Equilibrium and Kinetics studies for the biosorption of aqueous Cd (II) ions onto Eichhornia crasippes biomass

Similar documents
Screening of Algae Material as a Filter for Heavy Metals in Drinking Water

Comparision of Langmuir and Freundlich Equilibriums in Cr, Cu and Ni Adsorption by Sargassum

Effect of Process Parameters on Adsorption of Methylene Blue from Synthetic Effluent Using Jack Fruit Seed Powder

Uranium biosorption by Spatoglossum asperum J. Agardh:

Katarzyna Zielińska, Alexandre G. Chostenko, Stanisław Truszkowski

Chapter 7 Adsorption thermodynamics and recovery of uranium

IMPROVED REMOVAL OF COPPER IONS FROM AQUEOUS SOLUTION USING NaOH-PRETREATED COCO PEAT

Removal of Heavy Metals Fe 3+, Cu 2+, Zn 2+, Pb 2+, Cr 3+ and Cd 2+ from Aqueous Solutions by Using Eichhornia Crassipes

Removal of Copper (II) from Aqueous Solutions using Chalk Powder

REMOVAL OF HEAVY METALS USING COMBINATION OF ADSORBENTS - A CASE STUDY USING INDUSTRIAL WASTE WATER

ABSTRACT. Keywords: Cadmium Removal, sawdust, adsorption. Corresponding Author: P. Akhila Swathanthra 1. INTRODUCTION:

a variety of living species. Therefore, elimination of heavy metals/dyes from water and

Int.J.Curr.Res.Aca.Rev.2016; 4(6): Biosorption of Lead (II), Nickel (II) Iron (II) and Zinc (II) on Flyash from Dilute Aqueous Solution

Performance evaluation of industrial by-product phosphogypsum in the sorptive removal of nickel(ii) from aqueous environment

Acid Orange 7 Dye Biosorption by Salvinia natans Biomass

Adsorption of chromium from aqueous solution by activated alumina and activated charcoal

Removal Of Copper From Waste Water Using Low Cost Adsorbent

Kinetic studies on the effect of Pb(II), Ni(II) and Cd(II) ions on biosorption of Cr(III) ion from aqueous solutions by Luffa cylindrica fibre

Equilibrium and Kinetics of Adsorption of Cationic Dyes by STISHOVITE Clay TiO2 Nanocomposite

Application of Fe 2 O 3 nanoparticles in Heavy Metal Removal

Removal of Cd (II) and Cr (VI) from Electroplating Wastewater by Coconut Shell

EXPERIMENTAL PROCEDURE

Biosorption of aqueous chromium VI by living mycelium of phanerochaete chrysosporium

Sorption of metals on biological waste material

Kinetic and Isotherm Studies of Removal of Metanil Yellow Dye on Mesoporous Aluminophosphate Molecular Sieves

Sorption of Cr(III) from aqueous solutions by spent brewery grain

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: Vol.7, No.7, pp , 2015

Cadmium Removal from Aqueous Solutions by Ground Pine Cone

Adsorption of Acid Orange-7 Dye onto Activated Carbon Produced from Bentonite - A Study of Equilibrium Adsorption Isotherm

MOF-76: From Luminescent Probe to Highly Efficient U VI Sorption Material

REMOVAL OF CADMIUM IONS FROM AQUEOUS SOLUTIONS BY TWO LOW-COST MATERIALS

Comparison studies for copper and cadmium removal from industrial effluents and synthetic solutions using mixed adsorbent in batch mode

ELIMINATION OF NICKEL (I) FROM SYNTHETIC WASTE WATER USING BAGASSE PITH WITH COLUMN STUDIES

Isotherm Study for the Biosorption of Cd (II) from Aqueous Solution by the Aquatic Weed: Ceratophyllum demersum

INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCES Volume 6, No 5, Copyright by the authors - Licensee IPA- Under Creative Commons license 3.

