QUARTER 2010 PROF. HIRSCH MARCH 18, 2010 Problems 1, 2 P 1 P 2

A positive value is obtained, so the current is counterclockwise around the circuit.

EXPERIMENT 07 TO STUDY DC RC CIRCUIT AND TRANSIENT PHENOMENA

Principles of Physics II

A) 4 B) 3 C) 2 D) 5 E) 6

Chapter 5: Electromagnetic Induction

Version 001 CIRCUITS holland (1290) 1

b) (4) How large is the current through the 2.00 Ω resistor, and in which direction?

Inductance. Chapter Outline Self-Inductance 32.2 RL Circuits 32.3 Energy in a Magnetic Field

University Physics Volume II Unit 2: Electricity and Magnetism Chapter 13: Electromagnetic Induction Conceptual Questions

PHYSICS. Chapter 30 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT

Physics 6B Summer 2007 Final

f n+2 f n = 2 = = 40 H z

Transcription:

Chapter 3 Solutions *3. ε = L I t = (3.00 0 3 H).50 A 0.00 A 0.00 s =.95 0 V = 9.5 mv 3. Treating the telephone cord as a solenoid, we have: L = µ 0 N A l = (4π 0 7 T m/a)(70.0) (π)(6.50 0 3 m) 0.600 m =.36 µ H 3.3 ε =+L I t =(.00H) 0.500 A 0.000 s = 00 V 3.4 L = µ 0 n Al so n = L µ 0 Al = 7.80 03 turns/m 3.5 L = N Φ B I Φ B = LI N = 40 nt m (through each turn) 3.6 ε = L where L = µ 0N A l Thus, ε = µ 0 N A l 4π 0 = ( 7 T ma) 300 π 0 4 m 0.50 m ( 0.0 A s) =.37 mv 3.7 ε back = ε = L = L d (I max sin ω t) = Lω I max cos ω t = (0.0 0-3 )(0π )(5.00) cos ω t ε back = (6.00π ) cos (0π t) = (8.8 V) cos (377t) 000 by Harcourt, Inc. All rights reserved.

Chapter 3 Solutions 43 *3.8 From ε = L I t, we have L = ε Ι t = 4.0 0 3 V 0.0 A/s =.40 0 3 H From L = NΦ B I, we have Φ B = LI N = (.40 0 3 H)(4.00 A) 500 = 9. µt m 3.9 L = µ 0N A l = µ 0(40) (3.00 0 4 ) 0.60 = 4.6 0 4 H ε = L = ε L = 75 0 6 V 4.6 0 4 H = 0.4 A/s 3.0 The induced emf is ε = L, where the self-inductance of a solenoid is given by L = µ 0N A. l Thus, = ε L = εl µ 0 N A 3. ε = L = (90.0 0-3 ) d (t 6t) V (a) At t =.00 s, ε = 360 mv At t = 4.00 s, ε = 80 mv ε = (90.0 0-3 )(t 6) = 0 when t = 3.00 s 3. (a) B = µ 0 ni = µ 450 0 0.0 (0.0400 ma) = 88 µt Φ B = BA = 3.33 0-8 T m L = NΦ B I = 0.375 mh 000 by Harcourt, Inc. All rights reserved.

44 Chapter 3 Solutions (d) B and Φ B are proportional to current; L is independent of current

Chapter 3 Solutions 45 3.3 (a) L = µ 0N A l = µ 0(0) π ( 5.00 0 3 ) 0.0900 = 5.8 µh Φ B = µ m Φ µ B L = µ mn A 0 l = 800(.58 0 5 H) =.6 mh 3.4 L = NΦ B I = NBA I NA I µ 0NI π R = µ 0 N A π R 3.5 ε = ε 0 e kt = L = ε 0 L e kt ε If we require I 0 as t, the solution is I = 0 kl e kt = dq Q = I= ε 0 kt e 0 = ε 0 kl ε k L Q = 0 k L 3.6 I = ε R ( e Rt/L ) 0.900 ε R = ε R exp R =.50 H 3.00 s R(3.00 s).50 H s)/.50 H [ e R(3.00 ] = 0.00 ln 0.0 =.9 Ω 000 by Harcourt, Inc. All rights reserved.

