Numerical Solution of Singular Perturbation Problems Via Deviating Argument and Exponential Fitting

Similar documents
Solution for singularly perturbed problems via cubic spline in tension

Solving Singularly Perturbed Differential Difference Equations via Fitted Method

A Spline based computational simulations for solving selfadjoint singularly perturbed two-point boundary value problems

Maejo International Journal of Science and Technology

1 Introduction We consider a class of singularly perturbed two point singular boundary value problems of the form: k x with boundary conditions

Solution of Singularly Perturbed Differential Difference Equations Using Higher Order Finite Differences

Pathan Mahabub Basha *, Vembu Shanthi

A New Recursive Method for Solving State Equations Using Taylor Series

The Finite Element Method: A Short Introduction

Numerical Simulation of One-Dimensional Wave Equation by Non-Polynomial Quintic Spline

Application of B-Spline to Numerical Solution of a System of Singularly Perturbed Problems

ORDINARY DIFFERENTIAL EQUATIONS EULER S METHOD

Shuai Dong. Isaac Newton. Gottfried Leibniz

ME 501A Seminar in Engineering Analysis Page 1

A new Approach for Solving Linear Ordinary Differential Equations

Initial-value Technique For Singularly Perturbed Two Point Boundary Value Problems Via Cubic Spline

TR/95 February Splines G. H. BEHFOROOZ* & N. PAPAMICHAEL

Lecture 13 APPROXIMATION OF SECOMD ORDER DERIVATIVES

Convexity preserving interpolation by splines of arbitrary degree

NON-CENTRAL 7-POINT FORMULA IN THE METHOD OF LINES FOR PARABOLIC AND BURGERS' EQUATIONS

Solving Fractional Nonlinear Fredholm Integro-differential Equations via Hybrid of Rationalized Haar Functions

Multivariate Ratio Estimator of the Population Total under Stratified Random Sampling

Lecture 2: Numerical Methods for Differentiations and Integrations

Numerical Differentiation

THE STURM-LIOUVILLE EIGENVALUE PROBLEM - A NUMERICAL SOLUTION USING THE CONTROL VOLUME METHOD

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE

TR/28. OCTOBER CUBIC SPLINE INTERPOLATION OF HARMONIC FUNCTIONS BY N. PAPAMICHAEL and J.R. WHITEMAN.

On Pfaff s solution of the Pfaff problem

2.29 Numerical Fluid Mechanics

Positivity Preserving Interpolation by Using

Lecture 26 Finite Differences and Boundary Value Problems

( ) [ ( k) ( k) ( x) ( ) ( ) ( ) [ ] ξ [ ] [ ] [ ] ( )( ) i ( ) ( )( ) 2! ( ) = ( ) 3 Interpolation. Polynomial Approximation.

Singular Two Points Boundary Value Problem

Appendix B. The Finite Difference Scheme

Adaptive Kernel Estimation of the Conditional Quantiles

Consistency & Convergence

Multigrid Methods and Applications in CFD

Numerical Heat and Mass Transfer

Haar wavelet collocation method to solve problems arising in induction motor

Numerical Solutions of a Generalized Nth Order Boundary Value Problems Using Power Series Approximation Method

A Hybrid Variational Iteration Method for Blasius Equation

One-sided finite-difference approximations suitable for use with Richardson extrapolation

Stanford University CS254: Computational Complexity Notes 7 Luca Trevisan January 29, Notes for Lecture 7

Research Article Numerov s Method for a Class of Nonlinear Multipoint Boundary Value Problems

Asymptotics of the Solution of a Boundary Value. Problem for One-Characteristic Differential. Equation Degenerating into a Parabolic Equation

On a nonlinear compactness lemma in L p (0, T ; B).