Original Research Isotherms for the Sorption of Lead onto Peat: Comparison of Linear and Non-Linear Methods. Yuh-Shan Ho

Removal of Fluoride from Synthetic Water Using Chitosan as an Adsorbent

The Use of Acacia tortilis Leaves as Low Cost Adsorbent to Reduce the Lead Cations from an Aquatic Environment

Adsorption of Cd(II) ions by synthesize chitosan from fish shells

Research Article. Removal of toxic metal chromium(vi) from industrial wastewater using activated carbon as adsorbent

Modification of Pineapple Leaf Cellulose with Citric Acid for Fe 2+ Adsorption

Invitro adsorption of Cu (II) on low cost biosorbent using batch reactor and fixed bed column

Current World Environment Vol. 4(2), (2009)

ADSORPTION OF HEAVY METALS (LEAD Pb II) FROM AQUEOUS SOLUTION USING Sida Cordifolia BIOMASS

Biosorption of Cu (II) from aqueous solutions: Kinetics and characterization studies

Simultaneous Adsorption and Biodegradation of Phenol and Cyanide in Multicomponent System

Efficient removal of heavy metal ions with EDTA. functionalized chitosan/polyacrylamide double network

In- vitro adsorption of Pb on low cost and Eco-friendly Biosorbent Sargassum

Journal of Babylon University/Engineering Sciences/ No.(4)/ Vol.(25): 2017

CHAPTER-7. Adsorption characteristics of phosphate-treated Ashok bark (Saraca indica): Removal of Ni(II) from Electroplating wastewater

Removal of Nickel ions from Aqueous Solutions on Packed bed of Zeolite NaX

Environment Protection Engineering

School of Environmental Engineering, Universiti Malaysia Perlis, Kompleks Pusat Pengajian Jejawi 3, Arau, Perlis, Malaysia

INTERNATIONAL JOURNAL OF CURRENT RESEARCH IN CHEMISTRY AND PHARMACEUTICAL SCIENCES

Isotherm studies of removal of Cr (III) and Ni (II) by. Spirulina algae

Study of some Effecting Factors on the Removal of Phenol from Aqueous Solutions by Adsorption onto Activated Carbon

REMOVAL OF Cr(III) BY ACTIVATED ACACIA NILOTICA LEAF POWDER

Removal of Hexavalent and Total Chromium from Aqueous Solution by Avocado Shell

ADSORPTION PROPERTIES OF As, Pb AND Cd IN SOFT SOIL AND META SEDIMENTARY RESIDUAL SOIL

ADSORPTION STUDIES OF CHROMIUM (VI) ON ACTIVATED CARBON DERIVED FROM CASURINA FRUIT

ADSORPTION STUDIES OF SOME DYES ON ACACIA CONCINNA POWDER

Adsorption study on pomegranate peel: Removal of Ni 2+ and Co 2+ from aqueous solution

Interference of Aluminum in Heavy Metal Biosorption by a Seaweed Biosorbent

Environment Protection Engineering REMOVAL OF HEAVY METAL IONS: COPPER, ZINC AND CHROMIUM FROM WATER ON CHITOSAN BEADS

Malachite Green Dye Removal Using the Seaweed Enteromorpha

1997 P a g e. Keywords: Adsorption, banana peel, Colour removal, orange peel

Removal of Zn (ІІ) and Lead (ІІ) ions from aqueous solution by Adsorption on to Tectonagrandise Bark powder

Removal of Cr(VI) from Wastewater using Fly ash as an Adsorbent

Bushehr University of Medical Sciences, Bushehr, Iran. Bushehr University of Medical Sciences, Bushehr, Iran.

Biosorption Of Heavy Metals From Aqueous Solution Using Termite Feathers

Adsorption of Congored dye onto activated carbon produced from Tectonagrandis bark powder A study of kinetic and equilibrium adsorption isotherm

International Journal of Pharma and Bio Sciences REMOVAL OF ZINC FROM AQUEOUS SOLUTION USING COFFEE INDUSTRY WASTE ABSTRACT

Removal of Copper Ion from Synthetic Wastewater using Aloe Vera as an Adsorbent

ADSORPTION OF MALACHITE GREEN DYE ONTO ACTIVATED CARBON OBTAINED FROM THE NATURAL PLANT STEM

Adsorption. ScienceDirect. Available online at the adsorption. of Pb(II) by. the kinetic parameters obtained