46 Chapter 3 Solutions 3.7 τ = L R = 0.00 s: I I max = e t/τ (a) 0.500 = e t/0.00 t = τ ln.00 = 0.39 s 0.900 = e t/0.00 t = τ ln 0.0 = 0.46 s Figure for Goal Solution Goal Solution A.0-V battery is about to be connected to a series circuit containing a 0.0-Ω resistor and a.00-h inductor. How long will it take the current to reach (a) 50.0% and 90.0% of its final value? G : The time constant for this circuit is τ = LR= 0. s, which means that in 0. s, the current will reach /e = 63% of its final value, as shown in the graph to the right. We can see from this graph that the time to reach 50% of I max should be slightly less than the time constant, perhaps about 0.5 s, and the time to reach 0.9I max should be about.5τ = 0.5 s. O : The exact times can be found from the equation that describes the rising current in the above graph and gives the current as a function of time for a known emf, resistance, and time constant. We set time t = 0 to be the moment the circuit is first connected. A : At time t, It ()= ε( e t/τ ) R where, after a long time, I max = ε( e ) R = ε R At It ()= 0.500I max, ( 0.500) ε R = ε( e t/0.00 s ) R so 0.500 = e t/0.00 s Isolating the constants on the right, and solving for t, ln( e t/.00 s )= ln( 0.500) t 0.00 s = 0.693 or t = 0.39 s Similarly, to reach 90% of I max, 0.900 = e t/τ and t = τln( 0.900) Thus, t = 0.00 ( s)ln( 0.00)= 0.46 s L : The calculated times agree reasonably well with our predictions. We must be careful to avoid confusing the equation for the rising current with the similar equation for the falling current. Checking our answers against predictions is a safe way to prevent such mistakes.

Chapter 3 Solutions 47 3.8 Taking τ = LR, I = I 0 e t/τ : = I 0 e t/τ τ τ IR + L = 0 will be true if I 0Re t/τ + LI 0 e t/τ Because τ = LR, we have agreement with 0 = 0 = 0 *3.9 (a) τ = LR =.00 0 3 s =.00 ms (d) I = I max ( e t/τ )= 6.00 V 4.00 Ω( e 0.50/.00 )= 0.76 A I max = ε R = 6.00 V 4.00 Ω =.50 A 0.800 = e t/.00 ms t = (.00 ms) ln(0.00) = 3. ms *3.0 I = ε R ( e t/τ ) = 0 9.00 ( e.80/7.00 ) = 3.0 A V R = IR = (3.0)(9.00) = 7. V V L = ε V R = 0 7. = 9.8 V 3. (a) V R = IR = (8.00 Ω)(.00 A) = 6.0 V and V L = ε V R = 36.0 V 6.0 V = 0.0 V Therefore, V R = 6.0 V V L 0.0 V = 0.800 V R = IR = (4.50 A)(8.00 Ω) = 36.0 V V L = ε V R = 0 Figure for Goal Solution 000 by Harcourt, Inc. All rights reserved.

48 Chapter 3 Solutions Goal Solution For the RL circuit shown in Figure P3.9, let L = 3.00 H, R = 8.00 Ω, and ε = 36.0 V. (a) Calculate the ratio of the potential difference across the resistor to that across the inductor when I =.00 A. Calculate the voltage across the inductor when I = 4.50 A. G : The voltage across the resistor is proportional to the current, V R = IR, while the voltage across the inductor is proportional to the rate of change in the current, ε L = L. When the switch is first closed, the voltage across the inductor will be large as it opposes the sudden change in current. As the current approaches its steady state value, the voltage across the resistor increases and the inductor s emf decreases. The maximum current will be ε /R = 4.50 A, so when I =.00 A, the resistor and inductor will share similar voltages at this mid-range current, but when I = 4.50 A, the entire circuit voltage will be across the resistor, and the voltage across the inductor will be zero. O : We can use the definition of resistance to calculate the voltage across the resistor for each current. We will find the voltage across the inductor by using Kirchhoff's loop rule. A : (a) When I =.00 A, the voltage across the resistor is V R = IR = (.00 A) ( 8.00 Ω)= 6.0 V Kirchhoff's loop rule tells us that the sum of the changes in potential around the loop must be zero: ε V R ε L = 36.0 V 6.0 V ε L = 0 so ε L = 0.0 V and V R ε L = 6.0 V 0.0 V = 0.800 Similarly, for I = 4.50 A, V R = IR = ( 4.50 A) ( 8.00 Ω)= 36.0 V ε V R ε L = 36.0 V 36.0 V ε L = 0 so ε L = 0 L : We see that when I =.00 A, V R < ε L, but they are similar in magnitude as expected. Also as predicted, the voltage across the inductor goes to zero when the current reaches its maximum value. A worthwhile exercise would be to consider the ratio of these voltages for several different times after the switch is reopened. *3. After a long time,.0 V = (0.00 A)R Thus, R = 60.0 Ω. Now, τ = L R gives L = τ R = (5.00 0 4 s)(60.0 V/A) = 30.0 mh 3.3 I = I max ( e t/τ ): τ = I max e t/τ τ = L R = 5.0 H 30.0 Ω = 0.500 s : = R L I max e t/τ and I max = ε R (a) t = 0: = R L I max e 0 = ε L = 00 V 5.0 H = 6.67 A/s t =.50 s: = ε L e t/τ = (6.67 A/s)e.50/(0.500) = (6.67 A/s)e 3.00 = 0.33 A/s