COMPARISON OF SOME RELIABILITY CHARACTERISTICS BETWEEN REDUNDANT SYSTEMS REQUIRING SUPPORTING UNITS FOR THEIR OPERATIONS

High resolution entropy stable scheme for shallow water equations

Parameter Fitted Scheme for Singularly Perturbed Delay Differential Equations

A Linearized Finite Difference Scheme with Non-uniform Meshes for Semi-linear Parabolic Equation

A Discrete Approach to Continuous Second-Order Boundary Value Problems via Monotone Iterative Techniques

Using T.O.M to Estimate Parameter of distributions that have not Single Exponential Family

Least squares cubic splines without B-splines S.K. Lucas

The Exact Formulation of the Inverse of the Tridiagonal Matrix for Solving the 1D Poisson Equation with the Finite Difference Method

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

A MODIFIED METHOD FOR SOLVING SYSTEM OF NONLINEAR EQUATIONS

The finite element method explicit scheme for a solution of one problem of surface and ground water combined movement

Cubic Trigonometric B-Spline Applied to Linear Two-Point Boundary Value Problems of Order Two

A PROCEDURE FOR SIMULATING THE NONLINEAR CONDUCTION HEAT TRANSFER IN A BODY WITH TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY.

TR/01/89 February An O(h 6 ) cubic spline interpolating procedure for harmonic functions. N. Papamichael and Maria Joana Soares*

Tenth Order Compact Finite Difference Method for Solving Singularly Perturbed 1D Reaction - Diffusion Equations

Transfer Functions. Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: ( ) system

Image classification. Given the bag-of-features representations of images from different classes, how do we learn a model for distinguishing i them?

COMP4630: λ-calculus

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems

Research Article Cubic B-Spline Collocation Method for One-Dimensional Heat and Advection-Diffusion Equations

Polynomial Regression Models

Haar Wavelet Collocation Method for the Numerical Solution of Nonlinear Volterra-Fredholm-Hammerstein Integral Equations

Septic B-Spline Collocation Method for the Numerical Solution of the Modified Equal Width Wave Equation

Solution of Linear System of Equations and Matrix Inversion Gauss Seidel Iteration Method

5 The Laplace Equation in a convex polygon

Group Analysis of Ordinary Differential Equations of the Order n>2

Chapter 2 - The Simple Linear Regression Model S =0. e i is a random error. S β2 β. This is a minimization problem. Solution is a calculus exercise.

Numerical Solution of two dimensional coupled viscous Burgers Equation using the Modified Cubic B-Spline Differential Quadrature Method

SHIFTED JACOBI COLLOCATION METHOD BASED ON OPERATIONAL MATRIX FOR SOLVING THE SYSTEMS OF FREDHOLM AND VOLTERRA INTEGRAL EQUATIONS

ALGORITHM FOR THE CALCULATION OF THE TWO VARIABLES CUBIC SPLINE FUNCTION

Limit Cycle Bifurcations in a Class of Cubic System near a Nilpotent Center *

1 GSW Iterative Techniques for y = Ax

Not-for-Publication Appendix to Optimal Asymptotic Least Aquares Estimation in a Singular Set-up

A Note on the Numerical Solution for Fredholm Integral Equation of the Second Kind with Cauchy kernel

Chapter 3 Differentiation and Integration

PART 8. Partial Differential Equations PDEs

Lecture 12: Discrete Laplacian

Outline. Review Numerical Approach. Schedule for April and May. Review Simple Methods. Review Notation and Order

MMA and GCMMA two methods for nonlinear optimization

Haar Wavelet Based Numerical Solution of Elasto-hydrodynamic Lubrication with Line Contact Problems

Modelli Clamfim Equazioni differenziali 7 ottobre 2013

Irregular vibrations in multi-mass discrete-continuous systems torsionally deformed

NON STANDARD FITTED FINITE DIFFERENCE METHOD FOR SINGULAR PERTURBATION PROBLEMS USING CUBIC SPLINE

NUMERICAL DIFFERENTIATION

Formal solvers of the RT equation

Parallel VLSI CAD Algorithms. Lecture 7 Iterative methods for IC thermal analysis Zhuo Feng

A Local Variational Problem of Second Order for a Class of Optimal Control Problems with Nonsmooth Objective Function

Hongyi Miao, College of Science, Nanjing Forestry University, Nanjing ,China. (Received 20 June 2013, accepted 11 March 2014) I)ϕ (k)

General viscosity iterative method for a sequence of quasi-nonexpansive mappings

DETERMINATION OF TEMPERATURE DISTRIBUTION FOR ANNULAR FINS WITH TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY BY HPM

Lecture 16 Statistical Analysis in Biomaterials Research (Part II)

e i is a random error

Errors for Linear Systems

Chapter 12. Ordinary Differential Equation Boundary Value (BV) Problems

Transcription:

Amercan Journal of Computatonal and Appled Matematcs 0, (): 49-54 DOI: 0.593/j.ajcam.000.09 umercal Soluton of Sngular Perturbaton Problems Va Devatng Argument and Eponental Fttng GBSL. Soujanya, Y.. Reddy, K. Paneendra,* Department Matematcs, atonal Insttute of Tecnology, Warangal, 506004, Inda Department Matematcs, Kakatya Insttute of Tecnology and Scence, Warangal, 50605, Inda Abstract In ts paper, an eponental ftted metod s presented for solvng sngularly perturbed two-pont boundary value problems wt te boundary layer at one end (left or rgt) pont va devatng argument. Te orgnal second order boundary value problem s transformed to frst order dfferental equaton wt a small devatng argument. Ts problem s solved effcently by usng eponental fttng and dscrete nvarant mbeddng metod. Mamum absolute errors of several standard eamples are presented to support te metod. Keywords Sngular Perturbaton Problems, Boundary Layer, Devatng Argument, Lnear Appromaton, Mamum Absolute Errors. Introducton umercal soluton of boundary value problems n sngularly perturbed second-order, generally nonlnear, ordnary dfferental equatons, s an establsed researc area. Many numercal metods ave been proposed for te soluton of sngularly perturbed two pont boundary value problems. It s well known tat te standard centered dfference sceme as order O, but t gves a non-pyscal oscllaton n te numercal soluton wen appled on a coarse mes because of a boundary layer. In order to remove ts non-pyscal oscllaton penomena, t s necessary to use suffcently small step sze compared to, teoretcally. But t s not practcal to use fner mes tan n real applcaton wen s very small. Adaptve metods present one possble approac. Te adaptve metods strve to automatcally concentrate computatonal grds wtn boundary layers, nteror layers, or oter knds of local soluton structures typcal of te sngularly perturbed ODE s. For te analyss of ts type of problems te readers can refer to te books by Bender and Orszag[], O Malley[8], ayfe [7], Doolan[3] and Roos[4]. Bran J. McCartn[] presented eponental ftted scemes for te numercal appromaton of delayed recrutment/ renewal equatons. Fev Erdogan[4] presented an eponentally ftted dfference sceme for sngularly perturbed ntal value problem for lnear frst-order delay dfferental equaton. Moan K. Kadalbajoo, Vkas Gupta[5] presented a bref survey on numercal metods for solvng sngularly * Correspondng autor: kollojupaneendra@yaoo.co.n (K. Paneendra) Publsed onlne at ttp://journal.sapub.org/ajcam Copyrgt 0 Scentfc & Academc Publsng. All Rgts Reserved perturbed problems. atesan and Bawa[6] constructed a ybrd numercal sceme on a pece-wse unform Sskn mes consstng of cubc splne sceme n te boundary layer regons and te classcal fnte dfference sceme n te regular regons, for solvng sngular perturbaton problems. J.I. Ramos[9] presented eponentally-ftted metods on layer-adapted meses based on te freezng of te coeffcents of te dfferental equaton and ntegraton of te resultng equatons subject to contnuty and smootness condtons at nodes. Rao and Kumar[0] presented an eponental B-splne collocaton metod for self-adjont sngularly perturbed boundary value problem and te metod s sown to ave second order unform convergence. Rasdna et al.[] used splne n compresson to develop te numercal metods for sngularly perturbed two-pont boundary-value problem. Tey dscussed te convergence analyss of te metod and sow tat proposed metods are second-order and fourt order accurate and applcable to problems bot n sngular and non-sngular cases. Reddy [] as dscussed te numercal soluton of sngular perturbaton problems va devatng arguments. Reddy and Cakravarty[3] constructed an eponentally ftted fnte dfference metod for solvng sngularly perturbed two-pont boundary value problem. A fttng factor s ntroduced n a trdagonal fnte dfference sceme and s obtaned from te teory of sngular perturbatons. In ts paper, we present an eponental ftted metod for solvng sngularly perturbed two-pont boundary value problems wt te boundary layer at one end (left or rgt) pont va devatng argument. Te orgnal second order boundary value problem s transformed to frst order dfferental equaton wt a small devatng argument. Ts problem s solved effcently by usng eponental fttng and dscrete nvarant mbeddng metod. umercal results and

