Assignment # (1.0 %), 5.2 (0.6 %), 5.3 (1.0 %), 5.5 (0.4 %), 5.8 (1.0 %), 5.9 (0.4 %), 5.10 (0.6 %)

Similar documents
Quantitative Model of Unilluminated Diode part II. G.R. Tynan UC San Diego MAE 119 Lecture Notes

Quantitative Model of PV Cells The Illuminated Diode. G.R. Tynan UC San Diego MAE 119 Lecture Notes

Physics 43 HW #9 Chapter 40 Key

The pn junction: 2 Current vs Voltage (IV) characteristics

Optoelectronics EE/OPE 451, OPT 444 Fall 2009 Section 1: T/Th 9:30-10:55 PM

Compton Scattering. There are three related processes. Thomson scattering (classical) Rayleigh scattering (coherent)

Optoelectronics EE/OPE 451, OPT 444 Fall 2009 Section 1: T/Th 9:30 10:55 PM

dy 1. If fx ( ) is continuous at x = 3, then 13. If y x ) for x 0, then f (g(x)) = g (f (x)) when x = a. ½ b. ½ c. 1 b. 4x a. 3 b. 3 c.

Dual Nature of Matter and Radiation

Lecture 18 - Semiconductors - continued

Characteristics of Gliding Arc Discharge Plasma

Why is a E&M nature of light not sufficient to explain experiments?

MAT 270 Test 3 Review (Spring 2012) Test on April 11 in PSA 21 Section 3.7 Implicit Derivative

High Energy Physics. Lecture 5 The Passage of Particles through Matter

Trigonometric functions

2. Laser physics - basics

Exam 1. It is important that you clearly show your work and mark the final answer clearly, closed book, closed notes, no calculator.

Status of LAr TPC R&D (2) 2014/Dec./23 Neutrino frontier workshop 2014 Ryosuke Sasaki (Iwate U.)

The Quantum Efficiency and Thermal Emittance of Metal Cathodes

Math 34A. Final Review

λ = 2L n Electronic structure of metals = 3 = 2a Free electron model Many metals have an unpaired s-electron that is largely free

IXBT22N300HV IXBH22N300HV

0WAVE PROPAGATION IN MATERIAL SPACE

The failure of the classical mechanics

SCALING OF SYNCHROTRON RADIATION WITH MULTIPOLE ORDER. J. C. Sprott

Extraction of Doping Density Distributions from C-V Curves

Chapter 30: Quantum Physics

Continuous probability distributions

Supplementary Materials

Optics and Non-Linear Optics I Non-linear Optics Tutorial Sheet November 2007

PHY 410. Final Examination, Spring May 4, 2009 (5:45-7:45 p.m.)

Definition1: The ratio of the radiation intensity in a given direction from the antenna to the radiation intensity averaged over all directions.

2008 AP Calculus BC Multiple Choice Exam

PHYS ,Fall 05, Term Exam #1, Oct., 12, 2005

Lecture Outline. Skin Depth Power Flow 8/7/2018. EE 4347 Applied Electromagnetics. Topic 3e

Chapter 6 Current and Resistance

3 Minority carrier profiles (the hyperbolic functions) Consider a

1973 AP Calculus AB: Section I

Energy Bands, Basics of Transports and Optical Processes in Semiconductors

is an appropriate single phase forced convection heat transfer coefficient (e.g. Weisman), and h

Radiation Physics Laboratory - Complementary Exercise Set MeBiom 2016/2017

Lecture #15. Bipolar Junction Transistors (BJTs)

Atomic Physics. Final Mon. May 12, 12:25-2:25, Ingraham B10 Get prepared for the Final!

Electromagnetism Physics 15b

22/ Breakdown of the Born-Oppenheimer approximation. Selection rules for rotational-vibrational transitions. P, R branches.

AP Calculus Multiple-Choice Question Collection

1.2 Faraday s law A changing magnetic field induces an electric field. Their relation is given by:

Minimum Spanning Trees

Quantum transport in 2D

Chapter 6: Polarization and Crystal Optics

G D S. Drain-Source Voltage 30 V Gate-Source Voltage. at T =100 C Continuous Drain Current 3

Voltage, Current, Power, Series Resistance, Parallel Resistance, and Diodes

Evaluation of temperature characteri high-efficiency InGaP/InGaAs/Ge trip solar cells under concentration

Electrochemistry L E O

Principles of Humidity Dalton s law

orbiting electron turns out to be wrong even though it Unfortunately, the classical visualization of the

IXTT3N200P3HV IXTH3N200P3HV

G D S. Drain-Source Voltage 60 V Gate-Source Voltage + 20 V. at T =100 C Continuous Drain Current 3. Linear Derating Factor 0.