Chapter 3 Solutions 49 3.4 I = I max ( e t/τ ) 0.980 = e 3.00 0 3 /τ 0.000 = e 3.00 0 3 /τ 3 3.00 0 τ = ln(0.000) = 7.67 0 4 s τ = L R, so L = τr = (7.67 0 4 )(0.0) = 7.67 mh 3.5 Name the currents as shown. By Kirchhoff s laws: I = I + I 3 () +0.0 V 4.00 I 4.00 I = 0 () +0.0 V 4.00 I 8.00 I 3 (.00) 3 = 0 (3) From () and (), +0.0 4.00 I 4.00 I + 4.00 I 3 = 0 and I = 0.500 I 3 +.5 A Then (3) becomes 0.0 V 4.00( 0.500 I 3 +.5 A) 8.00 I 3 (.00) 3 = 0 (.00 H) ( 3 )+ ( 0.0 Ω)I 3 = 5.00 V We solve the differential equation using Equations 3.6 and 3.7: I 3 ()= t 5.00 V 0.0 Ω e 0.0 Ω [ ( ] )t.00 H = 0.500 A I =. 5 + 0.500 I 3 =.50 A ( 0.50 A)e 0t/s [ ] e 0t/s 3.6 (a) Using τ = RC = L R, we get R = L C = 3.00 H 3.00 0 6 F =.00 03 Ω=.00 kω τ = RC = (.00 0 3 Ω) ( 3.00 0 6 F)= 3.00 0 3 s = 3.00 ms 000 by Harcourt, Inc. All rights reserved.

50 Chapter 3 Solutions 3.7 For t 0, the current in the inductor is zero. At t = 0, it starts to grow from zero toward 0.0 A with time constant τ = L R = ( 0.0 mh) ( 00 Ω)=.00 0 4 s. For 0 t 00 µs, I = I max e t/τ = ( 0.00 A) ( ) e 0000t/s At t = 00 µs, I = ( 0.00 A) ( e.00 )= 8.65 A Thereafter, it decays exponentially as I = I 0 e t τ, so for t 00 µs, 0000 t 00 µs I = ( 8.65 A)e s = ( 8.65 A)e 0000t s +.00 = ( 8.65e.00 A)e 0000t s = ( 63.9 A)e 0000t s 3.8 (a) I = ε R =.0 V.0 Ω =.00 A Initial current is.00 A, : V = (.00 A)(.00 Ω) =.0 V V 00 = (.00 A)(00 Ω) =.0 kv V L =. kv I = I max e Rt/L : R = I max L e Rt/L and L = V L = I max Re Rt/L Solving.0 V = ( V)e t/.00 so 9.90 0 3 = e 606t Thus, t = 7.6 ms 3.9 τ = L R = 0.40 4.90 = 8.6 ms; I max = ε R = 6.00 V 4.90 Ω =. A (a) I = I max ( e t/τ ) so 0.0 =.( e t/τ ) e t/τ = 0.80 t = τ ln(0.80) = 5.66 ms I = I max e 0.0 0.086 = (. A) ( e 350 )=. A I = I max e t/τ and 0.60 =. e t/τ so t = τ ln(0.3) = 58. ms

Chapter 3 Solutions 5 3.30 (a) For a series connection, both inductors carry equal currents at every instant, so / is the same for both. The voltage across the pair is L eq = L + L so L eq = L + L L eq = L = L = V L where I = I + I and = + Thus, V L L eq = V L L + V L L and = + L eq L L L eq + R eq I = L + IR + L + IR Now I and / are separate quantities under our control, so functional equality requires both L eq = L + L and R eq = R + R (d) V = L eq + R eqi = L + R I = L + R I where I = I + I and = + We may choose to keep the currents constant in time. Then, We may choose to make the current swing through 0. Then, = + R eq R R = + L eq L L This equivalent coil with resistance will be equivalent to the pair of real inductors for all other currents as well. 3.3 L = N Φ B I = 00(3.70 0 4 ).75 = 4.3 mh so U = LI = (0.43 H)(.75 A) = 0.0648 J 3.3 (a) The magnetic energy density is given by u = B µ 0 = (4.50 T) (.6 0 6 T m/a) = 8.06 0 6 J/m 3 The magnetic energy stored in the field equals u times the volume of the solenoid (the volume in which B is non-zero). U = uv = (8.06 0 6 J/m 3 ) [(0.60 m)π(0.030 m) ]= 6.3 kj 000 by Harcourt, Inc. All rights reserved.