50 GBSL. Soujanya et al.: umercal Soluton of Sngular Perturbaton Problems Va Devatng Argument and Eponental Fttng mamum absolute errors of several standard eamples are presented to support te metod.. umercal Metod.. Left-end Boundary Layer Consder sngularly perturbed lnear two-pont boundary value problems of te form Ly y ay by = f,0 () wt boundary condtons y ( 0) = α (a) and y () = β (b) were 0 < <<, b(), f() are bounded contnuous functons n (0, ), f() > 0 and αβ, are fnte constants. Furter, we assume tat a M > 0 trougout te nterval [0, ], were M s postve constant. Ts assumpton merely mples tat te boundary layer wll be n te negbourood of = 0. By usng Taylor seres epanson about te devatng argument n te negbourood of te pont, we ave y( ) = y y y y = y y y (3) and consequently, equaton () s replaced by te followng frst order dfferental equaton wt a small devatng argument: y = p( ) y( ) q( ) y( ) r( ), for were (4) p = a b q = a f r = a Te transton from equaton () to equaton (4) s admtted, because of te condton tat s small. ow we dvde te nterval [0, ] nto equal subntervals of mes sze =/ so tat =, = 0,,,,. Here, for consoldatons our deas of te metod, we assume tat a(), b() and f() are constants. Hence, p(), q() and r() are constant. Rearrangng equaton (4) as y qy = py ( ) r q e We ten apply an ntegratng factor, producng (as n[]) d e q y e q = py ( ) r d et, ntegratng from to, we obtan q q q q e y e y = e p y( ) d e r d By makng use of lnear appromaton on [, ], wc we nsert nto te above equaton we ave p ( y ) ( ) q q q e y = e y e p ( ) y q e r r d p ( y ) ( ) q q ( I ) y e y e = d p ( ) y q ( I ) e r r d p q ( ) y = e y y( ) e ( ) d p q ( I ) y( ) e ( ) d q ( I ) e r r d After evaluatng te ntegrals n equaton (5), we get e e r p y = e y y q q q r p ( ) e q q q y e y y y q q q p e e = p e q q y q r e e r e q q q q q q y e e e Let A =, B = q q q q q q Ten, we ave p Ap Bp y = e y A y y y Bp ra r y B Te equaton (6) can be wrtten as a trdagonal system of equatons gven by E y F y G y = H, for =,,, n- (7) were Ap E = Ap Bp F = e Bp G = (5) (6)

Amercan Journal of Computatonal and Appled Matematcs 0, (): 49-54 5 H = ra r B.. Rgt-end Boundary Layer [ ] We assume tat a M< 0trougout te nterval [0, ], were M s negatve constant. Ts assumpton merely mples tat te boundary layer wll be n te negbourood of =. By usng Taylor seres epanson about te devatng argument n te negbourood of te pont, we ave ( ) y y y y y = y y y (8) and consequently, equaton () s replaced by te followng frst order dfferental equaton wt a small devaton argument: for 0 were y = py ( ) qy r, (9) p = a b q = a f r = a Te transton from equaton () to equaton (9) s admtted, because of te condton tat s small. Ts replacement s sgnfcant from te computatonal pont of vew. ow we dvde te nterval [0, ] nto equal subntervals of mes sze =/ so tat =, = 0,,,,. Here, for consoldatons our deas of te metod we assume tat a(), b() and f() are constants. Hence, p(), q() and r() are constant. We ten apply an ntegratng factor n[]) Integratng from q e d e q y e q = py ( ) r d to, we obtan, producng (as q q q q = e y e y e p y( ) d e r d q q q e y e y e p y ( ) = p y ( ) q e r r d p q ( ) p y ( I ) ( q ) e ( ) d q ( ) e r r d y = e y y( ) e ( ) d (0) After evaluatng te ntegrals n equaton (0), we get e e r p y = e y y ( ) q q q r p( ) e q q q p e e y = e y y y q q q p e y y q q q r e e r e q q q q q q e e e Let A =, B = q q q q q q Ten, we ave p Ap y = e y A y y () Bp Bp r A r y y B Te equaton () can be wrtten as a trdagonal system of equatons gven by E y F y G y = H, for =,,, n- () Ap E =e Ap Bp F = e Bp G = were H = [ r A rb ] Te trdagonal system of equatons (7) and () olds for =,,,-, we ave - lnear equatons n te - unknowns y, y,..., y. We assume te matr of ts set of lnear equatons as A. Lemma: for all > 0 and all =/ te matr A s an rreducble and dagonally domnant matr. Proof. Clearly, A s a trdagonal matr. Hence, A s rreducble f ts codagonals contan non-zero elements only. It s easly seen tat te codagonals E, G do not vans for all > 0, > 0 and a R. Hence A s rreducble. Snce E, G do not vans for all > 0, > 0 and a R tese epressons are of constant sgn. Ten obv-