Adsorptive removal of thallium(iii) ions from aqueous solutions using eucalyptus leaves powders

Influence of pre-treatment methods on the adsorption of cadmium ions by chestnut shell

Methylene blue adsorption by pyrolytic tyre char

Adsorption kinetics for the removal of copper(ii) from aqueous solution by adsorbent PSTM-3T

SORPTION KINETICS OF Pb (II) AND Cd (II) IONS VIA BIOMASS SURFACE OF PLANTAIN PEEL WASTE

Kinetics and Thermodynamics of Co(II) Adsorption on Moringa Olifera Bark From Aqueous Solutions

REMOVAL OF SYNTHETIC DYE ACID RED 186 FROM WATER BY ACTIVATED CARBON. Libya

Removal of Lead from Aqueous Solution using Unglazed Porcelain

Removal of copper and cadmium using industrial effluents in continuous. column studies by mixed adsorbent

Removal of Basic Dyes from Aqueous Solutions by Sugar Can Stalks

Reuse of Newspaper As An Adsorbent For Cu (II) Removal By Citric Acid Modification

Adsorption Studies of Cyanide (CN) - on Alumina

Adsorption of Humic acid on Powdered Activated Carbon (PAC)

Adsorption of Pb(II) Ions on Teak Leaves Activated Carbon- A Kinetic and Equilibrium Study

Phytoremediation of Cu(II) by Calotropis Procera Roots

Treatment of Battery Waste Water Using Meranti Wood Sawdust as Adsorbent

Studies on the Effect ph on the Sorption of Pb(II) and Cu(II) ions from Aqueous Media by Nipa Palm (Nypa fruticans Wurmb)

REMOVAL OF METAL IONS FROM ACIDIC SOLUTIONS USING PEAT A LOW COST SORBENT

Removal of Chromium from Aqueous Solution Using Modified Pomegranate Peel: Mechanistic and Thermodynamic Studies

Effects of Activating Chemicals on the Adsorption Capacity of Activated Carbons Prepared from Palm Kernel Shells.

CHAPTER 3. BATCH STUDIES FOR As(III) REMOVAL FROM WATER BY USING MAGNETITE NANOPARTICLES COATED SAND: ADSORPTION KINETICS AND ISOTHERMS

CHITOSAN BEADS AS A NATURAL ADSORBENT FOR THE REMOVAL OF Cd(II) FROM AQUEOUS SOLUTIONS T.N. Batugedara 1 and C.S.K. Rajapakse 2

Assessment of Dye Adsorption by Luffa Cylindrica fibers Using Experimental Design Methodology

Biokinetic Study on Chromium Removal from Textile Wastewater Using Azadirachta Indica as a Low Cost Adsorbent

REMOVAL OF COPPER IONS FROM INDUSTRIAL WASTEWATER USING WALNUT SHELLS AS A NATURAL ADSORBENT MATERIAL

Transcription:

IOSR Journal of Applied Chemistry (IOSR-JAC) e-issn: 2278-5736. Volume 7, Issue 1 Ver. II. (Feb. 14), PP 29-37 Equilibrium and Kinetics studies for the biosorption of aqueous Cd (II) ions onto Eichhornia crasippes biomass Davis Amboga Anzeze a, John Mmari Onyari a, Paul Mwanza Shiundu a, John W Gichuki b a School of Physical Sciences, College of Biological and Physical Sciences, University of Nairobi, P.O. Box 3197-1, Nairobi, Kenya b Kenya Marine and Fisheries Research Institute ( KMFRI), P.O. Box 81651-81, Mombasa, Kenya. Abstract: Batch experiments were carried out to determine the capacity of E. crasippes biomass to adsorb Cd (II) ions from aqueous solutions with respect to contact time and initial concentration of Cd (II) ions, adsorbent dosage, ph and temperature. The experimental data were modeled by Langmuir and Freundlich isotherm models. The data fitted well with the Freundlich model which implies that the adsorption was multilayer. The data was also subjected to Kinetic models and the pseudo-second-order model found to fit the data. The macrophyte biomass used in this study did not undergo any chemical modification or pretreatment, which when added to its abundance and its low cost make it a green alternative for the removal of Cd (II) ions from water and waste water. Key words: Biosorption, Water hyacinth (E. crassipes), Heavy metal ions, Isotherms, Kinetics I. Introduction Water pollution is a major environmental problem faced by modern society (Chojnacka, 1). Contamination of water by heavy metals is one of the most challenging environmental issues currently. Cadmium is one of the most toxic metals apart from lead and mercury. It has been reported to cause renal dysfunction, hypertension, lung insufficiency, bone lesions and cancer (Feng et al, 1) which is a leading cause of death in Kenya. The cadmium drinking water guidelines value recommended by WHO is.5 mg L -1 (UNEP, 8). The principal sources of Cd into the environment are electroplating, smelting, alloy manufacturing, pigments, plastic, battery, mining and refining processes. Once released into the environment cadmium is toxic to plants animals and microorganisms. The metal is non-biodegradable, persistent and bioaccumulate mainly in the kidneys and liver of vertebrates, invertebrates and also in algae ( Waseem et al., 12) A number of methods have been employed to remove Cd (II) ions from the environment including, ion exchange, reverse osmosis, membrane filtration, electrochemical treatment, and adsorption. Adsorption is the most versatile technique but activated carbon which is the most common adsorbent used is expensive. Therefore there is need to come up with other alternative low cost adsorbents especially those of biological origin commonly referred to as biosorbents. Biosorption has gained a lot of credibility currently because of its eco- friendly nature, excellent performance and cost- effectiveness (Foo and Hameed, 1, Volesky, 7). The aim of this study was to investigate Cd (II) ions removal from aqueous solutions using E.crasippes biomass in order to optimize the efficiency of the biosorption process. Equilibrium isotherm models and kinetic models were applied to the data obtained for a better understanding of the adsorption process. II. Materials and methods 2.1 Biomass preparation E. crassipes plants were harvested from Winam Gulf, Kisumu bay at Kisat and Hippo point of L. Victoria, Kenya. The collected biomass was washed several times with tap water to remove adhering dirt. The washed biomass was then cut into roots, shoots and stems and the parts dried separately for 2 weeks.the dried brown plant biomass were then transported to the University of Nairobi laboratories were they were further dried and later ground and sieved to various particle sizes( <75µm, >75< 3 µm, >3< 425 µm and > 425 µm). The material was washed again using distilled water, then dried in an oven for 48 hours at 7ºC then stored in plastic containers awaiting biosorption experiments. 29 Page

2.2 Chemicals All chemicals used in the present work were of analytical grade. The stock solution of Cd 2+ was prepared in 1. g L -1 concentration using 3CdSO 4.8H 2 O (Sigma Aldrich) then diluted to appropriate concentrations..1 mol L -1 HCl and.5 mol L -1 NaOH was used for ph adjustment. 2.3 Analysis of metal ions The concentration of Cadmium ions in the biosorption media was determined using Atomic absorption Spectrophotometer (Varian Spectr AA), equipped with air acetylene burner. The Hollow cathode lamp was operating at 5 ma. Analytical wavelength was set at 228.8 nm. 2.4 Biosorption Experiments Biosorption experiments were conducted at room temperature (26 ºC) by agitating a given mass of biosorbent with ml of metal ions solution of desired concentration in 1 ml polypropylene containers using an orbital shaker at a speed of rpm for min except for contact time experiments. The effect of solution ph on equilibrium biosorption of metal ions was investigated under similar experimental conditions between 2. and 7.. After the adsorbate has had the desired contact time of interaction with the adsorbent, the samples were filtered using Whatman no. 42 filter paper and the residual concentration analyzed using CTA- AAS. However experiments involving effect of contact time used filter paper no 2.For studies on effect of temperature the adsorption studies were carried out at 25, 3, 4, 5, 6 and 7 ºC. The amount of biosorption (q) was calculated by using the equation below.. (1) The biosorption efficiency, A %, of the metal ion was calculated from: Where Co and Ce are the initial and final metal ion concentrations (mg L -1 ) respectively. V is the volume of the solution (L) and m is the amount of biosorbent used (g). III. Results and discussion 3.1 Effect of ph on metal biosorption Hydrogen ion concentration is one of the important factors that influence the adsorption behavior of metal ions in aqueous solutions. It affects the solubility of metal ions in solution, replaces some of the positive ions found in active sites and affects the degree of ionization of the adsorbate during the process of biosorption (Wan Ngah and Hanafia, 8c). This is because it affects solution chemistry and also the speciation of the metal ions. The effect of initial ph on biosorption of Cd (II) ions onto E.crasippes was evaluated in the ph range of 2. to 7.. Studies in ph range above 7. were not attempted as there is precipitation of cadmium (II) hydroxides. From the figure 1 it could be seen that Cd (II) adsorption increased as the ph increased. At low ph values, protons occupy the biosorption sites on the biosorbent surface and therefore less Cd (II) ions can be adsorbed because of electrostatic repulsion between the metal cations and the protons occupying the binding sites. When the ph was increased, the biosorbent surface became more negatively charged and the biosorption of the metal cations increased drastically until equilibrium was reached at ph 5. - 6.. At ph of >6. there is formation of hydroxylated complexes of the metal ions and these complexes compete with the metal cations for the adsorption sites hence a reduction in the effective metal cations removal. Therefore adsorption experiments at ph above this were not considered. 3 Page

