BIOLOGY. Chapter 23 Protists

Similar documents
Endosymbiosis & Eukaryotic evolution

1. General Features of Protists

2014 Pearson Education, Inc. 1

Protists 9/11/2017. Endosymbiosis

Pearson Education, Inc.


BIOLOGY - CLUTCH CH.29 - PROTISTS.

Protists. Chapter 28. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

Outline. Diplomonads. Excavata. Parabasalids. Euglenozoans. Diatoms. Golden algae. Brown algae. SAR clade. Dinoflagellates Apicomplexans

Protists. There are NO typical protists. Protist General Characteristics - usually single cell - eukaryotic - paraphyletic group

LECTURE PRESENTATIONS

Protists 2/14/2012. Chapter 28. Overview: Living Small. Concept 28.1: Most eukaryotes are single-celled organisms

Protists. Chapter 28. Overview: Living Small. Concept 28.1: Most eukaryotes are single-celled organisms

BIOLOGY. Protists CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson. Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick

Symbiosis. Symbiosis is a close association between of two or more organisms. Endosymbiosis living within another

Origins of Eukaryotic Diversity Protists Diversity

v How long ago is Earth thought to have formed? v What is thought to have been the first genetic material? v Are we tetrapods?

Protists The Simplest Eukaryotes. Chapter 22 Part 1

PROTISTS James Bier

Chapter 28 / Protists. I. Introduction A. Eukaryotes 1. 1 st eukaryotic organisms 2. most are unicellular 3. considered simple. Part I: Protozoans

Importance of Protists

METHODS OF CLASSIFYING INTO A CERTAIN KINGDOM: 1. prokaryote OR eukaryote 2. single OR multi celled 3. autotroph OR heterotroph

PROTISTA. The paraphyletic, nonfungi, + Even MORE new words to remember!

Protists. Protists. Protist Feeding Strategies. Protist Body Plans. Endosymbiosis. Protist Reproduction 3/3/2011. Eukaryotes Not a monophyletic group

Chapter 22: Protists

Chapter 21 Protists The Simplest Eukaryotes. Cengage Learning 2016

Microbial Diversity. Bacteria Archaea Protista Fungi. Copyright 2011 Pearson Education, Inc.

Key Points PROTISTA. Functional arrangements. General. All of these groups are polyphyletic 9/18/14

On the slides and live specimens find the (and know the function of) nucleus paramylon bodies cytopharynx flagellum eyespot

Amoeba hunts and kills paramecia and stentor. Eukaryotic photosynthetic cells

Eukaryotic photosynthetic cells

Characterizing and Classifying Eukaryotes

Kingdom Protista. Protista

Page # In what ways are protists important? The Protists. A diverse assemblage of eukaryotes that ARENʼT fungi, plants, or animals

Origins of Eukaryotic Diversity Protists Diversity

Protists (Eukarya) Ch Feb 2009 ECOL 182R UofA K. E. Bonine. Life can be divided into 3 domains. 1.5bya. Prokaryotes = bacteria + archaea

Protists (Eukarya) Ch Feb 2009 ECOL 182R UofA K. E. Bonine

CHAPTERS 16 & 17: PROKARYOTES, FUNGI, AND PLANTS Honors Biology 2012 PROKARYOTES PROKARYOTES. Fig Lived alone on Earth for over 1 billion years

Protists: Algae Lecture 5 Spring 2014

Protists: Algae Lecture 5 Spring Protist Phylogeny. Meet the algae. Primary & Secondary Endosymbiosis. Endosymbiosis. Secondary Endosymbiosis

There are two commonly accepted theories for how eukaryotic cells evolved: infolding and endosymbiosis. Infolding

Lab tomorrow.

Kingdom Protista. Mr. Krause Edina Public Schools ISD273 EXIT 2/16/2005

Biology 2. Lab Packet. For. Practical 1

What Are the Protists?

19.1 Diversity of Protists. KEY CONCEPT Kingdom Protista is the most diverse of all the kingdoms.

Continued from Chapter 26.

PROTISTS. Chapter 25 Biology II

Unit 8: Prokaryotes, Protists, & Fungi Guided Reading Questions (60 pts total)

5/10/2013. Protists. Kingdom Protista. Called the Junk Drawer. 3 Subkingdoms of Protists. Protozoans Algae Slime molds

Biological Diversity Lab #1 : Domains Eubacteria and Archaea and Protista

Kingdom Protista. Lab Exercise 20. Introduction. Contents. Objectives

*live organisms* prepared slides. Blepharisma Euglena Paramecium caudatum Phacus Pelomyxa Amoeba proteus Actinosphaerium. Vorticella.