5 Chapter 3 Solutions N A 3.33 L = µ 0 l = µ (68.0) π(0.600 0 ) 0 = 8. µh 0.0800 U = LI = (8. 0 6 H)(0.770 A) =.44 µj 3.34 (a) U = LI = L ε R I = ε R e (R/L)t = Lε 8R = (0.800)(500) 8(30.0) = 7.8 J [ ] so ε R = ε R e (R/L)t [ ] e (R/L)t = R L t = ln so t = L 0.800 ln = ln = 8.5 ms R 30.0 3.35 u = ε 0 E = 44. nj/m 3 u = B µ 0 = 995 µ J/m 3 *3.36 (a) U = LI = (4.00 H)(0.500 A) = 0.500 J du = LI = (4.00 H)(.00 A) = 4.00 J/s = 4.00 W P = ( V)I = (.0 V)(0.500 A) =.0 W 3.37 From Equation 3.7, I = ε Rt L ( e ) R (a) The maximum current, after a long time t, is I = ε =.00 A. R At that time, the inductor is fully energized and P = I( V) = (.00 A)(0.0 V) = 0.0 W P lost = I R = (.00 A) (5.00 Ω) = 0.0 W P inductor = I( V drop ) = 0 (d) U = LI = (0.0 H)(.00 A) = 0.0 J

Chapter 3 Solutions 53 3.38 We have u = e 0 E and u = B µ 0 Therefore e 0 E = B µ 0 so B = e 0 µ 0 E B = E e 0 µ 0 = 6.80 05 V/m 3.00 0 8 m/s =.7 0 3 T 3.39 The total magnetic energy is the volume integral of the energy density, u = B µ 0 Because B changes with position, u is not constant. For B = B 0 R / r, u = B 0 µ 0 R r Next, we set up an expression for the magnetic energy in a spherical shell of radius r and thickness dr. Such a shell has a volume 4π r dr, so the energy stored in it is du = u 4π r ( dr)= πb 0 R 4 dr r µ 0 We integrate this expression for r = R to r = to obtain the total magnetic energy outside the sphere. This gives 4 U = π B 0 R 3 µ 0 = π (5.00 0 5 T) (6.00 0 6 m) 3 (.6 0 6 T m/a) =.70 0 8 J 3.40 I (t) = I max e α t sinωt with I max = 5.00 A, α = 0.050 s, and ω = 377 rad s. = I max e α t ( α sinωt + ω cosωt) At t = 0.800 s, [ ( )] = ( 5.00 A s)e 0.000 ( 0.050)sin( 0.800( 377) )+ 377 cos 0.800 377 =.85 03 As Thus, ε = M : M = ε = + 3.0 V.85 0 3 =.73 mh As 000 by Harcourt, Inc. All rights reserved.

54 Chapter 3 Solutions 3.4 ε = M = (.00 0 4 H)(.00 0 4 A / s) cos(000t) ( ε ) max =.00 V 3.4 M = ε 96.0 mv = = 80.0 mh.0 A / s 3.43 (a) M = N BΦ BA = 700(90.0 0 6 ) = 8.0 mh I A 3.50 L A = Φ A = 400(300 0 6 ) = 34.3 mh I A 3.50 ε B = M A = (8.0 mh)(0.500 A / s) = 9.00 mv [ ] 3.44 M = N Φ = N ( B A ) = N ( µ 0 n I )A = N µ 0 n A I I I M = (.00) 4π 0 7 70.0 ( T ma ) 0.0500 m π 5.00 0 3 m = 38 nh 3.45 B at center of (larger) loop: B = µ 0 I R (a) M = Φ I = B A I = (µ 0I /R)(πr ) I = µπr R 0 M = µ 0 π(0.000) = 3.95 nh (0.00)

Chapter 3 Solutions 55 *3.46 Assume the long wire carries current I. Then the magnitude of the magnetic field it generates at distance x from the wire is B = µ 0 I πx, and this field passes perpendicularly through the plane of the loop. The flux through the loop is Φ B = B da = BdA = B ldx = µ 0 I l π.70 mm 0.400 mm dx x = µ 0 Il π.70 ln 0.400 The mutual inductance between the wire and the loop is then M = N Φ I = N µ 0 Il π I ln.70 0.400 = N µ 0 l (. 45)= (4π 0 7 T ma)(.70 0 3 m) π π (. 45) M = 7.8 0 0 H = 78 ph 3.47 With I = I + I, the voltage across the pair is: V = L M = L M = L eq So, = V + M L L and L + M V L + M L = V (a) ( L L + M ) = V(L M) [] By substitution, = V + M L L leads to ( L L + M ) = V (L M) [] Adding [] to [], ( L L + M ) = V(L + L M) So, L eq = V / = L L M L + L M 3.48 At different times, ( U C ) max = ( U L ) max so C( V) I max = C L ( V) max =.00 0 6 F ( 0.0 0 3 H 40.0 V )= 0.400 A [ ] max = LI max 000 by Harcourt, Inc. All rights reserved.