Solution: APPM 1360 Final (150 pts) Spring (60 pts total) The following parts are not related, justify your answers:

3-2-1 ANN Architecture

de/dx Effectively all charged particles except electrons

In this lecture... Subsonic and supersonic nozzles Working of these nozzles Performance parameters for nozzles

Case Study 1 PHA 5127 Fall 2006 Revised 9/19/06

Seebeck and Peltier Effects

ELECTROMAGNETIC INDUCTION CHAPTER - 38

Carriers Concentration in Semiconductors - VI. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India

Precise Masses of particles

ECE 344 Microwave Fundamentals

Elements of Statistical Thermodynamics

Chapter 4. Photodetectors

PLASMA PHYSICS VIII. PROCESSING PLASMAS

PH2200 Practice Final Exam Spring 2004

An optical leaky wave antenna with Si perturbations inside a resonator for enhanced optical control of the radiation

Where k is either given or determined from the data and c is an arbitrary constant.

NARAYANA I I T / P M T A C A D E M Y. C o m m o n P r a c t i c e T e s t 1 6 XII STD BATCHES [CF] Date: PHYSIS HEMISTRY MTHEMTIS

1997 AP Calculus AB: Section I, Part A

Random Access Techniques: ALOHA (cont.)

Contemporary, atomic, nuclear, and particle physics

The following information relates to Questions 1 to 4:

AP Calculus BC AP Exam Problems Chapters 1 3

Ch. 24 Molecular Reaction Dynamics 1. Collision Theory

University of Illinois at Chicago Department of Physics. Thermodynamics & Statistical Mechanics Qualifying Examination

Solid State Theory Physics 545 Band Theory III

Mathematics. Complex Number rectangular form. Quadratic equation. Quadratic equation. Complex number Functions: sinusoids. Differentiation Integration

The influence of electron trap on photoelectron decay behavior in silver halide

Collisionless anisotropic electron heating and turbulent transport in coronal flare loops

SAFE HANDS & IIT-ian's PACE EDT-15 (JEE) SOLUTIONS

On the Hamiltonian of a Multi-Electron Atom

7.5 Design of Lasers Design of a 1.55 m Laser-Level I Design of an InGaAs-GaAs 980nm Laser-Level 2 323

Sec 2.3 Modeling with First Order Equations

DIELECTRIC AND MAGNETIC PROPERTIES OF MATERIALS

IYPT 2000 Problem No. 3 PLASMA

Limited-aperture CSP gathers used for AVO analysis

Problem Set #2 Due: Friday April 20, 2018 at 5 PM.

Quasi-Classical States of the Simple Harmonic Oscillator

IVE(TY) Department of Engineering E&T2520 Electrical Machines 1 Miscellaneous Exercises

NTHU ESS5850 Micro System Design F. G. Tseng Fall/2016, 7-2, p1. Lecture 7-2 MOSIS/SCNA Design Example- Piezoresistive type Accelerometer II

The van der Waals interaction 1 D. E. Soper 2 University of Oregon 20 April 2012

1997 AP Calculus AB: Section I, Part A

Answer Homework 5 PHA5127 Fall 1999 Jeff Stark

Transcription:

ELEC4/1-1 Assignmnt 4 1 Assignmnt #4..1 (1. %),. (.6 %),.3 (1. %),. (.4 %),.8 (1. %),.9 (.4 %),. (.6 %).1. Band gap and potodtction. a) a) Dtrmin t maximum valu of t nrgy gap (bandgap) wic a smiconductor, usd as a potodtctor, can av if it is to b snsitiv to yllow ligt (6 nm). b) A potodtctor wos ara is ² cm² is irradiatd wit yllow ligt wos intnsity is mw cm ². Assuming tat ac poton gnrats on lctron-ol pair (EHP), calculat t numbr of EHPs gnratd pr scond. c) From t known nrgy gap of t smiconductor GaAs (E g 1.4 V), calculat t primary wavlngt of potons mittd from tis crystal as a rsult of lctron-ol rcombination. s tis wavlngt in t visibl? d) Will a silicon potodtctor b snsitiv to t radiation from a GaAs lasr? Wy? Solution. E E c λ 34.66 3 9 6 8 6 19 3.313 J or.7 V b) p # of EHP gnratd pr scond # of incidnt potons pr scond wr p / is # of lctrons pr scond and P₀/ν is # potons pr scond 3 P ( ) W 14 1 Trfor, # of EHP gnratd pr scond 3. s 19 ν (3.313 ) J P ν