% adsorption % adsorption 1 9 8 7 6 5 4 3 1 1. 1.5 2. 2.5 3. 3.5 4. 4.5 5. 5.5 6. ph 5 mg/l mg/l Figure 1: Effect of ph on % adsorption of Cd (II) ions by.5 g of E.crassipes 3.2 Effect of biosorbent dosage The number of available binding sites and exchanging ions for the biosorption depends upon the amount of biosorbent in the biosorption system. This is attributed to the fact that it determines the number of binding sites available to remove the metal ions at a given concentration. The dosage also determines the adsorption capacity of the biosorbent with an increase in mass reducing the biosorption capacity as the mass increase from.125 g to 2.5 g per ml of adsorbate. The effect of biomass dosage on adsorption of Cd (II) ions is indicated in figure 2. An increase in the % adsorption is attributable to an increase in the number of binding sites for the metal cations.similar results were recorded in the literature for other adsorbents. However the mass could not be increased infinitely as at some point all the solution is sequestered leaving no residual solution for concentration determination. 1 99 98 97 96 95 94 93 92 91.1.3.5.7.9 1.1 1.3 1.5 1.7 1.9 Mass in grams <3 µm >3 µm >425 µm Figure 2: Effect of weight and particle size on Cd (II) ions adsorption by E.crasippes. 31 Page

% adsorption % adsorption 3.3 Effect of initial metal concentration. The initial concentration remarkably affected the uptake of Cd (II) ions in solution. The efficiency of Cd (II) ions adsorption by E.crasippes at different initial concentrations (-6 mg L -1 ) was investigated as shown in figure 3. At a lower concentration, the adsorption sites take up the available metal ions much quickly due to less competition among the metal ions for the available binding sites which are fixed in this case. However, as the concentration increases the competition for the limited binding sites sets in as the binding sites become saturated. 1 1 8 6 4 3 13 23 33 43 53 Concentration in mg L -1.125 g.25 g Figure 3: Effect of initial concentration of Cd (II) ions on adsorption by E. crassipes. 3.4 Effect of contact time Contact time is an important parameter for any successful use of the biosorbents for practical purposes (Sari et. al., 7). Effect of contact time on adsorption of Cd (II) ions was investigated keeping the biomass in contact with the metal ion solution for different time periods between to 6 minutes. It was noted that as adsorption proceeds, the sorbent reaches saturation state, at this point the sorbed solute tends to desorb back into solution (figure 4).Eventually, the rate of adsorption and desorption are equal at equilibrium. When the system attains equilibrium, no further net adsorption occurs. The time taken to attain equilibrium is very important for process optimization. The rate of adsorption is very fast at first and over 95 % of total biosorption of Cd (II) ions occurs in the first 5 minutes and thereafter it proceeds at a slower rate and finally no further significant adsorption is noted beyond minutes of contact time. The very fast adsorption makes the material suitable for continuous flow water treatment systems. 1 9 8 7 6 5 4 3 1 1 3 4 5 6 Time in minutes 69 ppm 432 ppm 154 ppm Figure 4: Effect of contact time on adsorption of Cd (II) ions by E. crassipes 32 Page