56 Chapter 3 Solutions 3.49 [ C( V) ] = max ( LI ) so V C max max = L C I max = 0.0 0 3 H ( 0.500 0 6 F 0.00 A )= 0.0 V 3.50 When the switch has been closed for a long time, battery, resistor, and coil carry constant current I max = ε / R. When the switch is opened, current in battery and resistor drops to zero, but the coil carries this same current for a moment as oscillations begin in the LC loop. We interpret the problem to mean that the voltage amplitude of these oscillations is V, in C( V) = LI max. Then, L = C( V) = C( V) R ε = I max ( 0.500 0 6 F) 50 V ( 50 Ω) ( 50.0 V) = 0.8 H 3.5 C = (π f ) L = (π 6.30 0 6 ) (.05 0 6 = 608 pf ) Goal Solution A fixed inductance L =.05 µ H is used in series with a variable capacitor in the tuning section of a radio. What capacitance tunes the circuit to the signal from a station broadcasting at 6.30 MHz? G : O : It is difficult to predict a value for the capacitance without doing the calculations, but we might expect a typical value in the µf or pf range. We want the resonance frequency of the circuit to match the broadcasting frequency, and for a simple RLC circuit, the resonance frequency only depends on the magnitudes of the inductance and capacitance. A : The resonance frequency is f 0 = π LC Thus, C = (π f 0 ) L = (π)(6.30 0 6 Hz) [ ] (.05 0 6 H) = 608 pf L : This is indeed a typical capacitance, so our calculation appears reasonable. However, you probably would not hear any familiar music on this broadcast frequency. The frequency range for FM radio broadcasting is 88.0 08.0 MHz, and AM radio is 535 605 khz. The 6.30 MHz frequency falls in the Maritime Mobile SSB Radiotelephone range, so you might hear a ship captain instead of Top 40 tunes! This and other information about the radio frequency spectrum can be found on the National Telecommunications and Information Administration (NTIA) website, which at the time of this printing was at http://www.ntia.doc.gov/osmhome/allochrt.html

Chapter 3 Solutions 57 3.5 f = π LC : L = (π f ) C = (π 0) (8.00 0 6 ) = 0.0 H 3.53 (a) f = π LC = = 35 Hz π (0.080 H)(7.0 0 6 F) Q = Q max cosωt = (80 µc) cos(847 0.0000) = 9 µc I = dq = ωq max sinωt = (847)(80) sin(0.847) = 4 ma 3.54 (a) f = π LC = = 503 Hz π (0.00 H)(.00 0 6 F) Q = Cε =(.00 0 6 F)(.0 V) =.0 µc Cε = LI max I max = ε C L =V.00 0 6 F 0.00 H = 37.9 ma (d) At all times U = Cε = (.00 0 6 F)(.0 V) = 7.0 µ J 3.55 ω = (a) LC = 3.30 H =.899 04 rad s 840 0 F Q = Q max cosωt, I = dq = ωq max sinωt U C = Q 05 0 C = 6 ([ ] cos [(.899 04 rad s) (.00 0 3 s) ]) U L = LI = Lω Q max sin ωt U L = 05 0 6 C 840 0 = Q max sin ( ωt) C [ ] sin (.899 0 4 rad s) (.00 0 3 s) ( 840 0 F) = 6.03 J = 0.59 J U total = U C + U L = 6.56 J 000 by Harcourt, Inc. All rights reserved.

58 Chapter 3 Solutions 3.56 (a) ω d = LC R L = (.0 0 3 )(.80 0 6 ) 7.60.0 ( 0 3 ) =. 58 0 4 rad / s Therefore, f d = ω d =.5 khz π R c = 4L C = 69.9 Ω 3.57 (a) ω 0 = LC = = 4.47 krad/s (0.500)(0.00 0 6 ) ω d = LC R L = 4.36 krad/s ω ω 0 =.53% lower 3.58 Choose to call positive current clockwise in Figure 3.9. It drains charge from the capacitor according to I = dq/. A clockwise trip around the circuit then gives + Q C IR L =0 + Q C + dq R + L d dq = 0, identical with Equation 3.9. 3.59 (a) Q = Q max e Rt L cos ω d t so I max e Rt L 0.500 = e Rt L and Rt L = ln(0.500) t = L R ln ( 0.500 )= 0.693 L R U 0 Q max and U = 0.500U 0 so Q = 0.500 Q max = 0.707Q max t = L R ln(0.707) = 0.347 L R (half as long)