5 GBSL. Soujanya et al.: umercal Soluton of Sngular Perturbaton Problems Va Devatng Argument and Eponental Fttng ously, E > 0, G > 0. ow n eac row of A, te sum of te two off-dagonal elements less tan or equal to te modulus of te dagonal element. Ts proves te dagonal domnant of A. Under tese condtons te dscrete nvarant mbeddng algortm s stable[0]. 3. umercal Eamples To demonstrate te applcablty of te metod, we ave appled t to tree lnear sngular perturbaton problems wt left-end boundary layer and two lnear problems wt rgt-end boundary layer. Tese eamples ave been cosen because tey ave been wdely dscussed n lterature and because eact solutons are avalable for comparson. We ave also present te mamum absolute errors for te problems. Eample. Consder te followng omogeneous sngular perturbaton problem y y y = 0; [0, ] wt y(0) = and y() =. Te eact soluton s gven by m m m m ] m m y = [( e ) e ( e ) e ] / [ e e ] were m = ( 4 ) / and m = ( 4 ) / Te numercal results are gven n tables and for dfferent values of. Table. umercal results of Eample wt 4 = 0, = 0 X umercal soluton Eact soluton 0.00.00000000.00000000 0.0 0.3778764 0.376347 0.0 0.3754575 0.37534787 0.03 0.379636 0.379980 0.04 0.3893558 0.389963 0.05 0.38678369 0.38677775 0.0 0.40665 0.4066064 0.0 0.4493707 0.44936490 0.30 0.4966567 0.4966005 0.40 0.54884988 0.54884455 0.50 0.60656588 0.60656098 0.60 0.670358 0.67034685 0.70 0.74084403 0.74084044 0.80 0.8874977 0.88747 0.90 0.9048479 0.90484646.00.00000000.00000000 Mamum absolute error = 6.68e-003 Table. umercal results of Eample wt 5 = 0, = 0 numercal soluton Eact soluton 0.00.00000000.00000000 0.0 0.37358680 0.3758036 0.0 0.37533508 0.3753477 0.03 0.3790075 0.3790867 0.04 0.389057 0.3889656 0.05 0.38675870 0.38674469 0.0 0.4065877 0.4065733 0.0 0.4493466 0.4493355 0.30 0.4966003 0.49658877 0.40 0.5488748 0.548849 0.50 0.6065455 0.60653369 0.60 0.6703395 0.67037 0.70 0.740889 0.7408044 0.80 0.8873863 0.887339 0.90 0.9048477 0.9048383.00.00000000.00000000 Mamum absolute error =.0064e-003 Eample. ow consder te followng non- omogeneous sngular perturbaton problem y ( ) y y = 0; [0,] wt y(0) = 0 and y() =. Clearly ts problem as a boundary layer at = 0. / ( e e ) Te eact soluton s gven by y() = / e e Te numercal results are presented n tables 3 and 4 for dfferent values of. Table 3. umercal results of Eample wt 4 = 0, = 0 numercal soluton Eact soluton 0.00 0 0 0.0.664888.693447 0.0.664306.6644564 0.03.63798570.63794445 0.04.673949.669647 0.0.45964.459603 0.0.55749.55409 0.30.037769.037570 0.40.83757.8880 0.50.6487354.64877 0.60.4983494.498469 0.70.34986576.34985880 0.80.40695.4075 0.90.0578.05709.00 Mamum absolute error =.704686e-00