Kingdom Protista. The world of Protists: Animal-like Protists Plant-like Protists Fungus-like Protists

9/24/2013. Bacteria and Archaea. Masters of Adaptation. Archaea. Three domain system: The present tree of life

The Protistans. Includes protozoans and algae All single celled eukaryotes

Chapter 21: Protist Evolution and Diversity

Life Science. Chapter 9 Part 1 Protista

The Origins of Eukaryotic Diversity

Prokaryotes Divide Asexually! Cell Cycles & Life Cycles. Heyer 1. Cell Cycles, Sex, & Ploidy! Cells divide to reproduce! Growth & Development

Chapter 7. Protists. Protists( 원생동물 )

OpenStax-CNX module: m Groups of Protists. OpenStax. Abstract. By the end of this section, you will be able to:

2.3. The Protists. why Protists Are Important

Rhizarians. Forams. Radiolarians. Cercozoans

Protists: Molds Lecture 3 Spring 2014

Protists: Molds Lecture 3 Spring 2014

Observing and Classifying Protozoa

Name Date Class CHAPTER 19

Notes - Microbiology Protista

Chapter 16. The Origin and Evolution of Microbial Life: Prokaryotes and Protists. Lecture by Joan Sharp

20-1 The Kingdom Protista

Chapter 20 Protists Section Review 20-1

Characterizing and Classifying Eukaryotes

What is a Protist? A protist is any organism that is not: a plant, an animal, a fungus or a prokaryote.

Characterizing and Classifying Eukaryotes

The Protists (Ch. 28) I. Taxon: Protista: II. Super Kingdom Excavata Diplomonads Parabasalids and Euglenozoids Kingdom Diplomonadida mitosomes

Kingdom Protista. The following organisms will be examined in the lab today: Volvox, Oedogonium, Spirogyra, Ulva

23 PROTISTS. Chapter Outline. Introduction

Chapter 21 Protists BIOLOGY II

29/11/2012. Characteristics. Protist Diversity. Characteristics. Kingdom Protista. Examples of Plant-like Protists

You and plants have something in common! 1

Biology 2201 Unit 2 Chapter 5

SY 2017/ nd Final Term Revision. Student s Name: Grade: 10A/B. Subject: Biology. Teacher Signature

Biology. Slide 1of 39. End Show. Copyright Pearson Prentice Hall

Page 1. Skill: Knowledge/Comprehension. Skill: Knowledge/Comprehension. Skill: Knowledge/Comprehension

Bacteria, Protists, Fungi, Plants, Animals: Phylogeny and Diversity

Protist Classification the Saga Continues

Chapter 5 - Eukaryotic microorganisms

General Characteristics of Protists

Protist any organism that is NOT a plant, animal, fungi, prokaryote. grouping for organisms that don't fit into other kingdoms

Protists & Fungi. Words to Know: Chapters 19 & 20. Label the paramecium diagram above. (pg. 548)

Biology. Slide 1of 34. End Show. Copyright Pearson Prentice Hall

Finishing Chapters 15 and 16. For Next Week

ZOOLOGY 101 SECTION 2 LECTURE NOTES

Protist any organism that is NOT a plant, animal, fungi, prokaryote. grouping for organisms that don't fit into other kingdoms

Chapter 12B: EUKARYOTES The Protists & Helminths. 1. Protists. Algae Protozoa. 2. Helminths. 1. Protists. A. Algae. B. Protozoa. A.

Bio 134. Ch. 19 Protists

Unit 10: The simplest living beings

Prokaryotes 1. General Characteristics and structures The prokaryotic Cells contain a single circular chromosome, ribosomes (70S), and a cell wall

Practice Test for Exam 1

Transcription:

BIOLOGY Chapter 23 Protists

CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson 28 Protists 2014 Pearson Education, Inc.