Chapter 3 Solutions 59 3.60 With Q = Q max at t = 0, the charge on the capacitor at any time is Q = Q max cosωt where ω = LC. The energy stored in the capacitor at time t is then U = Q C = Q max C cos ωt = U 0 cos ωt. When U = 4 U 0, cos ω t = and ω t = 3 π rad Therefore, t LC = π 3 or t LC = π 9 The inductance is then: L = 9t π C 3.6 (a) ε L = L 0.0t =.00 ( mh)d t t Q = I= ( 0.0t) = 0.0t 0 V C = Q C = 0.0t 0.00 0 6 F = 0.0 mv = ( 0.0 MV s)t When Q C LI, or ( 0.0t ).00 0 6 (.00 0 3) 0.0t, then 00t 4 ( 400 0 9 )t. The earliest time this is true is at t = 4.00 0 9 s = 63. µs 3.6 (a) ε L = L = L d (Kt)= LK I = dq, so Q = I= Kt = Kt 0 t 0 t and V C = Q C = Kt C When C V C = LI, C K t 4 4C = LK t Thus t = LC 000 by Harcourt, Inc. All rights reserved.

60 Chapter 3 Solutions 3.63 Q C = C Q + LI so I = 3Q 4CL The flux through each turn of the coil is where N is the number of turns. Φ B = LI N = Q N 3L C 3.64 Equation 30.6: B = µ 0 NI πr (a) Φ B = BdA = µ 0NI πr hdr b a = µ 0NIh π b a dr r = µ 0NIh π ln b a L = NΦ B I = µ 0 N h π ln b a L = µ 0 (500) (0.000) π ln.0 = 9. µh 0.0 L appx = µ 0 N A π R = µ 0 (500).00 0 4 m π 0.0 = 90.9 µh *3.65 (a) At the center, B = Nµ 0 IR (R + 0 ) 3/ = Nµ 0 I R So the coil creates flux through itself Φ B BAcosθ = Nµ 0 I R πr cos0 = π Nµ 0 IR When the current it carries changes, ε L = N dφ B N π Nµ 0 R = L so L π N µ 0 R π r 3(0.3 m), so r 0.4 m; L π 4π 0 7 T m A 0.4 m =.8 0 7 H ~ 00 nh L R.8 0 7 V s/a 70 V/A =.0 0 9 s ~ ns

Chapter 3 Solutions 6 3.66 (a) If unrolled, the wire forms the diagonal of a 0.00 m (0.0 cm) rectangle as shown. The length of this rectangle is 9.80 m 0.00 m L = ( 9.80 m) ( 0.00 m) L 4.0 + 0.644 The mean circumference of each turn is C = π r, where r = mm is the mean radius of each turn. The number of turns is then: N = L C = ( 9.80 m) ( 0.00 m) = 7 4.0 + 0.644 π 0 3 m ( 0.0 m) π ( 0.3 0 3 m) = 0.5 Ω R = ρl A =.70 0 8 Ω m L = µn A l = 800µ 0 l 0.00 m 800 4π 0 7 L = L C π ( r ) ( 9.80 m) ( 0.00 m) π ( 4.0 + 0.644) 0 3 π m 4.0 + 0.644 0 3 m L = 7.68 0 H = 76.8 mh 3.67 From Ampere s law, the magnetic field at distance r R is found as: B( πr)= µ 0 J( πr I )= µ 0 πr ( πr ), or B = µ 0 Ir πr The magnetic energy per unit length within the wire is then U l = R B ( πrdr) = µ 0 I R 0 µ 0 4πR 4 r 3 dr = µ 0 I R 4 0 4πR 4 4 = µ 0 I 6π This is independent of the radius of the wire. 000 by Harcourt, Inc. All rights reserved.

6 Chapter 3 Solutions 3.68 The primary circuit (containing the battery and solenoid) is an RL circuit with R = 4.0 Ω, and L = µ 0 N A l ( 4π 0 7 ) 500 = 0.0700.00 0 4 = 0.80 H (a) The time for the current to reach 63.% of the maximum value is the time constant of the circuit: τ = L R = 0.80 H = 0.000 s = 0.0 ms 4.0 Ω The solenoid's average back emf is ε L = L I t = L I f 0 t where I f = 0.63 I max = 0.63 V R 60.0 V = 0.63 4.0 Ω =.7 A (d).7 A Thus, ε L = ( 0.80 H) 0.000 s = 37.9 V The average rate of change of flux through each turn of the overwrapped concentric coil is the same as that through a turn on the solenoid: Φ B t 500 0.0700 m = µ 0 n( I)A = 4π 0 7 T ma t (.7 A).00 0 4 m 0.000 s = 3.04 mv The magnitude of the average induced emf in the coil is ε L = N( Φ B t) and magnitude of the average induced current is I = ε L R = N R Φ B t = 80 ( 4.0 Ω 3.04 0 3 V)= 0.04 A = 04 ma 3.69 Left-hand loop: E (I + I )R I R = 0 Outside loop: E (I + I )R L = 0 Eliminating I gives E I R L = 0 This is of the same form as Equation 3.6, so its solution is of the same form as Equation 3.7: But R = R R /( R + R ) and E = R E /( R + R ), so ()= It E ( e RtL ) R E R = ER /(R + R ) R R /(R + R ) = E R Thus I(t)= E ( e Rt L ) R