% adsorption 3.5 Effect of Temperature Temperature of the medium affects the removal efficiency of pollutants in aqueous solutions. This is because a change in temperature in turn affects the solubility of pollutants and also the kinetic energy of the adsorbing ions. Therefore the effect of temperature on adsorption of Cd (II) ions was investigated and the data is shown in figure 5.The results indicate that the % adsorption increases with increase in temperature up to 4 ºC, after that any increase in temperature is accompanied by a reduction in % adsorption. This can be attributed to the fact that with increase in temperature of the solution, the attractive forces between the biomass surface and Cd (II) ions are weakened thus decreasing the sorption efficiency. This could be due to increase in the tendency for the Cd (II) ions to escape from the solid phase of the biosorbent to the liquid phase with increase in temperature. Finally increased temperature beyond 4 ºC could have destroyed some of the binding sites on the biosorbent surface due to bond rupture. (Meena et al., 5). 1 1 8 6 4 25 35 45 55 65 Temperature in degrees 7 mg/l 5 mg/l Figure 5: Effect of temperature on % adsorption of Cd (II) ions by E.crassipes. 3.6 Biosorption kinetics Kinetic study provides useful information about the mechanism of adsorption and subsequently investigation of the controlling mechanism of biosorption as either mass transfer or chemisorption. This helps in obtaining the optimum operating conditions for industrial-scale batch processes. A good correlation of the kinetic data explains the biosorption mechanism of the metal ion on the solid phase. In order to evaluate the kinetic mechanism that controls the biosorption process, the pseudo-first-order models were applied for biosorption of Cd (II) ions on the biosorbent. The Lagergren pseudo- first order rate model is represented by the equation: (3) Where q e and q t are the amounts of metal adsorbed (mg g -1 ) at equilibrium and at time t respectively, and k 1 is the rate constant of pseudo-first-order biosorption (min -1 ).The q e and rate constant were calculated from the slope and intercept of plot of log(q e - q t ) against time t. The pseudo-second-order equation assumes that the rate limiting step might be due to chemical adsorption. According to this model metal cations can bind to two binding sites on the adsorbent surface.the equation can be expressed as shown below Where k 2 is the rate constant of the pseudo-second- order adsorption (g/mg/min ).If the adsorption kinetics obeys the pseudo-second-order model, a linear plot of t/q t versus t can be observed as shown in figure 6. 33 Page

log(qe-qt) Qt (mg/g) 3 25 15 1 5 1 3 4 5 6 7 Time (min) 154 mg/l 69 mg/l 432 mg/l Figure 6(a) : Effect of contact time on Cd (II) ions uptake by E.crasippes biomass. 2. 1.5 1. y = -.63x + 1.3368 R² =.954.5. 5 1 15 25 3 35 4 45 -.5-1. y = -.415x -.55 R² =.6939 y = -.652x +.5757 R² =.77-1.5-2. -2.5 Time (min) 154 mg/l 432 mg/l 69 mg/l Figure 6(b): Pseudo-first-order plots of Cd (II) ions adsorption onto E.crasippes 34 Page

t/qt(min/mg/g) 25 y =.389x +.165 R² =.9998 15 1 5 y =.367x +.49 R² =.9989 1 3 4 5 6 7 Time (min) Linear (154 mg/l) Linear (69 mg/l) Figure 6(c): Pseudo-second -order- plots of Cd (II) adsorption onto E. crassipes. 3.7 Biosorption isotherms For optimization of the biosorption process design, its imperative to obtain the appropriate correlation for the equilibrium data.biosorption isotherms describe how adsorbate interacts with the biosorbent and the residual metal ions in solution during the surface biosorption.the isotherms also help in determination of adsorption capacityof the biosorbent for the metal ions.the data on Cd (II) ions biosorption was fitted with the Langmuir and Freundlich isotherms. The Langmuir isotherm assumes monolayer coverage of the adsorbate onto a homogeneous adsorbent surface and the biosorption of each cation onto the surface has equal activation energy. The Langmuir isotherm can be exppressed as :...(5) Where q max is the monolayer capacity of the biosorbent (mg g -1 ), and b is the biosorption constant ( L mg - 1 ).The plot of ce/qe versus ce should be a straight line with a slope of 1/q max and intercept of 1/q max b when the biosorption follows Langmuir equation. The Freundlich equation can be expressed as : log q e = log K F + logce...(6) where K F and 1/n are the Freundlich isotherm constants related to biosorption capacity and biosorption intensity respectively.if the equation applies then a plot of log qe versus log Ce will give a straight line of slope 1/n and intercept as K F. 35 Page