Amercan Journal of Computatonal and Appled Matematcs 0, (): 49-54 53 Table 4. umercal results of Eample wt 5 = 0, = 0 numercal soluton Eact soluton 0.00 0 0 0.0.68703.693447 0.0.664597.6644564 0.03.6380476.63794445 0.04.67988.669647 0.05.585804.58570965 0.0.459688.459603 0.0.560938.55409 0.30.038069.037570 0.40.86083.8880 0.50.6487596.64877 0.60.4984764.498469 0.70.34987437.34985880 0.80.45.4075 0.90.05756.05709.00.00000000.00000000 Mamum absolute error = 8.5448e-00 Eample 3. Consder te followng sngular perturbaton problem y y = ; [0,] wt y(0) = 0 and y() =.Te eact soluton s gven by y = e ( ) e ( ). Te numercal results are presented n tables 5 and 6 for dfferent values of. Eample 4. Consder te followng sngular perturbaton problem y y = 0; [0, ] wt y (0) = and y () =0. Clearly, ts problem as a boundary layer at =.e., at te rgt end of te underlyng nterval. Table 5. umercal results of Eample 3 wt 4 = 0, = 0 numercal soluton Eact soluton 0.00 0.00000000 0.00000000 0.0-0.97006697-0.98000000 0.0-0.9599033-0.96000000 0.03-0.9399990-0.94000000 0.04-0.9999999-0.9000000 0.05-0.89999999-0.90000000 0.0-0.80000000-0.80000000 0.0-0.60000000-0.60000000 0.30-0.40000000-0.40000000 0.40-0.0000000-0.0000000 0.50-3.8406e-4 4.44089e-6 0.60 0.99999999 0.00000000 0.70 0.399999999 0.400000000 0.80 0.599999999 0.600000000 0.90 0.800000000 0.800000000.00.000000000.000000000 Mamum absolute error = 9.933046e-003 Table 6. umercal results of Eample 3 wt 5 = 0, = 0 umercal soluton Eact soluton 0.00 0.00000000 0.00000000 0.0-0.9768378-0.98000000 0.0-0.95998999-0.96000000 0.03-0.93999996-0.94000000 0.04-0.9999999-0.9000000 0.05-0.89999999-0.90000000 0.0-0.80000000-0.80000000 0.0-0.60000000-0.60000000 0.30-0.40000000-0.40000000 0.40-0.0000000-0.0000000 0.50-8.3676e-4 4.44089e-6 0.60 0.99999999 0.00000000 0.70 0.399999999 0.400000000 0.80 0.599999999 0.600000000 0.90 0.799999999 0.800000000.00.000000000.000000000 Mamum absolute error = 3.6777e-003 / e y = / e Te eact soluton s gven by Te numercal results are presented n tables 7 and 8 for dfferent values of. Table 7. umercal results of Eample 4 wt 4 = 0, = 0 umercal soluton Eact soluton 0.00.00000000.00 0.0 0.99999999.00 0.0 0.99999999.00 0.30 0.99999999.00 0.40 0.99999999.00 0.50 0.99999999.00 0.60 0.99999999.00 0.70 0.99999999.00 0.80 0.99999999.00 0.90 0.99999999.00 0.95 0.99999999.00 0.96 0.99999999.00 0.97 0.9999990.00 0.98 0.9999033.00 0.99 0.99006697.00.00 0.00000000 0.00 Mamum absolute error = 9.93304e-003 Table 8. umercal results of Eample 4 wt 5 = 0, = 0 umercal soluton Eact soluton 0.00.00000000.00 0.0 0.99999999.00 0.0 0.99999999.00 0.30 0.99999999.00 0.40 0.99999999.00 0.50 0.99999999.00 0.60 0.99999999.00 0.70 0.99999999.00 0.80 0.99999999.00 0.90 0.99999999.00 0.95 0.99999999.00 0.96 0.99999999.00 0.97 0.99999996.00 0.98 0.99998999.00 0.99 0.9968378.00.00 0.00000000 0.00 Mamum absolute error = 3.6777e-003