Fig. 28-01 PROTISTS Eukaryotic Single, colonial or multicellular Fungal-like, plant-like, animal-like or mixotrophs (combo) Cilia, flagellum/(a) or psuedopodia Worldwide (aquatic or terrestrial) Aerobic or anaerobic 1 µm

Figure 23.8 (a) Paramecium waves hair-like appendages called cilia to propel itself. (b) Amoeba uses lobe-like pseudopodia to anchor itself to a solid surface and pull itself forward. (c) Euglena uses a whip-like tail called a flagellum to propel itself.

Figure 23.1 Protists range from the microscopic, single-celled (a) Acanthocystis turfacea and the (b) ciliate Tetrahymena thermophila, both visualized here using light microscopy, to the enormous, multicellular (c) kelps (Chromalveolata) that extend for hundreds of feet in underwater forests. (credit a: modification of work by Yuiuji Tsukii; credit b: modification of work by Richard Robinson, Public Library of Science; credit c: modification of work by Kip Evans, NOAA; scale-bar data from Matt Russell)

Fig. 28-02-1/ Fig 23.4 Endosymbiosis & Eukaryotic evolution Cyanobacterium Cyanbacterium Primary endosymbiosis Heterotrophic Primary endosymbiosis Heterotrophic eukaryote eukaryote Over the course of evolution, this membrane was lost. Membranes are represented as dark lines in the cell. 1 2 3 Red alga One of these membranes was lost in red and green algal descendants. Green alga Both share similar DNA sequences with photosynthetic cyanobacteria. Red alga Green alga 1 µm

Fig. 28-02-2 Endosymbiosis & Eukaryotic evolution Plastid Dinoflagellates Dinoflagellates Cyanobacterium Cyanobacterium Membranes are represented as dark lines in the cell. Red alga Red alga Secondary endosymbiosis Secondary endosymbiosis Apicomplexans Apicomplexans 1 2 3 Primary endosymbiosis Primary endosymbiosis Stramenopiles Stramenopiles Heterotrophic eukaryote Over One the of course these of evolution, membranes was this membrane lost in red and was lost. green algal descendants. Green alga Green alga Secondary endosymbiosis Secondary endosymbiosis Secondary endosymbiosis Secondary endosymbiosis Plastid Plastid Euglenids Euglenids Chlorarachniophytes 4 membranes

Figure 23.6 Hypothesized process of endosymbiotic The hypothesized process of endosymbiotic events leading to the evolution of chlorarachniophytes is shown. Primary endosymbiotic event: a heterotrophic eukaryote consumed a cyanobacterium Secondary endosymbiotic event: the cell resulting from primary endosymbiosis was consumed by a second cell organelle became a plastid

Fig. 28-03a/Fig23.9 OLD VERSION 5 Supergroups Protists polyphyletic Alveolate s Stramenopiles Diplomonads Parabasalids Euglenozoans Dinoflagellates Apicomplexans Ciliates Diatoms Golden algae Brown algae Oomycetes Chlorarachniophytes Forams Radiolarians Excavata Chromalveolata Rhizaria cytoskeleton Feeding groove excavated amitochondriate alveoli Flagellum(a) Ameboid critters rrna Red algae Chlorophytes Charophyceans Land plants Archaeplastida plastids (2 membranes) photosynthesis Slime molds Gymnamoebas Entamoebas Nucleariids Fungi Unikonta Single flagellum or ambeoid w/o flagellum Choanoflagellates Animals

Figure 28.2 4 Supergroups (Presently) Protists polyphyletic Diplomonads Parabasalids Euglenozoans Excavata Excavata 5 μm Archaeplastida 20 μm 50 μm Stramenopiles Alveolates Rhizarians Amoebozoans Opisthokonts Green algae Diatoms Golden algae Brown algae Dinoflagellates Apicomplexans Ciliates Forams Cercozoans Radiolarians Red algae Chlorophytes Charophytes Land plants Slime molds Tubulinids Entamoebas Nucleariids Fungi Choanoflagellates Animals SAR clade Archaeplastida Unikonta SAR Clade 100 μm 50 μm Unikonta 100 μm

Figure 28.2a 4 Supergroups Protists polyphyletic Stramenopiles Alveolates Rhizarians Diplomonads Parabasalids Euglenozoans Diatoms Golden algae Brown algae Dinoflagellates Apicomplexans Ciliates Forams Cercozoans Radiolarians Excavata SAR clade cytoskeleton Feeding groove excavated amitochondriate DNA sequence 2 endosymbiosis with red algae Some: alveoli Some hairy flagella Some ameboid rrna Green algae Red algae Chlorophytes Charophytes Land plants Archaeplastida plastids (2 membranes) photosynthesis Amoebozoans Opisthokonts Slime molds Tubulinids Entamoebas Nucleariids Fungi Choanoflagellates Animals Unikonta Single flagellum or ambeoid w/o flagellum