ELEC4/1-1 Assignmnt 4 c) c λ E 1.4.873 µ m tis is infrard ligt and it is not in visibl rgion. 1.4 d) for Si, E g 1.1 V and for GaAs, E g 1.4 V corrsponding cut-off wavlngt for Si is λ cut off c E g 1.4 1.7 µm 1.1 T cut-off wavlngt of GaAs is sortr (873 nm) tan cut-off wavlngt of Si (1.7 μm); tus, Si potodtctor will b snsitiv to t radiation from a GaAs lasr. n otr words, t bandgap of t silicon is smallr tan it is in GaAs and mittd potons from lasr (GaAs) will av igr nrgy tan silicon s nrgy bandgap. Consquntly, potons will rsult in gnration of EHP in silicon potodtctor... Absorption cofficint. a) f d is t ticknss of a potodtctor matrial, ₒ is t intnsity of t incoming radiation, sow tat t numbr of potons absorbd pr unit volum of sampl is n p [ 1 xp( αd )] dv b) Wat is t ticknss of a G and n.3 Ga.47 As crystal layr tat is ndd for absorbing 9% of t incidnt radiation at 1. μm? c) Suppos tat ac absorbd poton librats on lctron (or lctron ol pair) in a unity quantum fficincy potodtctor and tat t potognratd lctrons ar immdiatly collctd. Tus, t rat of carg collction is limitd by rat of potognration. Wat is t xtrnal potocurrnt dnsity for t potodtctors in (b) if t incidnt radiation is μw mm ²?

ELEC4/1-1 Assignmnt 4 3 1 8 4 3 1 Poton nrgy (V).9.8.7 1 7 G n.7 Ga.3 As.64 P.36 1 6 α (m -1 ) Si GaAs np n.3 Ga.47 As 1 a-si:h 1 4 1 3..4.6.8 1. 1. 1.4 1.6 1.8 Wavlngt (µm) Absorption cofficint (α) vs. wavlngt (λ) for various smiconductors (Data slctivly collctd and combind from various sourcs.) Figur.3. S. O. Kasap Optolctronics and Potonics Solution. a) lt ₀ is incoming radiation wic is rprsntd by nrgy flowing pr unit ara pr scond and ₀[1-xp(-αd)] is t absorbd intnsity. Poton flux is t numbr of potons arriving pr unit ara pr unit scond, P₀/(νAra)₀/ν. So, absorbd poton flux pr unit ara is # of potons absorbd pr volum [ 1 xp( αd )]. ν [ 1 xp( αd )] dν

ELEC4/1-1 Assignmnt 4 4 b) from Fig..3 α 6. ⁵ m ¹ is t absorption cofficint for G at 1. μm incidnt radiation ( d ) xp( αd ).1 xp( αd ).1 ln.1 d α ln.1 d 6. 3.84 µ m from Fig..3 α 7. ⁵ m ¹ is t absorption cofficint for n.3 Ga.47 As at 1. μm incidnt radiation ( d ) xp( αd ).1 xp( αd ).1 c) ln.1 d α ln.1 d 7. 3.7 µ m givn η QE 1, t rat of carg collction is limitd by rat of potognration, and ₀ μw/mm² W/m² ( 1 xp( αd )) p P / ara ν ν ν ara J J p p [ 1 xp( αd )] p.9 λ ara ν c 19 1.6.9 1. 8.663 A/m 34 8 6.66 3 or.866 A/cm T rflction of t ligt from t surfac of t potodtctor is nglctd. Assumd tat t anti-rflctiv coating as fficincy %..3. G Potodiod. Considr a commrcial G pn junction potodiod wic as t rsponsivity sown in Figur.. ts potosnsitiv ara is.8 mm². t is usd undr a