Chapter 3 Solutions 63 3.70 When switch is closed, steady current I 0 =.0 A. When the switch is opened after being closed a long time, the current in the right loop is I = I 0 e R t L so e Rt L = I 0 I and Rt L = ln I 0 I Therefore, L = = (.00 Ω) ( 0.50 s) ln(.0 A 0.50 A) R t ln I 0 I = 0.0956 H = 95.6 mh 3.7 (a) While steady-state conditions exist, a 9.00 ma flows clockwise around the right loop of the circuit. Immediately after the switch is opened, a 9.00 ma current will flow around the outer loop of the circuit. Applying Kirchhoff s loop rule to this loop gives: +ε 0 [(.00 + 6.00) 0 3 Ω] ( 9.00 0 3 A)= 0 +ε 0 = 7. 0 V with end b at the higher potential After the switch is opened, the current around the outer loop decays as I = I max e Rt L with I max = 9.00 ma, R = 8.00 kω, and L = 0.400 H Thus, when the current has reached a value I =.00 ma, the elapsed time is: t = L R ln I max I = 0.400 H 9.00 8.00 0 3 ln Ω.00 = 7.5 0 5 s = 75. µs 000 by Harcourt, Inc. All rights reserved.

64 Chapter 3 Solutions 3.7 (a) The instant after the switch is closed, the situation is as shown in the circuit diagram of Figure (a). The requested quantities are: I L = 0, I C = ε 0 R, I R = ε 0 R V L = ε 0, V C = 0, V R = ε 0 Q = 0 V C = 0 I C = ε 0/R I L = 0 V L = ε 0 + - I R = ε 0/R V R = ε 0 + - ε 0 Figure (a) After the switch has been closed a long time, the steady-state conditions shown in Figure will exist. The currents and voltages are: I L = 0 V L = 0 + - I R = 0 I L = 0, I C = 0, I R = 0 V L = 0, V C = ε 0, V R = 0 Q = Cε 0 V C = ε 0 V R = 0 + - ε 0 Figure 3.73 When the switch is closed, as shown in Figure (a), the current in the inductor is I :.0 7.50I 0.0 = 0 I = 0.67 A When the switch is opened, the initial current in the inductor remains at 0.67 A. IR = V: (0.67 A)R 80.0 V (a) R 300 Ω Goal Solution To prevent damage from arcing in an electric motor, a discharge resistor is sometimes placed in parallel with the armature. If the motor is suddenly unplugged while running, this resistor limits the voltage that appears across the armature coils. Consider a.0-v dc motor with an armature that has a resistance of 7.50 Ω and an inductance of 450 mh. Assume that the back emf in the armature coils is 0.0 V when the motor is running at normal speed. (The equivalent circuit for the armature is shown in Figure P3.73.) Calculate the maximum resistance R that limits the voltage across the armature to 80.0 V when the motor is unplugged.

Chapter 3 Solutions 65 G : O : We should expect R to be significantly greater than the resistance of the armature coil, for otherwise a large portion of the source current would be diverted through R and much of the total power would be wasted on heating this discharge resistor. When the motor is unplugged, the 0-V back emf will still exist for a short while because the motor s inertia will tend to keep it spinning. Now the circuit is reduced to a simple series loop with an emf, inductor, and two resistors. The current that was flowing through the armature coil must now flow through the discharge resistor, which will create a voltage across R that we wish to limit to 80 V. As time passes, the current will be reduced by the opposing back emf, and as the motor slows down, the back emf will be reduced to zero, and the current will stop. A : The steady-state coil current when the switch is closed is found from applying Kirchhoff's loop rule to the outer loop: +.0 V I( 7.50 Ω) 0.0 V = 0 so We then require that I =.00 V 7.50 Ω = 0.67 A V R = 80.0 V = ( 0.67 A)R so R = V R I = 80.0 V 0.67 A = 300 Ω L : As we expected, this discharge resistance is considerably greater than the coil s resistance. Note that while the motor is running, the discharge resistor turns P = ( V) 300 Ω = 0.48 W of power into heat (or wastes 0.48 W). The source delivers power at the rate of about P = IV = [ 0.67 A + ( V / 300 Ω) ]( V)= 3.68 W, so the discharge resistor wastes about 3% of the total power. For a sense of perspective, this 4-W motor could lift a 40-N weight at a rate of 0. m/s. 3.74 (a) L = µ 0 N A l = ( 4π 0 7 T ma) 000.00 0 4 m M = N Φ = N Φ = N BA = N [ µ 0 ( N l )I ]A I I I I 0.500 m =.5 0 4 H = 5 µh = µ 0 N N A l ( 4π 0 7 T ma) ( 000) ( 00) (.00 0 4 m ) M = 0.500 m =.5 0 5 H = 5. µh ε = M, or I R = M and I = dq = M R Q = M t f R = M I f I i R = M ( 0 I i )= MI i R 0.00 A Q =.5 0 5 H 000 Ω R =.5 0 8 C = 5. nc 000 by Harcourt, Inc. All rights reserved.