log Qe Ce/qe qe 3.5 3. 2.5 2. 1.5 1..5. - 4 6 8 1 1 14 16 Figure 7(a) : Langmuir isotherm for Cd (II) ions using E. crassipes at room temperature. 16 14 1 1 8 6 4 - Figure 7(b) : Linearized Langmuir isotherm plot for adsorption of Cd (II) by E.crasippes. Ce y = 3.1271x - 3.963 R² =.987 5 1 15 25 3 35 4 45 Ce 2.5 2. 1.5 y = 4.5479x -.3145 R² =.995 1..5. -.4 -.2 -.5.2.4.6-1. -1.5-2. log Ce Figure 7(c): Freundlich isotherm plot for adsorption of Cd (II) by E. crassipes 36 Page

IV. Conclusion This study demonstrates that E.crasippes is a promising adsorbent for the removal of Cd(II) ions from aqueous solutions. The adsorption process was affected by various physico chemical parameters such as contact time, ph, initial concentration of the metal ions, shaking speed and temperature.the kinetic study revealed that the adsorption data obeyed the pseudo-second-order model better than the pseudo-first-order model given the higher correlation coefficient(r 2 ). The FTIR spectra revealed that the interaction between Cd (II) ions and adsorbent surface takes place at the hydroxyl amine and carboxyl functional groups.it can therefore be concluded that E.crasippes is an effective alternative biomass for the removal of Cd(II) ions from wastewater because the material has a high adsorption capacity, naturally available, abundandly available at a low cost. Acknowledgements This work was surpported by grant through International Centre for Insect Physiology and Ecology (ICIPE) from the World Federation of Scientists (WFS). References [1]. Chojnacka, K. (1). Biosorption and bioaccumulation-the prospects for practical applications. Environment International, 36, 299-37. [2]. Feng, N., Guo, X., Liang, S., Zhu, Y. & Liu, J. (1). Biosorption of heavy metals from aqueous solutions by chemically modified orange peel. Journal of Hazardous Materials.185,49-54. [3]. Foo, K.Y & Hameed, B.H (1). Insights into modelling of adsorption isotherm systems. Chemical Engineering Journal. 156,2-1. [4]. Meena, A.K.,Mishra,G.K., Rai, P.K., Rajagopal, C., & Nagal,P.N. ( 5). Removal of heavy metal ions from aqueous solutions using carbon aerogel as an adsorbent.journal of Harzadous Materials, 122, 161-17. [5]. Sari A Tuzen, M. Uluozlu, O., D and Soylak, M. (7). Biosorption of Pb (11) and Ni(II) from aqueous solution by lichen (Cladonia furcata) biomass. Biochem. Eng. J., 37, 151-158. [6]. UNEP, Governing Council (8) 24 th and 25 th session, UNEP, GC. [7]. Volesky, B. (7). Biosorption and me, Water Research, 41, 417-429. [8]. Wan Ngah, W. S., & Hanafiah, M. A. K. M. (8c). Surface modification of rubber (Hevea brasiliensis) leaves for the adsorption of copper ions: kinetic, thermodynamic andbinding mechanisms. Journal of Chemical Technology andbiotechnology. [9]. Waseem, S., Din, M. I., Nasir, S. and Rasool, A., ( 12). Evaluation of Acacia nilotica as a non- conventional low-cost biosorbent for the elimination of Pb(II) and Cd(II) ions from aqueous solutions. Arabian Journal of Chemistry. 37 Page