ELEC4/1-1 Assignmnt 4 rvrs bias of V wn t dark currnt is.3 μa and t junction capacitanc is 4 pf. T ris tim of t potodiod is. ns. a) Calculat its quantum fficincy at 8, 13 and 1 nm. b) Wat is t intnsity of ligt at 1. μm tat givs a potocurrnt qual to t dark currnt? c) Wat would b t ffct of lowring t tmpratur on t rsponsivity curv? d) Givn tat t dark currnt is in t rang of microamprs, wat would b t advantag in rducing t tmpratur? ) Suppos tat t potodiod is usd wit a Ω rsistanc to sampl t potocurrnt. Wat limits t spd of rspons? Rsponsivity(A/W).8.7.6..4.3..1. 1 1. Wavlngt(µm) T rsponsivity of a commrcial G pn junction potodiod 1999 S.O. Kasap, Optolctronics (Prntic Hall) Figur.. S. O. Kasap Optolctronics and Potonics

ELEC4/1-1 Assignmnt 4 6 Solution. a) ara.8 mm² 8. ⁹ m² η QE P R P p p / / ν η Rν EQ cr λ Wavlngt, nm 8 13 1 Rsponsivity, A/W.6.8.7 η QE, % 38..43 7.71 b) p d.3 μa c) P p / R.3 /.7.4 W or.4 µ P.4 ara 8. 9. W/m or. mw/cm T nrgy band gap is incrasing wit t dcrasing of t tmpratur; consquntly, t cut-off wavlngt is dcrasing as tmpratur is dcrasing. So, t igr poton nrgy is ndd to initiat poton absorption. For instanc, t curvs rprsnting t rlationsip btwn absorption cofficint and wavlngt dmonstratd in Figur.3 will b siftd to t lft, wn tmpratur is dcrasd. Hnc, t sam absorption cofficint for a givn smiconductor will b at lowr wavlngt and at igr poton nrgy wn tmpratur is dcrasd. T cang in t absorption cofficint attributabl to t variations in tmpratur mans tat t optical powr absorbd in t dpltion rgion and t quantum fficincy vary wit tmpratur. T pak of t rsponsivity in Figur. will mov to t lft, to t lowr valus of t wavlngt, wit dcrasing W

ELEC4/1-1 Assignmnt 4 7 tmpratur, sinc t amount of t optical powr absorbd in dpltion rgion incrass wit t dcrasing in tmpratur valu. d) Dark currnt is proportional to xp(-e g /k B T), trfor, it will rducd if t tmpratur will b dcrasd. T advantag is t improvmnt of SNR. ) tim constant limitation RC Ω 4 pf.4 ns T RC constant is comparabl to t ris tim,. ns. Trfor, t spd of t rspons dpnds on bot t ris tim and RC constant.. ngaas pin Potodiods. Considr a commrcial ngaas pin potodiod wos rsponsivity is sown in Figur.. ts dark currnt is na. a) Wat optical powr at a wavlngt of 1. μm would giv a potocurrnt tat is twic t dark currnt? Wat is t QE of t potodtctor at 1. μm? b) Wat would b t potocurrnt if t incidnt powr in (a) was at 1.3 μm? Wat is t QE at 1.3 μm opration?

ELEC4/1-1 Assignmnt 4 8 Figur.. S. O. Kasap Optolctronics and Potonics a) Rsponsivity(A/W) 1.8.6.4. 8 1 14 16 18 Wavlngt(nm) T rsponsivity of an ngaas pin potodiod 1999 S.O. Kasap, Optolctronics (Prntic Hall) Solution. η QE R P P p p R.87 from Figur. R cr 6.66 λ 1.6 dark 34.87 9 8 3.87 9 1 19 11.49 nw.6973or 7. % From t dimnsional idntitis: [ p ] AC/s, [P₀] W J/s, [R] A/W C/J So, rsponsivity is t carg collctd pr unit incidnt nrgy b) for λ 1.3 μm R.8 A/W from Figur.

