NUCLEAR FORCES. Historical perspective

Similar documents
Nuclear Forces - Lecture 1 - R. Machleidt University of Idaho

Physics 4213/5213 Lecture 1

The Research Overview and Historical Review of. Nuclear Forces and Nuclear Structure

The theory of nuclear forces: Is the never-ending ending story coming to an end? R. Machleidt University of Idaho

Nucleon Nucleon Forces and Mesons

Nuclear Forces - Lecture 1 -

Nuclear Forces - Lecture 6 -

1 Nucleon-Nucleon Scattering

Lesson 5 The Shell Model

The SU(3) Group SU(3) and Mesons Contents Quarks and Anti-quarks SU(3) and Baryons Masses and Symmetry Breaking Gell-Mann Okubo Mass Formulae Quark-Mo

Hadron Physics & Quantum Chromodynamics Adnan Bashir, IFM, UMSNH, Mexico August 2013 Hermosillo Sonora

Evidence for the Strong Interaction

Fundamental Forces. David Morrissey. Key Concepts, March 15, 2013

Overview. The quest of Particle Physics research is to understand the fundamental particles of nature and their interactions.

FUNDAMENTAL PARTICLES CLASSIFICATION! BOSONS! QUARKS! FERMIONS! Gauge Bosons! Fermions! Strange and Charm! Top and Bottom! Up and Down!

4 November Master 2 APIM. Le problème à N corps nucléaire: structure nucléaire

FACULTY OF SCIENCE. High Energy Physics. WINTHROP PROFESSOR IAN MCARTHUR and ADJUNCT/PROFESSOR JACKIE DAVIDSON

1897 J.J. Thompson discovers the electron

Particle Physics Outline the concepts of particle production and annihilation and apply the conservation laws to these processes.

Most of Modern Physics today is concerned with the extremes of matter:

Particle Physics. All science is either physics or stamp collecting and this from a 1908 Nobel laureate in Chemistry

The symmetries of QCD (and consequences)

1 Introduction. 1.1 The Standard Model of particle physics The fundamental particles

Most of Modern Physics today is concerned with the extremes of matter:

PHL424: 4 fundamental forces in nature

Physics 228 Today: April 22, 2012 Ch. 43 Nuclear Physics. Website: Sakai 01:750:228 or

3. Introductory Nuclear Physics 1; The Liquid Drop Model

Introductory Nuclear Physics. Glatzmaier and Krumholz 7 Prialnik 4 Pols 6 Clayton 4.1, 4.4

Coupling of Angular Momenta Isospin Nucleon-Nucleon Interaction

The Electro-Strong Interaction

The Proton Radius Puzzle and the Electro-Strong Interaction

Nuclear forces - a review

Particle physics: what is the world made of?

Ab Initio Nuclear Structure Theory

Chapter 32 Lecture Notes

Chapter 46. Particle Physics and Cosmology

Quantum ChromoDynamics (Nobel Prize 2004) Chris McLauchlin

9.2.E - Particle Physics. Year 12 Physics 9.8 Quanta to Quarks

c E If photon Mass particle 8-1

Pions are Special Contents Chiral Symmetry and Its Breaking Symmetries and Conservation Laws Goldstone Theorem The Potential Linear Sigma Model Wigner

Introduction to Nuclei I (The discovery)

Chiral effective field theory on the lattice: Ab initio calculations of nuclei

Chapter 11. The Force Between Nucleons

Chapter 22. Preview. Objectives Properties of the Nucleus Nuclear Stability Binding Energy Sample Problem. Section 1 The Nucleus

THE NUCLEUS OF AN ATOM

Few Body Methods in Nuclear Physics - Lecture I

Mechanics, Heat, Oscillations and Waves Prof. V. Balakrishnan Department of Physics Indian Institute of Technology, Madras

PHY-105: Introduction to Particle and Nuclear Physics

cgrahamphysics.com Particles that mediate force Book pg Exchange particles

1. What does this poster contain?

Fundamental Forces. Range Carrier Observed? Strength. Gravity Infinite Graviton No. Weak 10-6 Nuclear W+ W- Z Yes (1983)

Light hypernuclei based on chiral and phenomenological interactions

Essential Physics II. Lecture 14:

Renormalization group methods in nuclear few- and many-body problems

Lecture PowerPoint. Chapter 32 Physics: Principles with Applications, 6 th edition Giancoli

Instead, the probability to find an electron is given by a 3D standing wave.