66 Chapter 3 Solutions 3.75 (a) It has a magnetic field, and it stores energy, so L = U is non-zero. I Every field line goes through the rectangle between the conductors. Φ = LI so L = Φ I = I w a y=a Bda L = I w a a µ xdy 0 I π y + µ 0 I π w y = I w a µ 0 Ix π y dy = µ 0 x π ln y a Thus L = µ 0 x π ln w a a 3.76 For an RL circuit, I(t) = I max e R L t : I(t) = 0 9 = e R L t R I max L t R L t = 0 9 (3.4 0 8 )(0 9 ) so R max = (.50 yr)(3.6 0 7 s / yr) = 3.97 0 5 Ω (If the ring were of purest copper, of diameter cm, and cross-sectional area mm, its resistance would be at least 0 6 Ω). 3.77 (a) U B = LI = (50.0 H)(50.0 0 3 A) = 6.5 0 0 J Two adjacent turns are parallel wires carrying current in the same direction. Since the loops have such large radius, a one-meter section can be regarded as straight. Then one wire creates a field of This causes a force on the next wire of giving B = µ 0I π r F = IlB sin θ F = Il µ 0 I π r sin90 = µ 0 li π r Solving for the force, F = (4π 0 7 N/A ) (.00 m)(50.0 0 3 A) (π)(0.50 m) = 000 N

Chapter 3 Solutions 67 3.78 P = I( V) I = P V =.00 09 W 00 0 3 V = 5.00 03 A From Ampere s law, B( πr)= µ 0 I enclosed or B = µ 0 I enclosed πr (a) At r = a = 0.000 m, I enclosed = 5.00 0 3 A and ( 4π 0 7 T ma) 5.00 0 3 A B = π 0.000 m = 0.0500 T = 50.0 mt At r = b = 0.0500 m, I enclosed = I = 5.00 0 3 A and ( 4π 0 7 T ma) 5.00 0 3 A B = π 0.0500 m = 0.000 T = 0.0 mt U = udv = r=b r=a [ Br ()] π rldr µ 0 ( 4π 0 7 T ma) 5.00 0 3 A U = 4π = µ 0 I l 4π b a dr r = µ 0 I l 4π ( 000 0 3 m) ln b a 5.00 cm ln.00 cm =.9 06 J =.9 MJ (d) The magnetic field created by the inner conductor exerts a force of repulsion on the current in the outer sheath. The strength of this field, from part, is 0.0 mt. Consider a small rectangular section of the outer cylinder of length l and wih w. It carries a current of 5.00 0 3 w ( A) π 0.0500 m and experiences an outward force The pressure on it is ( F = IlBsinθ = 5.00 03 A)w π 0.0500 m P = F A = F wl = 5.00 03 A sin 90.0 l 0.0 0 3 T ( 0.0 0 3 T) π 0.0500 m = 38 Pa 000 by Harcourt, Inc. All rights reserved.

68 Chapter 3 Solutions *3.79 (a) B = µ 0NI l ( 7 T ma) 400 = 4π 0.0 m (.00 A) =.93 0 3 T (upward) u = B µ 0 = (.93 0 3 T) 4π 0 7 T ma = 3.4 J m 3 N m J = 3.4 N = 3.4 Pa m (d) (e) To produce a downward magnetic field, the surface of the super conductor must carry a clockwise current. The vertical component of the field of the solenoid exerts an inward force on the superconductor. The total horizontal force is zero. Over the top end of the solenoid, its field diverges and has a radially outward horizontal component. This component exerts upward force on the clockwise superconductor current. The total force on the core is upward. You can think of it as a force of repulsion between the solenoid with its north end pointing up, and the core, with its north end pointing down. F = PA = 3.4 Pa π.0 0 m =. 30 0 3 N Note that we have not proven that energy density is pressure. In fact, it is not in some cases; see problem in Chapter.