University of Groningen. Hollow-atom probing of surfaces Limburg, Johannes

Similar documents
University of Groningen. Laser Spectroscopy of Trapped Ra+ Ion Versolato, Oscar Oreste

Citation for published version (APA): Hoekstra, S. (2005). Atom Trap Trace Analysis of Calcium Isotopes s.n.

University of Groningen. Extraction and transport of ion beams from an ECR ion source Saminathan, Suresh

University of Groningen. Morphological design of Discrete-Time Cellular Neural Networks Brugge, Mark Harm ter

Citation for published version (APA): Kooistra, F. B. (2007). Fullerenes for organic electronics [Groningen]: s.n.

Can a Hexapole magnet of an ECR Ion Source be too strong? Drentje, A. G.; Barzangy, F.; Kremers, Herman; Meyer, D.; Mulder, J.; Sijbring, J.

Superfluid helium and cryogenic noble gases as stopping media for ion catchers Purushothaman, Sivaji

Theoretical simulation of nonlinear spectroscopy in the liquid phase La Cour Jansen, Thomas

Citation for published version (APA): Shen, C. (2006). Wave Propagation through Photonic Crystal Slabs: Imaging and Localization. [S.l.]: s.n.

University of Groningen. Bifurcations in Hamiltonian systems Lunter, Gerard Anton

Citation for published version (APA): Fathi, K. (2004). Dynamics and morphology in the inner regions of spiral galaxies Groningen: s.n.

University of Groningen. Event-based simulation of quantum phenomena Zhao, Shuang

Citation for published version (APA): Martinus, G. H. (1998). Proton-proton bremsstrahlung in a relativistic covariant model s.n.

University of Groningen. Statistical inference via fiducial methods Salomé, Diemer

University of Groningen. Hollow-atom probing of surfaces Limburg, Johannes

University of Groningen. Study of compression modes in 56Ni using an active target Bagchi, Soumya

Citation for published version (APA): Sok, R. M. (1994). Permeation of small molecules across a polymer membrane: a computer simulation study s.n.

Substrate and Cation Binding Mechanism of Glutamate Transporter Homologs Jensen, Sonja

Sensitized solar cells with colloidal PbS-CdS core-shell quantum dots Lai, Lai-Hung; Protesescu, Loredana; Kovalenko, Maksym V.

University of Groningen. Taking topological insulators for a spin de Vries, Eric Kornelis

University of Groningen. Enantioselective liquid-liquid extraction in microreactors Susanti, Susanti

Citation for published version (APA): Wang, Y. (2018). Disc reflection in low-mass X-ray binaries. [Groningen]: Rijksuniversiteit Groningen.

University of Groningen. Water in protoplanetary disks Antonellini, Stefano

Citation for published version (APA): Andogah, G. (2010). Geographically constrained information retrieval Groningen: s.n.

Citation for published version (APA): Sarma Chandramouli, V. V. M. (2008). Renormalization and non-rigidity s.n.

University of Groningen. Photophysics of nanomaterials for opto-electronic applications Kahmann, Simon

Citation for published version (APA): Kooistra, F. B. (2007). Fullerenes for organic electronics [Groningen]: s.n.

Citation for published version (APA): Shen, C. (2006). Wave Propagation through Photonic Crystal Slabs: Imaging and Localization. [S.l.]: s.n.

Citation for published version (APA): Raimond, J. J. (1934). The coefficient of differential galactic absorption Groningen: s.n.

University of Groningen

Citation for published version (APA): Hoefman, M. (1999). A study of coherent bremsstrahlung and radiative capture s.n.

Citation for published version (APA): Mollema, A. K. (2008). Laser cooling, trapping and spectroscopy of calcium isotopes s.n.

SUPPLEMENTARY INFORMATION

Citation for published version (APA): Boomsma, R. (2007). The disk-halo connection in NGC 6946 and NGC 253 s.n.

Citation for published version (APA): Ruíz Duarte, E. An invitation to algebraic number theory and class field theory

The role of camp-dependent protein kinase A in bile canalicular plasma membrane biogenesis in hepatocytes Wojtal, Kacper Andrze

Carbon dioxide removal processes by alkanolamines in aqueous organic solvents Hamborg, Espen Steinseth

University of Groningen

Citation for published version (APA): Kootstra, F. (2001). Time-dependent density functional theory for periodic systems s.n.