Unit 8.1 Nuclear Chemistry - Nuclear Reactions. Review. Radioactivity. State College Area School District Teacher: Van Der Sluys

The Nuclear Many-Body Problem

Chapter 44. Nuclear Structure

13. Basic Nuclear Properties

FYS 3510 Subatomic physics with applications in astrophysics. Nuclear and Particle Physics: An Introduction

Introduction to Nuclei I

SECTION A: NUCLEAR AND PARTICLE PHENOMENOLOGY

Atomic and nuclear physics

1. Introduction. Particle and Nuclear Physics. Dr. Tina Potter. Dr. Tina Potter 1. Introduction 1

The Atomic Nucleus. Bloomfield Sections 14.1, 14.2, and 14.3 (download) 4/13/04 ISP A 1

MICROSCOPIC OPTICAL POTENTIAL FROM NN CHIRAL POTENTIALS. Carlotta Giusti Università and INFN, Pavia. Matteo Vorabbi (TRIUMF) Paolo Finelli (Bologna)

Nucleon-nucleon interaction

Contents. Preface to the First Edition Preface to the Second Edition

Introduction to Particle Physics. HST July 2016 Luis Alvarez Gaume 1

An Introduction to the Standard Model of Particle Physics

INTRODUCTION TO THE STANDARD MODEL OF PARTICLE PHYSICS

THE THREE NUCLEON SYSTEM AT LEADING ORDER OF CHIRAL EFFECTIVE THEORY

New subatomic particle and the Electro-Strong and -Weak Interaction

The IC electrons are mono-energetic. Their kinetic energy is equal to the energy of the transition minus the binding energy of the electron.

1 Introduction. 2 The hadronic many body problem

Chem 481 Lecture Material 1/30/09

Department of Physics, University of Idaho, Moscow, ID 83844, USA; Tel.:

g abφ b = g ab However, this is not true for a local, or space-time dependant, transformations + g ab

Electric Dipole Moments and the strong CP problem

A first trip to the world of particle physics

The Four Fundamental Forces. The Four Fundamental Forces. Gravitational Force. The Electrical Force. The Photon (γ) Unification. Mass.

Lecture 03. The Standard Model of Particle Physics. Part II The Higgs Boson Properties of the SM

Constituents of the atom

Introduction to Quantum Chromodynamics (QCD)

AN OVERVIEW OF QUANTUM CHROMODYNAMICS UNIVERSITY OF WASHINGTON PHYS575 FARRAH TAN 12/10/2015

An Introduction to Particle Physics

Nuclear structure I: Introduction and nuclear interactions

Le Modèle Standard et ses extensions

Quantum Numbers. Elementary Particles Properties. F. Di Lodovico c 1 EPP, SPA6306. Queen Mary University of London. Quantum Numbers. F.

THE STANDARD MODEL OF MATTER

Bosons in the Zoo of Elementary Particles

Introduction to Modern Physics Problems from previous Exams 3

Nuclear Forces - Lecture 3 -

Modern Physics: Standard Model of Particle Physics (Invited Lecture)

Fundamental Particles and Forces

Nuclear Force. Spin dependent difference in neutron scattering. Compare n-p to n-n and p-p Charge independence of nuclear force.

Liquid Drop Model From the definition of Binding Energy we can write the mass of a nucleus X Z

Pion-nucleon scattering around the delta-isobar resonance

Lattice Simulations with Chiral Nuclear Forces

Transcription:

NUCLEAR FORCES Figure 1: The atomic nucleus made up from protons (yellow) and neutrons (blue) and held together by nuclear forces. Nuclear forces (also known as nuclear interactions or strong forces) are the forces that act between two or more nucleons. They bind protons and neutrons ( nucleons ) into atomic nuclei. The nuclear force is about 10 millions times stronger than the chemical binding that holds atoms together in molecules. This is the reason why nuclear reactors produce about a million times more energy per kilogram fuel as compared to chemical fuel like oil or coal. However, the range of the nuclear force is short, only a few femtometer (1 fm = 10^{- 15} m), beyond which it decreases rapidly. That is why, in spite of its enormous strength, we do not feel anything of this force on the atomic scale or in everyday life. The development of a proper theory of nuclear forces has occupied the minds of some of the brightest physicists for seven decades and has been one of the main topics of physics research in the 20th century. The original idea was that the force is caused by the exchange of particles lighter than nucleons known as mesons, and this idea gave rise to the birth of a new subfield of modern physics, namely, (elementary) particle physics. The modern perception of the nuclear force is that it is a residual interaction (similar to the van der Waals force between neutral atoms) of the even stronger force between quarks, which is mediated by the exchange of gluons and holds the quarks together inside a nucleon. Historical perspective

After the discovery of the neutron by Chadwick in 1932 (Chadwick, 1932), it was clear that the atomic nucleus is made up from protons and neutrons. In such a system, electromagnetic forces cannot be the reason why the constituents of the nucleus are sticking together. Indeed, the repulsive electrical Coulomb force between the protons should blow the nucleus apart. Therefore, the concept of a new strong nuclear force was introduced. In 1935, the first theory for this new force was developed by the Japanese physicist Hideki Yukawa (Yukawa,1935), who suggested that the nucleons would exchange particles between each other and this mechanism would create the force. Yukawa constructed his theory in analogy to the theory of the electromagnetic interaction where the exchange of a (massless) photon is the cause of the force. However, in the case of the nuclear force, Yukawa assumed that the force-makers (which were eventually called mesons ) carry a mass of a fraction of the nucleon mass. A massive particle limits the effect of the force to a finite range, since the uncertainty principle allows massive particles to travel only a finite distance. The meson predicted by Yukawa was finally found in 1947 in cosmic ray and in 1948 in the laboratory and called the pion. Yukawa was awarded the Nobel Prize in 1949. In the 1950s and 60s more mesons were found in accelerator experiments and the meson theory of nuclear forces was extended to include many mesons. These models became known as one-boson-exchange models, which is a reference to the fact that the different mesons are exchanged singly in this model. The one-boson-exchange model is very successful in explaining essentially all properties of the nucleon-nucleon interaction at low energies. Also, in the 1970s and 80s, meson models were developed that went beyond the simple single-particle exchange mechanism. These models included, in particular, the explicit exchange of two pions with all its complications. Well-known models of the latter kind are the Paris (Lacombe et al.,1980) and the Bonn potential (Machleidt et al., 1987). Since these meson models were quantitatively very successful, it appeared that they were the solution of the nuclear force problem. However, with the discovery (in the 1970s) that the fundamental theory of strong interactions is quantum chromodynamics (QCD) and not meson theory, all meson theories had to be viewed as models, and the attempts to derive a proper theory of the nuclear force had to start all over again. Figure 2: The exchange of a pion between two nucleons in the quark picture.

The problem with a derivation of nuclear forces from QCD is two-fold. First, each nucleon consists of three quarks such that the system of two nucleons is already a six-body problem. Second, the force between quarks, which is created by the exchange of gluons, has the feature of being very strong at the low energy scale that is characteristic of nuclear physics. This extraordinary strength makes it difficult to find converging mathematical solutions. Therefore, during the first round of new attempts, the models proposed were just "QCD-inspired". The positive aspect of these models is that they try to explain nucleon structure (which consists of three quarks) and nucleon-nucleon interactions (six-quark systems) on an equal footing. Some of the gross features of the two-nucleon force, like the hard core (see below) are explained successfully in such models. However, from a critical point of view, it must be noted that these quark-based approaches are yet another set of models and not a theory. Alternatively, one may try to solve the six-quark problem with brute computing power, by putting the six-quark system on a four dimensional lattice of discrete points which represents the three dimensions of space and one dimension of time. This method has become known as lattice QCD and is making progress. However, such calculations are computationally very expensive and cannot be used as a standard nuclear physics tool. Around 1990, a major breakthrough occurred when the Nobel laureate Steven Weinberg applied the concept of an Effective Field Theory (EFT) to low-energy QCD (Weinberg, 1979, 1991). He simply wrote down the most general theory that is consistent with all the properties of low-energy QCD, since that would make this theory identical to low-energy QCD. A particularly important property is the so-called chiral symmetry, which is spontaneously broken. Massless particles observe chiral symmetry, which means that their spin and momentum are either parallel ( right-handed ) or anti-parallel ( left-handed ) and remain so forever. Since the quarks, which nucleons are made of ( up and down quarks), are almost massless, approximate chiral symmetry is a given. Naively, this symmetry should have the consequence that one finds in nature mesons of the same mass, but with positive and negative parity. However, this is not the case and such failure is termed a spontaneous breaking of the symmetry. According to a theorem first proven by Jeffrey Goldstone, the spontaneous breaking of a symmetry creates a particle, which in this case is the pion. Thus, the pion becomes the main player in the creation of the nuclear force. The interaction of pions with nucleons is weak as compared to the interaction of gluons with quarks. Therefore, pion-nucleon processes can be calculated without problem. Moreover, this effective field theory can be expanded in terms of powers of momentum over "scale", where scale denotes the chiral symmetry breaking scale which is about 1 GeV (= 10^9 ev). This scheme is also known as Chiral Perturbation Theory (ChPT) and allows to calculate the various terms that make up the nuclear force systematically power by power, or order by order. Another advantage of the chiral EFT approach is its ability to generate not only the force between two nucleons, but also many-nucleon forces, on the same footing. In modern theoretical nuclear physics, the chiral EFT approach is becoming increasingly popular and is applied with great success.