Fig. 28-03b Diplomonads Parabasalids Euglenozoans Excavata cytoskeleton feeding groove amitochondriate

Fig. 28-UN1 There were 5 Supergroups Kinetoplastids Euglenids Diplomonads Parabasalids Euglenozoans Excavata Chromalveolata Rhizaria Archaeplastida Unikonta

Figure 28.UN02 Now there s 4 Supergroups Diplomonads Parabasalids Euglenozoans Excavata SAR clade Archaeplastida Unikonta

Diplomonads Figure 23.10 Lack plastids No/reduced mitochondria Relic mitosomes lack ETC Anaerobic environment Multi-flagellated (4) 2 haploid nuclei Many parasitic & free-living Giardia lamblia

Parabasala Large modified golgi parabasal body No/reduced mitochondria Hydrogenosomes (anaerobic) Multiflagellated Endobionts Trichomonas vaginalis Trichonympha

Euglenozoa All biflagellated (2) Crystaline rod Photosynthetic, heterotrophic or mixotrophic Free-living or parasitic Kinetoplastids or Euglenids

Figure 23.11 & 23.32 Euglenozoa 1) Kinetoplastids spiral or crystaline rod in flagella Large mitochondrion Kinetoplastid DNA Worldwide distribution Free living or parasitic Bait & switch surface proteins Trypa soma Africa African sleeping sickness Americas Chaga s disease Trypanosoma

African Sleeping Sickness Trypa osoma gambie se Vector = tsetse fly

Chaga s Disease Trypa osoma cruzi Vector = kissing bug (assassin bug) Americas

Fig. 28-07 Euglenozoa 2) Euglenids Euglena (mixotrophic) Long flagellum Eyespot Short flagellum Contractile vacuole Light detector Nucleus Chloroplast Euglena (LM) 5 µm Plasma membrane Pellicle

Fig. 28-UN2 Older version Dinoflagellates Apicomplexans Ciliates Diatoms Golden algae Brown algae Oomycetes Alveolates Stramenopiles Excavata Chromalveolata Alveoli Flagellum(a) Rhizaria Archaeplastida Unikonta

Figure 28.UN03 Present version Diatoms Golden algae Brown algae Dinoflagellates Apicomplexans Ciliates Forams Cercozoans Radiolarians Stramenopiles Alveolates Rhizarians Excavata SAR clade DNA sequence 2 endosymbiosis with red algae Some: alveoli Some hairy flagella Some ameboid rrna Archaeplastida Unikonta

0.2 µm Alveolates: 1) Dinoflagellates, 2) Apicomplexans & 3) Ciliates Flagellum Alveoli Alveolate Fig. 28-08

Figure 23.12 Dinoflagellates Biflagellated (90 ) Flagellular groove Cellulose plates Freshwater & marine Photosynthetic & mixotrophic Endosymbionts of corals (zooxanthellae/zoochorellae) Red tides Paralytic shellfish poisoning (PSP)

Fig. 28-09 3 µm Flagella

Figure 23.14 Apicomplexan Specialized structure on sporozoite or merozoite stage penetrate host All parasitic Digenetic Sexual & asexual stages Bait & switch surface proteins

Fig. 28-10-1/Fig 23.14 Anopheles Inside human Plasmodium lifecycle Merozoite Liver Liver cell Apex Merozoite (n) Red blood cell Red blood cells Gametocytes (n) Key Haploid (n) Diploid (2n)

Fig. 28-10-2 /Fig 23.14 Inside mosquito Anopheles Inside human Plasmodium lifecycle Merozoite Liver Liver cell Apex Merozoite (n) Red blood cell Zygote (2n) Red blood cells FERTILIZATION Gametes Gametocytes (n) Key Haploid (n) Diploid (2n)

Fig. 28-10-3 /Fig 23.14 Inside mosquito Anopheles Inside human Plasmodium lifecycle Sporozoites (n) Liver Merozoite Liver cell Oocyst Apex MEIOSIS Merozoite (n) Red blood cell Zygote (2n) Red blood cells FERTILIZATION Gametes Gametocytes (n) Key Haploid (n) Diploid (2n)