University of Groningen. Levulinic acid from lignocellulosic biomass Girisuta, Buana

Spin caloritronics in magnetic/non-magnetic nanostructures and graphene field effect devices Dejene, Fasil

Published in: ELECTRONIC PROPERTIES OF NOVEL MATERIALS - PROGRESS IN MOLECULAR NANOSTRUCTURES

University of Groningen

University of Groningen. Statistical Auditing and the AOQL-method Talens, Erik

System theory and system identification of compartmental systems Hof, Jacoba Marchiena van den

University of Groningen

University of Groningen

Optical hole burning and -free induction decay of molecular mixed crystals Vries, Harmen de

System-theoretic properties of port-controlled Hamiltonian systems Maschke, B.M.; van der Schaft, Arjan

Dual photo- and redox- active molecular switches for smart surfaces Ivashenko, Oleksii

University of Groningen. Managing time in a changing world Mizumo Tomotani, Barbara

Citation for published version (APA): Nouri-Nigjeh, E. (2011). Electrochemistry in the mimicry of oxidative drug metabolism Groningen: s.n.

Citation for published version (APA): Mendoza, S. M. (2007). Exploiting molecular machines on surfaces s.n.

Citation for published version (APA): Halbersma, R. S. (2002). Geometry of strings and branes. Groningen: s.n.

Citation for published version (APA): Borensztajn, K. S. (2009). Action and Function of coagulation FXa on cellular signaling. s.n.

Peptide folding in non-aqueous environments investigated with molecular dynamics simulations Soto Becerra, Patricia

Citation for published version (APA): Brienza, M. (2018). The life cycle of radio galaxies as seen by LOFAR [Groningen]: Rijksuniversiteit Groningen

Geometric approximation of curves and singularities of secant maps Ghosh, Sunayana

University of Groningen

University of Groningen

University of Groningen. Laser Spectroscopy of Trapped Ra+ Ion Versolato, Oscar Oreste

Current density functional theory for optical spectra Boeij, P.L. de; Kootstra, F.; Berger, Johannes; Leeuwen, R. van; Snijders, J.G.

High-precision (p,t) reactions to determine reaction rates of explosive stellar processes Matić, Andrija

University of Groningen

University of Groningen. The opacity of spiral galaxy disks. Holwerda, Benne

Fundamentals of Nanoscale Film Analysis

University of Groningen. Interregional migration in Indonesia Wajdi, Nashrul

The Metamorphosis of Magic from Late Antiquity to the Early Modern Period Bremmer, Jan N.; Veenstra, Jan R.

University of Groningen

University of Groningen

University of Groningen. Life cycle behavior under uncertainty van Ooijen, Raun

In-situ element analysis from gamma-ray and neutron spectra using a pulsed-neutron source Maleka, Peane Peter

Within the vast field of atomic physics, collisions of heavy ions with atoms define

IV. Surface analysis for chemical state, chemical composition

Citation for published version (APA): Gobius du Sart, G. (2009). Supramolecular triblock copolymer complexes s.n.

Computer animation of electron motion in nano-meter scale devices Raedt, Hans De; Michielsen, Kristel

Enhancement of spin relaxation time in hydrogenated graphene spin-valve devices Wojtaszek, M.; Vera-Marun, I. J.; Maassen, T.

Josephson currents in two dimensional mesoscopic ballistic conductors Heida, Jan Peter

University of Groningen

Citation for published version (APA): Kole, J. S. (2003). New methods for the numerical solution of Maxwell's equations s.n.

Citation for published version (APA): Terluin, I. J. (2001). Rural regions in the EU: exploring differences in economic development s.n.

Lecture 20 Auger Electron Spectroscopy

University of Groningen

UvA-DARE (Digital Academic Repository)

Published in: LOW-METALLICITY STAR FORMATION: FROM THE FIRST STARS TO DWARF GALAXIES

The Role of Multinational Enterprises in the Transition Process of Central and Eastern European Economies Marek, Philipp

Lecture 17 Auger Electron Spectroscopy

Huashun Zhang. Ion Sources. With 187 Figures and 26 Tables Э SCIENCE PRESS. Springer

Coherent X-ray scattering of charge order dynamics and phase separation in titanates Shi, B.