Properties of the nuclear force Figure 3: The major components of the nuclear force. The central force is best analyzed in terms of the three ranges indicated. Some properties of nuclear interactions can be deduced from the properties of nuclei. Nuclei exhibit a phenomenon known as saturation: the volume of nuclei increases proportionally to the number of nucleons. This property suggests that the nuclear (central) force is of short range (a few fm) and strongly attractive at that range, which explains nuclear binding. But the nuclear force has also a very complex spin-dependence. Evidence of this property first came from the observation that the deuteron (the proton-neutron bound state, the smallest atomic nucleus) deviates slightly from a spherical shape: it has a non-vanishing quadrupole moment. This suggests a force that depends on the orientation of the spins of the nucleons with regard to the vector joining the two nucleons (a tensor force). In heavier nuclei, a shell structure has been observed which, according to a proposal by M. G. Mayer and J. H. D. Jensen, can be explained by a strong force between the spin of the nucleon and its orbital motion (the spin-orbit force). More clear-cut evidence for the spindependence is extracted from scattering experiments where one nucleon is scattered off another nucleon, with distinct spin orientations. In such experiments, the existence of the nuclear spin-orbit and tensor forces has clearly been established. Scattering experiments at higher energies (more than 200 MeV) provide evidence that the nucleon-nucleon interaction turns repulsive at short inter-nucleon distances (smaller than 0.5 fm, the hard core). Besides the force between two nucleons (2NF), there are also three-nucleon forces (3NFs), four-nucleon forces (4NFs), and so on. However, the 2NF is much stronger than the 3NF, which in turn is much stronger than the 4NF, and so on. In exact calculations of the properties of light nuclei based upon the elementary nuclear forces, it has been shown that 3NFs are important. Their contribution is small, but crucial. The need for 4NFs for explaining nuclear properties has not (yet) been established.

Nuclear forces are approximately charge-independent meaning that the force between two protons, two neutrons, and a proton and a neutron are nearly the same (in the same quantum mechanical state) when electromagnetic forces are ignored. Phenomenological approaches Traditionally, research on the nuclear force has proceeded along two lines: phenomenology and theory. We start with phenomenology. At very low energy, nucleon-nucleon scattering can be described by the so-called effective range expansion which, in its simplest version, has only two parameters (Bethe, 1949), see Brown and Jackson (1976) for a text-book presentation. In modern times, this expansion has been recovered from an EFT which does not include the pion ('pionless EFT'), see, e.g., Bedaque and van Kolck (2002) for an introduction. At intermediate energies, the spin-dependence of the nuclear force becomes important. To produce a general expression for the NN potential (that includes spin and momentum dependences), Okuba and Marshak (1958) imposed the following symmetries, Translational invariance Galilean invariance Rotational invariance Space reflection invariance Time reversal invariance Invariance under the interchange of particle 1 and 2 Isospin symmetry Hermiticity Source : http://www.scholarpedia.org/article/nuclear_forces