Figure 23.15 Ciliates Paramecium Cilia 2 nucleic Macronucleus (regulation) Micronucleus (repro) Conjugation & binary fission Vacuoles (food, contractile) Free living, parasitic Blepharisma Stentor

Figure 23.15 Ciliate Diversity

Fig. 28-11 Figure 23.16 Contractile vacuole 50 µm Cilia Oral groove Cell mouth Micronucleus Macronucleus Food vacuoles (a) Feeding, waste removal, and water balance MEIOSIS Compatible mates Diploid micronucleus The original macronucleus disintegrates. Diploid micronucleus Haploid micronucleus MICRONUCLEAR FUSION Key (b) Conjugation and reproduction Conjugation Reproduction

Figure 23.16 The complex process of sexual reproduction in Paramecium creates eight daughter cells from two original cells. Each cell has a macronucleus and a micronucleus. During sexual reproduction, the macronucleus dissolves and is replaced by a micronucleus. (credit micrograph : modification of work by Ian Sutton; scale-bar data from Matt Russell)

3 clades Diatoms Golden algae Brown algae Aquatic algae w/ flagella Thin straw-like flagella Stramenopiles

Fig. 28-12/Fig 23.17 Stramenopile flagella Smooth flagellum Hairy flagellum 5 µm

Fig. 28-13/Fig 23.18 Diatom flagella 3 µm

/Fig 23.18 Freshwater or Marine Unicellular Overlapping silica walls Phytoplankton Diatomaceous earth Diatoms

Fig. 28-03h /Fig 23.18 50 µm

Fig. 28-14 Flagellum Outer container Living cell Chrysophyta = golden algae

Brown Algae Phyaeophyta Fucoxanthin (PS pigment) Marine,cold Blade Alternation of generations Diploid & haploid Analogous structures Stipe Holdfast Fig. 28-15

Fig. 28-16-2 Sporangia 10 cm Mature female gemetophyte (n) Developing sporophyte Zygote (2n) FERTILIZATION Sporophyte (2n) Egg Female Zoospore MEIOSIS Gametophytes (n) Male Hairy flagellum Key Sperm Haploid (n) Diploid (2n)

Rhizarians amoebas Radiolarians, foraminiferans (forams) & cercozoans Psuedopodia (locomotion & feeding) Figure 23.23 Pseudopodia Radiolarian Silica tests Psuedo radiate from central body 200 µm Fig. 28-18

Fig. 28-03i/Fig 23.22 20 µm Foraminiferan (Foram) CaCO 3 tests Porous, multichambered test Psuedo through pores Endosymbiotic algae

Cercozoans Amoeboid & flagellated with threadlike psuedopodia Marine, FW & soil ecosystems Parasitic & predators Figure 28.19

Fig. 28-UN4 Older version Chlorophytes Charophyceans Red algae Green algae Land plants Excavata Chromalveolata Rhizaria Archaeplastida Unikonta

Figure 28.UN04 Current version Chlorophytes Charophytes Red algae Green algae Land plants Excavata SAR clade Archaeplastida Plastids endosymbiosis Unikonta

Fig. 28-19 Red Algae Rhodophyta Phycoerythin Warmer waters 20 cm Bonnemaisonia hamifera 8 mm Dulse (Palmaria palmata) Nori. The red alga Porphyra is the source of a traditional Japanese food. The seaweed is grown on nets in shallow coastal waters. The harvested seaweed is spread on bamboo screens to dry. Paper-thin, glossy sheets of nori make a mineral-rich wrap for rice, seafood, and vegetables in sushi.