University of Groningen. The binary knapsack problem Ghosh, Diptesh; Goldengorin, Boris

Radiation Physics PHYS /251. Prof. Gocha Khelashvili

Contents. Preface to the First Edition Preface to the Second Edition

UvA-DARE (Digital Academic Repository) Converting lignin to aromatics: step by step Strassberger, Z.I. Link to publication

Nuclear Physics for Applications

Foundation of Radiological Physics. Preface

Citation for published version (APA): Harinck, S. (2001). Conflict issues matter : how conflict issues influence negotiation

University of Groningen. Opening the low frequency window to the high redshift Universe Vedantham, Harish

University of Groningen. Enabling Darwinian evolution in chemical replicators Mattia, Elio

Proceedings of the 12th International Conference on Low Energy Antiproton Physics (LEAP216) Downloaded from journals.jps.jp by on 3/23/

Auger Electron Spectroscopy *

Transcription:

University of Groningen Hollow-atom probing of surfaces Limburg, Johannes IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 1996 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Limburg, J. (1996). Hollow-atom probing of surfaces Groningen: s.n. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 03-05-2018

Contents Preface v 1 Objectives 1 2 Fundamentals 7 2.1 Introduction..... 7 2.2 Charge exchange......... 8 2.2.1 One-electron transitions........ 8 2.2.2 Auger transitions..... 10 2.2.3 Collective excitations... 11 2.2.4 Radiative decay... 12 2.3 The classical over-the-barrier model... 12 2.3.1 Capture distance and image charge acceleration.... 13 2.4 Hollow atom formation and deexcitation... 15 2.5 Experimental approaches... 16 2.5.1 Scattered projectiles... 17 2.5.2 Sputtered material.... 17 2.5.3 Electron emission..... 18 2.5.4 Photon emission... 20 2.5.5 Computer simulations......... 20 3 Experiment 21 3.1 ECR ion source... 21 3.2 Sir... 24 3.2.1 Collimator and deceleration system......... 26 3.2.2 Electrostatic analyzer... 28 3.2.3 Time of ight system... 30 3.3 Targets... 33 xi

xii Contents 4 KLL Auger spectra of hydrogenic ions 35 4.1 Introduction...... 36 4.2 Targets... 36 4.3 Electron spectra... 38 4.4 Identication of the peaks..... 41 5 Atomic structure calculations 47 5.1 Introduction...... 48 5.2 Limited observation time... 48 5.3 Calculations for hollow atoms... 53 6 Coster-Kronig transitions in hollow atoms 61 6.1 Introduction...... 62 6.2 Experimental results........ 62 6.3 Coster-Kronig transitions and rate equations... 64 6.4 Discussion....... 67 7 An L-shell lling model 69 7.1 Introduction...... 70 7.2 Experiment... 70 7.3 Ion trajectory simulations..... 72 7.4 Modelling KLL Auger emission......... 75 7.5 Discussion....... 83 8 Hollow atom formation on an insulator surface 85 8.1 Introduction...... 86 8.2 Experiments... 86 8.2.1 The N 6+ series....... 88 8.2.2 The N, O, Ne series... 89 8.3 Discussion....... 91 9 Ion scattering: He on Al(110) 93 9.1 Introduction...... 94 9.2 Experiment... 94 9.2.1 Energy loss experiments... 94 9.2.2 Measurement ofcharge state fractions........ 96 9.2.3 Trajectory simulations... 96 9.3 Charge exchange... 97 9.3.1 He ++ projectiles...... 97 9.3.2 He + projectiles....... 99 9.3.3 Modelling charge state fractions...100 9.3.4 Discussion...100 9.4 Energy loss...102

xiii 9.4.1 Modelling energy loss...102 9.4.2 Discussion.........104 9.4.3 Results...106 9.4.4 Stopping power...106 10 Ion scattering: O q+ on Al(110) 109 10.1 Introduction.....110 10.2 Scattered charge state fractions........110 10.3 Energy loss...112 11 Negative ion formation 115 11.1 Introduction.....116 11.2 Experiment...116 11.3 A simple model...119 11.4 Results and discussion......125 12 Conclusions and outlook 129 12.1 Timescales of hollow atom deexcitation...129 12.2 Target eects.... 130 12.3 The evolution of hollow atoms.........133 12.4 Hollow-atom probing of surfaces...135 Appendices 136 A Atomic Units 137 B Chopper pulse width 139 B.1 Bunching eects...139 B.2 Lens system.....141 B.3 Geometry eect...142 C Solution of Coster-Kronig rate equations 143 Bibliography 147 List of publications 159 Samenvatting 161 Dankwoord 165