ELEC4/1-1 Assignmnt 4 9 p P 11.49 nw R from part (a) p 9 P R 11.49.8 9.4 na η QE cr 6.66 λ 1.6 19 34 8 3.8.784 or 78.4 % 6 1.3.8. Transint potocurrnts in a pin potodiod. Considr a rvrs biasd Si pin potodiod as sown in Figur.3. t is appropriatly rvrs biasd so tat t fild in t dpltion rgion (i-si layr) EV r /W is t saturation fild. Tus, potognratd lctrons and ols in tis layr drift at saturation vlocitis v d and v d. Assum tat t fild E is uniform and tat t ticknss of t p+ is ngligibl. A vry sort ligt puls (infinitsimally sort) potognrats EHPs in t dpltion layr as sown in Figur.3 wic rsults in an xponntially dcaying EHP concntrations across W. Figur.3 sows t potognratd lctron concntration at tim t and also at a latr tim t wn t lctrons av driftd a distanc x v d t. Tos tat rac t back lctrod B bcom collctd. T lctron distribution sifts at a constant vlocity until t initial lctrons at A rac B wic rprsnts t longst transit tim τ W/v d. Similar argumnt apply to ols but ty drift in t opposit dirction and tir transit tim τ W/v d wr v d is tir saturation vlocity. T potocurrnt dnsity at any instant is p ( t) + j( t) Nvd Nvd j j + wr N and N ar t ovrall lctron and ol concntration in t sampl at tim t. Assum for convninc tat t cross sctional ara A 1 (drivations blow ar not affctd as w ar intrstd in t potocurrnt dnsitis). a) Sktc t ol distribution at a tim t wr τ > t > and τ ol drift tim W/v d. b) T lctron concntration distribution n(x) at tim t corrsponds to tat at t siftd by v d t. Tus t total lctrons in W is proportional to intgrating tis distribution n(x) from A at x v d t to B at x W.

ELEC4/1-1 Assignmnt 4 Givn n(x) n₀xp(-αx) at t, wr n₀ is t lctron concntration at x at t w av W Total numbr of lctrons at tim t n xp[ α( x v t) ] dx and Total numbr lctronsat tim t N Volum Tn N W ( t) n xp[ ( x v t) ] W n t α d dx 1 xp αw 1 W τ 1 vdt v wr N () is t initial ovrall lctron concntration at tim t, tat is, 1 W n N( ) n ( x) dx [ ( W )] W xp α 1 xp α Wα W not tat n₀ dpnds on t intnsity of t ligt puls so tat n₀. Sow tat for ols, n ( ) ( ) xp αw t N xp 1 t αw 1 Wα τ c) Givn W 4 μm, α ⁴ m ¹, v d ⁵ m/s, v d.8 ⁵ m/s, n₀ ¹³ cm ³, calculat t lctron and ol transit tims, sktc t potocurrnt dnsitis j (t) and j (t) and nc j p (t) as a function of tim, and calculat t initial potocurrnt. Wat is your conclusion? d t d

ELEC4/1-1 Assignmnt 4 11 Potognratd lctron concntration xp( αx) at tim t v d A W B x υ > E g E + i p R Figur.3. S. O. Kasap Optolctronics and Potonics V r An infinitsimally sort ligt puls is absorbd trougout t dpltion layr and crats an EHP concntration tat dcays xponntially 1999 S.O. Kasap, Optolctronics (Prntic Hall) a) Solution. T ol distribution is rsmbl to t lctron distribution as it is sown in Figur.3. An infinitsimally sort ligt puls is absorbd trougout t dpltion layr and crats an EHP concntration tat dcays xponntially.

ELEC4/1-1 Assignmnt 4 1 b) N N W ( ) vdt t n xp[ α( x + v t) ] dx [ xp( αv t) xp( αw )] ( t) 1 W n xp Wα ( αw ) n d Wα t xp αw 1 1 τ d c) τ W / v τ W / v d d 4 4.8 6 6 4 ps ps At tim t, N () N (), n₀ ¹³ cm ³ ⁷ m ³ N N n Wα ( ) [ 1 xp( αw )] 19 4 ( ) [ 1 xp( 4 )] 4 T initial currnts ar 4 4.33 18 m -3 or 4.3 1 cm -3 j ( ) N ( ) v d 1.6 19 4.3 18 6.9 4 A/m or 6.9 A/cm or 69 ma/mm 19 18 4 j( ) N( ) vd 1.6 4.3.8. A/m t total initial potocurrnt is j ()+j () 69+ 14 ma/mm² T individual transint potocurrnts ar givn by j n v Wα t τ or. A/cm ( ) ( ) d t N 1 xp α 1 t vd W for t < τ or ma/mm j ( t) N ( t) v d n v d xp Wα ( αw ) t xp αw 1 1 τ for t < τ T rspons is dtrmind by t slowst transint tim. Tr is a kink in t potocurrnt wavform wn all t lctrons av bn swpt out at τ 4 ns.