54 GBSL. Soujanya et al.: umercal Soluton of Sngular Perturbaton Problems Va Devatng Argument and Eponental Fttng Eample 5. : ow we consder te followng sngular perturbaton problem y y ( ) y = 0; [0, ] wt y(0) = ep(-()/); and y() = /e. Table 9. umercal results of Eample 5 wt 4 = 0, = 0 umercal soluton Eact soluton 0.00.00000000.00000000 0.0 0.90483888 0.9048374 0.0 0.8873339 0.8873075 0.30 0.74088 0.74088 0.40 0.6703438 0.6703004 0.50 0.60653556 0.60653065 0.60 0.5488695 0.548863 0.70 0.4965909 0.49658530 0.80 0.44933477 0.4493896 0.90 0.40657557 0.40656965 0.95 0.38674696 0.386740 0.96 0.3889883 0.388988 0.97 0.37908995 0.37908303 0.98 0.3754503 0.375309 0.99 0.384839 0.3757669.00.36787944.36787944 Mamum absolute error = 9.904703e-003 Table 0. umercal results of Eample 5 wt 5 = 0, = 0 umercal soluton Eact soluton 0.00 0.0 0.90484086 0.9048374 0.0 0.8873699 0.8873075 0.30 0.7408669 0.74088 0.40 0.6703306 0.6703004 0.50 0.60654 0.60653065 0.60 0.548849 0.548863 0.70 0.49659855 0.49658530 0.80 0.4493467 0.4493896 0.90 0.4065836 0.40656965 0.95 0.38675503 0.386740 0.96 0.3890690 0.388988 0.97 0.37909708 0.37908303 0.98 0.37533505 0.375309 0.99 0.3747470 0.3757669.00.36787944.36787944 Mamum absolute error = 3.6606e-003 Clearly ts problem as a boundary layer at =. Te eact soluton s gven by ( )( / ) y = e e Te numercal results are presented n tables 9 and 0 for dfferent values of. 4. Dscussons and Conclusons We ave presented a numercal metod for solvng sngularly perturbed two-pont boundary value problems wt te boundary layer at one end (left or rgt) pont va devatng argument and an eponental ftted metod. Te orgnal second order boundary value problem s transformed to frst order dfferental equaton wt a small devatng argument. We obtaned te trdagonal system by usng eponental fttng and lnear appromaton and dscrete nvarant mbeddng metod s used to solve te system. Te metod s very easy to mplement. umercal results and mamum absolute errors of standard eamples cosen from te lterature are presented to support te metod. REFERECES [] Bender, C.M. and Orszag, S.A., Advanced Matematcal Metods for Scentsts and Engneers, McGraw-Hll, ew York, 978. [] Bran J. McCartn, "Eponental fttng of te delayed re-crutment/renewal equaton", Journal of Computatonal and Appled Matematcs, vol.36, 343-356, 00. [3] Doolan, E.P., Mller, J.J.H. and Sclders, W.H.A., Unform umercal Metods for problems wt Intal and Boundary Layers, Boole Press, Dubln, 980. [4] Fevz Erdogan, An Eponentally-ftted metod for sngularly perturbed delay dfferental equatons, Advances n Dfference Equatons, volume 009, Artcle ID 78579, 9 pages, 009. [5] Kadalbajoo, M. K., Vkas Gupta., "A bref survey on numercal metods for solvng sngularly perturbed problems", Appled Matematcs and Computaton, vol.7, 364-376, 00. [6] atesan, S. and Bawa, R.K., "Second-order numercal sceme for sngularly perturbed reacton dffuson robn problems", JAIAM J. umer. Anal. Ind. Appl. Mat. vol., 77 9, 007. [7] ayfe, A.H., Problems n Perturbaton, Wley, ew York,985. [8] O Malley, R.E., Introducton to Sngular Perturbatons,Academc Press, ew York, 974. [9] Ramos, J.I., Eponentally-ftted metods on layer-adapted meses, Appled Matematcs and Computaton, vol. 67,3-330, 005. [0] Rao, S.C.S. and Kumar, M., "Eponental b-splne collocaton metod for self-adjont sngularly perturbed boundary value problems", Appl. umer. Mat. vol. 58, 57 58, 008. [] Rasdna, J, Gasem, M, and Mamood, Z, "Splne approac to te soluton of a sngularly-perturbed boun-dary-value problems", Appl. Mat. Comput. vol. 89, 7 78, 007. [] Reddy, Y.., umercal Treatment of Sngularly Perturbed two pont boundary value problems, P.D. Tess, IIT, Kanpur, Inda, 986. [3] Reddy, Y.. and Pramod Cakravarty, P., "An eponen-tally ftted fnte dfference metod for sngular perturbaton problems", Appl. Mat. Comput. vol. 54, 83 0, 004. [4] Roos, G., Stynes, M and Tobska, L., umercal metods for sngularly perturbed dfferental equatons, Sprnger Verlag, Berln, 996.