List of Tables 4.1 Measured and calculated K 1 LL Auger energies for C up to F 43 5.1 He KLL Auger transition energies and rates........ 52 5.2 Calculated KLL-Auger transition rates for Li-like systems.. 53 5.3 Calculated KLL Auger transition energies for Li-like systems 55 7.1 Simulated trajectory data.... 76 7.2 N 6+ hollow atom congurations, rates, energies...... 78 9.1 Comparison of AN rates A...101 11.1 C, O and F ionizaton and anity energies.........119 11.2 Electron conguration of O 0 3 P, 1 D and 1 S states.....124 11.3 Fit results using v? (1)...125 11.4 Fit results using v? (z c )...125 11.5 Fit results for and f;s 0...126 xv

List of Figures 2.1 Charge exchange processes.... 9 2.2 Ion-surface distances....... 13 2.3 Ion-surface potential curve... 15 3.1 Atomic physics hall........ 22 3.2 Electron Cyclotron Resonance Ion Source ECRIS4.... 23 3.3 Photograph of Sir set-up.... 25 3.4 Schematic of the Sir set-up... 26 3.5 Lens system, target manipulator and ESA......... 28 3.6 Beam prole... 30 3.7 Time of ight tube... 31 3.8 Chopper-sweeper system..... 32 3.9 TOF spectra for contaminated and clean Al........ 33 4.1 Auger spectrum of hydrogenic N on Ni(110)........ 37 4.2 KLL Auger spectra of O 7+ on Si(100)... 37 4.3 Doppler shift of sharp KLL peaks....... 39 4.4 Intensity of sharp Auger peaks versus velocity... 40 4.5 Auger spectra of hydrogenic C,N,O,F and Ne on Si(100)... 40 4.6 KLL Auger spectra of hydrogenic C, N and O on Ni(110).. 42 4.7 KLL Auger spectra of hydrogenic C,N,O and Ne on W.... 44 4.8 Auger spectra of O 7+ onw,niandsi... 45 5.1 Calculated and measured He KLL Auger spectra..... 49 5.2 He KLL-Auger peak intensities vs. observation time... 51 5.3 Calculated spectra for Li-like and hollow atom congurations 54 5.4 Calculated carbon KLL spectra........ 56 5.5 Relative energy shift of KLL-Auger peaks......... 58 5.6 KLL Auger spectrum for O 7+ on Si(100)... 59 6.1 Auger spectra of hydrogenic and helium-like ions on Si(100). 63 6.2 KLL Auger and Coster-Kronig transitions......... 64 6.3 Solutions of rate equations, O 7+... 65 xvii

xviii List of Figures 6.4 Solutions of rate equations, O 6+... 66 6.5 Calculated and measured spectra, O 7+ and O 6+... 67 7.1 KLL Auger spectra of N 6+ on Si(100), constant v?... 71 7.2 Auger spectra of N 6+ on Al(110), constant v?... 71 7.3 Auger spectra of N 6+ on Al(110), specular reection.... 73 7.4 Doppler shifts of sharp peaks and of FWHM... 73 7.5 Simulated trajectories for constant v?... 74 7.6 Simulated trajectories for specular reection......... 75 7.7 Calculations of Auger energies and lifetimes for hollow atoms 77 7.8 Calculated KLL Emission probability... 83 8.1 KLL Auger spectra of N 6+ on LiF(100)... 87 8.2 KLL Auger spectra of N 6+ on Si(100)... 87 8.3 KLL Auger spectra of N 6+,O 7+ and Ne 9+ on LiF(100)... 88 8.4 L and M electron binding energies for N, O and Ne hollow atoms... 90 9.1 Energy spectra of He scattered o Al(110)... 95 9.2 Fractions He + /(He + +He 0 ) vs. v... 95 9.3 Simulated trajectory lengths.... 97 9.4 He +,He 2+ neutralization scheme........ 98 9.5 Experimental and calculated loss curves...105 9.6 Fit results from the energyloss model......105 9.7 Stopping power versus v...107 10.1 Scattered charge state fractions O q+ /O tot...111 10.2 Energy loss distributions of scattered O r+ r = 1; 1; 2; 3...113 11.1 Negative ion fractions for C 4+ and C + scattered on Al(110). 117 11.2 Negative ion fractions for O 6+ and O +...117 11.3 Negative ion fraction for F 4+...118 11.4 Position of C, O, F anity and ionization levels...120 12.1 A hydrogenic ion approaches a conducting surface...131 12.2 Hydrogenic ion approaching an insulating surface......132 12.3 diabatic vs. adiabatic picture of hollow-atom evolution... 134 12.4 Ion-surface potential V t (z), diabatic and adiabatic picture.. 135 B.1 Pulse width and time spread of chopper-sweeper system... 140