Fig. 28-03j/Fig 23.24 20 µm Green Algae Chlorophyta Fresh vs marine Chlorophyll Charophytes Land Plants 50 µm Daughter colony

Fig. 28-21 Green Algae (a) Ulva, or sea lettuce 2 cm (b) Caulerpa, an intertidal chlorophyte

Chromoaveolata SAR supergroup The SAR clade is a diverse monophyletic supergroup 3 major clades stramenopiles, alveolates, & rhizarians highly diverse group DNA similarities Diatom diversity rhizarian in the SAR clade 5 μm Smooth flagellum Hairy flagellum

Figure 28.UN05 Slime molds Tubulinids Entamoebas Nucleariids Fungi Choanoflagellates Animals Excavata SAR clade Archaeplastida Unikonta

Fig. 28-03f Psuedopodia Amoebozoans Opisthokonts Slime molds Gymnamoebas Entamoebas Nucleariids Fungi Choanoflagellates Animals Unikonta Posterior flagellum

Fig. 28-24-3/Fig 23.27 Amoebozoans Plasmodial slime molds 4 cm FERTILIZATION Zygote (2n) Feeding plasmodium Mature plasmodium (preparing to fruit) Flagellated cells (n) Amoeboid cells (n) Germinating spore Spores (n) Mature sporangium Young sporangium MEIOSIS 1 mm Stalk Key Haploid (n) Diploid (2n)

Amoebozoans Figure 23.28 Spores FERTILIZATION (n) Cellular Slime molds 600 µm Emerging amoeba (n) Solitary amoebas (feeding stage) (n) SEXUAL REPRODUCTION MEIOSIS Zygote (2n) Fruiting bodies (n) ASEXUAL REPRODUCTION Aggregated amoebas Amoebas (n) Migrating aggregate 200 µm Fig. 28-25-2 Key Haploid (n) Diploid (2n)

Fig. 28-03l/Fig 23.26 Amoebozoans 100 µm

Figure 28.29/Fig 23.30 Protists play key roles in ecological communities Photosynthetic Protists Producer Other consumers Herbivorous plankton Carnivorous plankton Prokaryotic producers Protistan producers

Figure 28.29 Protists play key roles in ecological communities Endosymbiont

Figure 28.2 Excavata 5 μm Archaeplastida 20 μm 50 μm Diplomonads Parabasalids Euglenozoans Excavata Stramenopiles Alveolates Rhizarians Amoebozoans Opisthokonts Green algae Diatoms Golden algae Brown algae Dinoflagellates Apicomplexans Ciliates Forams Cercozoans Radiolarians Red algae Chlorophytes Charophytes Land plants Slime molds Tubulinids Entamoebas Nucleariids Fungi Choanoflagellates Animals SAR clade Archaeplastida Unikonta SAR Clade 100 μm 50 μm Unikonta 100 μm

Figure 28.UN06a Eukaryote Supergroup Major Groups Key Morphological Characteristics Specific Examples Excavata Diplomonads and parabasalids Modified mitochondria Giardia, Trichomonas Euglenozoans Kinetoplastids Spiral or crystalline rod inside flagella Trypanosoma, Euglena Euglenids SAR Clade Stramenopiles Diatoms Hairy and smooth flagella Phytophthora, Laminaria Golden algae Brown algae Alveolates Dinoflagellates Apicomplexans Membrane-enclosed sacs (alveoli) beneath plasma membrane Pfiesteria, Plasmodium, Paramecium Ciliates Rhizarians Radiolarians Amoebas with threadlike pseudopodia Globigerina Forams Cercozoans

Figure 28.UN06b Eukaryote Supergroup Major Groups Key Morphological Characteristics Specific Examples Archaeplastida Red algae Phycoerythrin (photosynthetic pigment) Porphyra Green algae Plant-type chloroplasts Chlamydomonas, Ulva Land plants (See Chapters 29 and 30.) Mosses, ferns, conifers, flowering plants Unikonta Amoebozoans Slime molds Tubulinids Amoebas with lobeshaped or tube-shaped pseudopodia Amoeba, Dictyostelium Entamoebas Opisthokonts (Highly variable; see Chapters 31 34.) Choanoflagellates, nucleariids, animals, fungi

If the mitochondria and chloroplasts in eukaryotic cells resulted from endosymbiosis, what features might we expect these organelles to contain? A. a plasma membrane, DNA, and ribosomes B. a plasma membrane, nucleus, and ribosomes C. nucleus, DNA, and ribosomes D. a plasma membrane, nucleus, and cilia E. nucleus, ribosomes, and cilia

Trypanosoma, a kinetoplastid, is the causative agent of a) HIV/AIDS b) Malaria c) Giardiasis d) Trichomoniasis e) Sleeping sickness

Which of the following most likely arose from endosymbiosis? A. nuclear membrane and Golgi apparatus B. ER and chloroplasts C. chloroplasts and mitochondria D. mitochondria and Golgi apparatus