ELEC4/1-1 Assignmnt 4 13 14 x 4 Potocurrnt dnsity 1 Potocurrnt dnsity (A/m ) 8 6 4 j (t) j (t) j t (t) lctrons Total potocurrnt dnsity ols 1 3 4 6 Tim (sc) x - τ τ.9. Fibr attnuation and ngaas pin Potodiod. Considr t commrcial ngaas pin potodiod wos rsponsivity is sown in Figur.. Tis is usd in a rcivr circuit tat nds a minimum of na potocurrnt for a discrnibl output signal (accptabl signal to nois ratio for t customr). Suppos tat t ngaas pin PD is usd at 1.3 μm opration wit a singl mod fibr wos attnuation is.3 db km ¹. f t lasr diod mittr can launc at most mw of powr into t fibr, wat is t maximum distanc for t communication witout a rpatr? Solution. f p na, R.81 A/W at 1.3 μm wavlngt from Figur. 9 p 9 Powr absorbd by potodiod P 6.173 W R.81

ELEC4/1-1 Assignmnt 4 14 3 in P out 9 6.173 T attnuation loss is log ( P / ) log. db From attnuation cofficint α.3 db/km T maximum distanc for t communication witout a rpatr, L, is givn as attnuation loss. L 17.444 km α.3.. Potoconductiv dtctor. An n-typ Si potodtctor as a lngt L μm and a ol liftim of 1 μs. T applid bias to t potoconductor is V. a) a) Wat ar t transit tims, t and t, of an lctron and a ol across L? Wat is t potoconductiv gain? b) t sould b apparnt tat as lctrons ar muc fastr tan ols, a potognratd lctron lavs t potoconductor vry quickly. Tis lavs bind a drifting ol and trfor a positiv carg in t smiconductor. Scondary (i.. additional lctrons) tn flow into t potoconductor to maintain nutrality in t sampl and t currnt contributs to flow. Ts vnts will continu until t ol as disappard by rcombination, wic taks on avrag a tim τ. Tus mor cargs flow troug t contact pr unit tim tan cargs actually potognratd pr unit tim. Wat will appn if t contacts ar not omic, i.. ty ar not injcting? c) Wat can you say about t product σ and t spd of rspons wic is proportional to 1/τ. Solution. from givn lngt and applid voltag EV/L V/ μm ⁵ V/m 1 1 1 1 from t insid covr of t txtbook: µ 13 cm V s, 4 cm V s µ T transit tims of an lctron and a ol across L is givn

ELEC4/1-1 Assignmnt 4 1 t t L 4 µ E 13 L 4 µ E 4 7.41 ns. ns Anotr way to solv for transit tims of an lctron and ol across L in Si is by using Figur.7: v 1.3 ⁴ m/s at E ⁵ V/m and v 4. ³ m/s t t L v L v 1.3 4 4 4. 4 3 7.69 ns. ns Potoconductiv gain is Rat of lctron flow in xtrnal circuit τ G Rat of lctron gnration by ligt absorption 1 G ( 13 + 4) 4 18 ( µ + µ ) b) if t contacts ar not omic, scondary lctrons cannot flow into t potoconductor to maintain nutrality. So, only t potognratd cargs can flow troug t xtrnal circuit; no xcss carg can flow and w will not gt potoconductiv gain. f t contacts cannot injct carrirs, tn tr will b no potocurrnt gain, G 1. c) cang in t conductivity or potoconductivity is ηλτ σ cd ( µ + µ ) T spd of rspons is invrsly proportional to t rcombination tim of t minority carrirs, τ. For instanc, if t ligt is turnd off, it will tak τ sconds for t xcss carrirs to disappar by rcombination. Trfor, t product of σ and t spd of rspons is proportional to ηλ σ 1 τ cd ( µ + µ ) wic is constant for a givn dvic gomtry and ligt intnsity. L E